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SUMMARY

The interferon γ-inducible protein 16 (IFI16) is known as immune sensor of retroviral DNA 

intermediates. We show that IFI16 restricts HIV-1 independently of immune sensing by binding 

and inhibiting host transcription factor Sp1 that drives viral gene expression. This antiretroviral 

activity and ability to bind Sp1 require the N-terminal pyrin domain and nuclear localization of 

IFI16, but not the HIN domains involved in DNA binding. Highly prevalent clade C HIV-1 strains 

are more resistant to IFI16 and less dependent on Sp1 than other HIV-1 subtypes. Furthermore, 

inhibition of Sp1 by IFI16 or pharmacologically by Mithramycin A suppresses reactivation of 

latent HIV-1 in CD4+ T cells. Finally, IFI16 also inhibits retrotransposition of LINE-1, known to 

engage Sp1, and murine IFI16 homologs restrict Friend retrovirus replication in mice. Thus, IFI16 

restricts retroviruses and retrotransposons by interfering with Sp1-dependent gene expression and 

evasion from this restriction may facilitate spread of HIV-1 subtype C.
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Graphical Abstract

eTOC BLURB

The interferon γ-inducible protein 16 (IFI16) is an immune sensor of retroviral DNA 

intermediates. Hotter et al. demonstrate that IFI16 suppresses HIV-1 transcription and latency 

reactivation by interfering with Sp1-dependent gene expression. However, highly prevalent 

subtype C HIV-1 strains are less susceptible to IFI16 than other subtypes of HIV-1.

INTRODUCTION

Cell-intrinsic cellular factors, such as TRIM5α, APOBEC3G, Tetherin, SAMHD1, 

SERINC5 and GBP5, play key roles in the first line of defense against viral pathogens, 

targeting virtually every step in the viral replication cycle (Kluge et al., 2015). Most of these 

antiviral factors share certain characteristics, including signatures of positive selection, IFN 

inducibility, and direct interaction with viral components (Harris et al., 2012). Some of them 

display broad antiviral activity since they target viral or host factors essential for replication. 

Finally, several restriction factors not only inhibit viral pathogens directly but also act as 

pattern recognition receptors inducing immune responses upon sensing of viral infection 

(Galão et al., 2012; Pertel et al., 2011). We have used these characteristics to search for 

previously undescribed restriction factors sharing these features (McLaren et al., 2015). This 

approach identified guanylate-binding protein (GBP) 5 as an IFN-induced antiviral factor 

(Krapp et al., 2016) and suggested that the γ-IFN-inducible protein 16 (IFI16) may also 
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restrict HIV-1. IFI16 is a member of the pyrin and HIN domain (PYHIN) containing protein 

family, which includes key mediators of the innate immune response that sense microbial 

DNAs to induce IFNs and/or inflammasome activation (He et al., 2016; Schattgen and 

Fitzgerald, 2011). Previous publications suggested that IFI16 acts as a cytosolic immune 

sensor of HIV-1 DNA species in macrophages (Jakobsen et al., 2013) and promotes IFN 

induction via the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) 

pathway (Jønsson et al., 2017). A second study also reported sensing of HIV-1 reverse 

transcription (RT) intermediates, resulting in a caspase-1 dependent pyroptotic death of 

abortively HIV infected CD4+ T cells (Monroe et al., 2014).

Although IFI16 is thought to act as cytosolic sensor of viral DNA it has mainly been 

detected in the nucleus and shown to interact with nuclear herpesviral DNAs (Kerur et al., 

2011; Li et al., 2012; Orzalli et al., 2012). PYHIN proteins are also known as transcriptional 

regulators, and it has been suggested that IFI16 can sense viral DNAs in the cytoplasm and 

suppress their transcription in the nucleus (Jakobsen and Paludan, 2014). Recent data show 

that IFI16 inhibits human cytomegalovirus (HCMV) transcription (Gariano et al., 2012) and 

restricts herpes simplex virus 1 (HSV-1) replication by repressing viral gene expression 

independently of innate immune sensing (Diner et al., 2016; Johnson et al., 2014). In 

addition, IFI16 suppresses gene expression of human papillomaviruses (Lo Cigno et al., 

2015). Thus, IFI16 restricts transcription of various DNA viruses in the nucleus.

HIV-1 particles contain two copies of a single-stranded RNA genome. Efficient HIV-1 gene 

expression, however, occurs from integrated proviral DNA in the nucleus. The findings that 

IFI16 shares properties of known antiretroviral restriction factors (McLaren et al., 2015), 

while also inhibiting various DNA viruses (Lo Cigno et al., 2015; Diner et al., 2016; Gariano 

et al., 2012; Johnson et al., 2014), prompted us to investigate whether IFI16 inhibits HIV-1 

independently of immune sensing. Indeed, we found that IFI16 inhibits HIV-1 gene 

expression as well as LINE-1 retrotransposition by interfering with the availability of Sp1. 

This transcription factor is required for both basal and Tat-mediated HIV-1 gene expression 

and its inhibition substantially suppressed reactivation of latent HIV-1 proviruses. 

Interestingly, subtype C strains that account for almost 50% of all HIV-1 infections 

worldwide are less susceptible to IFI16 inhibition and less dependent on Sp1 than other 

HIV-1 subtypes. We also show that p204, a mouse homolog of human IFI16, inhibits murine 

leukemia virus (MLV) in vitro and that replication of Friend virus (FV) is increased in 

acutely infected PYHIN knockout mice. In summary, our results show that IFI16 is an 

important effector of intrinsic antiretroviral immunity that might play a role in the spread of 

HIV/AIDS.

RESULTS

IFI16 inhibits infectious HIV-1 production independently of IFN induction

Coexpression of IFI16 potently inhibited infectious virus yield (determined by infection of 

TZM-b1 cells) and p24 antigen production by HEK293T cells transfected with the HIV-1 

NL4-3 proviral construct (Figures 1A, S1A). Real-time quantitative PCR revealed that IFI16 

suppresses the production of initial (R-U5/gag containing mRNA) as well as near (nef) and 

fully (U3-poly-A) completed HIV-1 RNA transcripts in the transfected HEK293T cells 
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(Figure 1B). Consequently, IFI16 reduced viral protein production and affected processing 

of the Gag precursor (p55) by the viral protease but not cleavage of the gp160 Env precursor 

by cellular proteases (Figure 1C). Reduction of infectious virus yield by IFI16 was 

associated with dose-dependent inhibition of LTR-driven eGFP expression by HIV-1 NL4-3-

based proviral constructs containing an IRES-eGFP element downstream of a functional nef 
gene (Figure S1B). In contrast, IFI16 did not suppress eGFP expression driven by the CMV 

immediate early (IE) promoter (Figure S1C). The inhibitory effect was confirmed in 

HEK293T cells infected with HIV-1 IRES-eGFP constructs (Figure S1D) showing that 

IFI16 reduces expression of the integrated provirus.

It has been reported that IFI16 acts as immune sensor for reverse transcription HIV-1 DNA 

intermediates, triggering IFN production via cGAS and STING (Jakobsen et al., 2013; 

Jønsson et al., 2017; Kerur et al., 2011; Unterholzner et al., 2010). However, HEK293T cells 

lack endogenous STING expression (Burdette et al., 2011) (Figure 1D). Consistent with this, 

expression of IFI16 alone or together with HIV-1 did not result in type I IFN induction 

(Figures 1D, S1D). In contrast, IFN expression was induced when STING was transiently 

expressed or after infection with Sendai virus (SeV) that activates innate immune responses 

in a STING-independent manner (Figures 1D, S1E). Altogether, the results show that IFI16 

restricts HIV-1 in HEK293T cells independently of STING and IFN induction by 

suppressing the initiation and efficiency of LTR-driven proviral transcription.

Endogenous IFI16 restricts HIV-1 in primary viral target cells

To assess HIV-1 restriction in primary target cells, we examined IFI16 expression in human 

CD4+ T cells and monocyte-derived macrophages (MDM). We found expression of three 

IFI16 isoforms, which are generated by alternative splicing (Jakobsen and Paludan, 2014) 

and further upregulated by type I IFNs in both cell types (Figure 2A). Treatment with TNFα 
also increased IFI16 levels in CD4+ T cells while activation with anti-CD3/CD28 beads 

mimicking stimulation by antigen-presenting cells had no enhancing effect (Figure 2A). 

Restriction factors, such as APOBEC3G, TRIM5α and tetherin, are induced as part of the 

antiviral immune response but are often unable to inhibit HIV-1 due to viral counteraction 

mechanisms. Thus, their expression typically correlates directly with HIV-1 RNA loads in 
vivo (Rotger et al., 2010). A query in the GuavaH (Genomic Utility for Association and 

Viral Analyses in HIV) database containing a comprehensive dataset of host genes 

modulated during HIV infection showed that also the levels of IFI16 transcripts correlate (p 

= 2.8x10−5) with the viral set point RNA loads in HIV-1-infected individuals (Figure S2A).

To determine whether endogenous IFI16 restricts HIV-1 in primary viral target cells, we 

performed IFI16 siRNA knockdown studies in human macrophages. Despite moderate 

knockdown efficiencies of ~50% (Figure S2B), reduced IFI16 expression increased 

infectious virus yield after single-round infection with VSV-G pseudotyped CXCR4-tropic 

HIV-1 NL4-3 ~3.8-fold (Figure 2B). In the case of CCR5-tropic HIV-1 AD8, which is 

capable of spreading infection in macrophages, IFI16 knockdown increased infectious virus 

yield on average 6.9-fold at 3 dpi and 16.6-fold at 6 dpi (Figure 2B). In agreement with an 

effect on viral transcription, IFI16 silencing enhanced the levels of LTR-driven eGFP 
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expression in macrophages infected with HIV-1 NL4-3 reporter constructs ~2- to 3-fold 

(Figures 2C, S2C).

To further examine whether endogenous IFI16 inhibits HIV-1 independently of immune 

sensing, we generated stable knock-outs of the IFI16 and STING genes in THP-1 

monocytoid cells (Figure S2D), which adopt a macrophage-like phenotype upon PMA 

stimulation (Daigneault et al., 2010). Knock-out of IFI16 but not STING significantly 

increased infectious HIV-1 yield (Figure 2D). As expected from previous data (Jakobsen et 

al., 2013; Jønsson et al., 2017), lack of STING prevented and knock-out of IFI16 reduced 

IFN induction upon treatment with herring testis DNA (HT-DNA) or cGAMP (Figure S2E). 

These data show that endogenous IFI16 restricts HIV-1 in human cells.

The antiretroviral activity of IFI16 is broad and evolutionary conserved

To examine whether the antiviral activity of IFI16 is conserved among primate species, we 

tested human (hum), chimpanzee (cpz), African green monkey (agm) and rhesus macaque 

(mac) orthologs against a panel of 22 infectious molecular clones (IMCs) of HIV-1, HIV-2 

and SIV. Despite considerable sequence variation (Figure S3A), all four IFI16 orthologs 

were expressed at similar levels (Figure 3A). To determine their antiviral activity, HEK293T 

cells were cotransfected with the proviral HIV and SIV constructs and vectors expressing the 

IFI16 orthologs. Determination of infectious virus yield by TZM-b1 infection assay showed 

that all primate lentiviruses were inhibited by IFI16 (Figure 3B). However, the magnitude of 

the effect varied substantially. For example, infectious virus yields of HIV-1 M CH058, 

SIVcpz EK505, SIVagm and most SIVsmm were reduced by ≥90%, whereas HIV-1 M 

CH293, HIV-1 N DJO0131 and HIV-2 AB7312 were much less affected. These varying 

susceptibilities to IFI16 inhibition were not due to differences in absolute infectivity (data 

not shown) and were independent of the IFI16 species origin (Figures 3B).

IFI16 has been reported to be under positive selection (Cagliani et al., 2014; Cridland et al., 

2012; McLaren et al., 2015). However, mutation of seven amino acid residues, showing 

evidence for positive selection, to alanines had little if any effect on the antiretroviral activity 

of human IFI16 (Figure S3B). Similarly, the antiviral activity of IFI16 was not impaired by 

two polymorphisms (S409R and N413Y) found in most individuals of African origin (57%) 

and a minority of Caucasians (Booiman and Kootstra, 2014) (Figure S3B). All these mutant 

IFI16 proteins were efficiently expressed (Figure S3C). Altogether, the results showed that 

the antiretroviral activity of IFI16 is conserved between monkeys, great apes and humans 

and not species-specific.

The pyrin domain and nuclear localization of IFI16 are critical for antiviral activity

To define the domains involved in antiviral activity, we analyzed a set of twelve IFI16 

variants harboring point mutations or deletions in nuclear localization (NLS) signals, 

oligomerization motifs, DNA-interaction sites or entire domains (Figure 4A, left) for their 

effect on infectious virus yield and LTR-driven eGFP expression from a proviral HIV-1 

reporter construct (Figure S4A). Deletion of the NLS and mutations in its oligomerization 

sites impaired the antiviral activity of IFI16 (Figures 4A; S4A) without reducing its 

expression (Figure S4B). Surprisingly, the N-terminal 191 amino acids of IFI16 
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encompassing the pyrin and NLS-containing linker domains were sufficient for potent anti-

HIV-1 activity (Figure 4A). In contrast, the two HIN domains thought to be involved in viral 

DNA interaction (Ni et al., 2016) and enhancement of cGAS-dependent immune sensing of 

HIV-1 RT intermediates (Jønsson et al., 2017) were dispensable for the antiviral activity of 

IFI16 (Figure 4A). Thus, different domains are involved in innate sensing and sensing-

independent restriction of retroviruses by IFI16. The effect of the parental and mutant IFI16 

proteins on infectious virus yield correlated with their impact on LTR-driven eGFP 

expression from the proviral HIV-1 constructs (R2= 0.812; p<0.0001), further supporting 

that IFI16 restricts HIV-1 by suppressing viral transcription.

To further elucidate the importance of nuclear localization, we mutated the previously 

described NLS signals in IFI16 (Li et al., 2012) and/or fused the parental and mutant 

proteins to the SV40 NLS or an HIV-1 Rev nuclear export signal (NES) (Figure 4B). All 

IFI16 variants were expressed (Figure S4C) and wt IFI16 was mainly detected in the nucleus 

(Figures 4C, S4D). Mutations in the NLS motif or addition of a C-terminal NES resulted in 

relocalization to the cytoplasm, while fusion to the SV40 NLS restored nuclear localization 

of IFI16 containing mutant NLS (Figures 4C, S4D). The three predominantly nuclear forms 

of IFI16 suppressed infectious virus yield and proviral eGFP expression, while all five IFI16 

derivatives that were mainly found in the cytoplasm lacked inhibitory activity (Figure 4D). 

Thus, the N-terminal pyrin domain and nuclear localization are essential and sufficient for 

HIV-1 restriction by IFI16.

IFI16 inhibits HIV-1 gene expression in an Sp1-dependent manner

To determine the specificity of IFI16, we examined its effect on expression of a luciferase 

reporter gene from various viral promoters. In agreement with the results obtained using 

IRES-eGFP constructs (Figures S1A, S1B), IFI16 significantly reduced activity of the HIV-1 

LTR, as well as the HSV thymidine kinase (TK) promoter but not the CMV IE promoter 

(Figure 5A). To map elements in the HIV-1 LTR targeted by IFI16, we examined LTR 

luciferase constructs containing alterations in their Sp1, NF-κB/NFAT, USF, TCF-1α and 

NF-IL6 transcription factor binding sites (Bosque and Planelles, 2009) (Figure S5A). 

Mutation of the Sp1 interaction sites impaired LTR activity by about two orders of 

magnitude (Figure S5B) and significantly reduced the inhibitory effect of IFI16 on basal and 

Tat-induced LTR-driven gene expression (Figure 5B). Titration experiments confirmed that 

also at similar activity levels, the wt LTR is inhibited by IFI16, while the Sp1-deficient LTR 

mutant is not (Figure S5C). In addition, IFI16 suppressed the enhancing effect of Sp1 

overexpression on infectious HIV-1 NL4-3 production (Figure 5C).

To further examine the role of Tat and Sp1 in the inhibitory effect of IFI16, we took 

advantage of HIV-1 constructs harboring a Tet-On gene expression element allowing viral 

transcription in the absence of Tat and various parts of the LTR (Das et al., 2011). Our 

analyses confirmed that lack of the Sp1 interaction sites and/or Tat expression abolished the 

susceptibility of HIV-1 to IFI16 inhibition, while lack of other parts of U3 or the TAR region 

had only minor effects (Figure S5D). Analysis of the effect of IFI16 on LTR-driven 

transcription using minimal LTR firefly luciferase reporter constructs containing two tet 
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operator (tetO) sites (Turrini et al., 2015) showed that IFI16 inhibits basal transcription only 

in the presence of Sp1 binding sites (Figure 5D).

To more directly determine the effect of IFI16 on Sp1 activity, we took advantage of a DNA-

binding ELISA quantifying available Sp1 in nuclear extracts. In agreement with the antiviral 

activity (Figure 4A), the pyrin and linker domains of IFI16 were required and sufficient to 

reduce the levels of available endogenous or overexpressed Sp1 in nuclear extracts of 

transfected HEK293T cells (Figure 5E). IFI16 significantly reduced the levels of Sp1 bound 

to target DNA sequences without affecting its protein levels (Figure 5F). Co-

immunoprecipitation experiments with HEK293T cells, transfected with HA-tagged variants 

of IFI16, revealed that significant quantities of endogenous Sp1 were pulled down together 

with IFI16 and this effect was dependent on the N-terminal pyrin and linker domain (Figure 

5G). To determine if the interaction between Sp1 and IFI16 depends on nucleic acids, we 

performed co-immunoprecipitation experiments with cell lysates, in which DNA and RNA 

was removed by benzonase treatment. We found that IFI16 pulled down higher levels of Sp1 

in the absence of DNA, possibly because DNA competes with IFI16 for Sp1 binding (Figure 

5H). To better assess the relevance of these effects in primary viral target cells, we compared 

IFI16 and Sp1 expression levels in MDM and CD4+ T cells exposed to various stimuli with 

the protein levels in HEK293T cells transfected with increasing doses of IFI16. The 

IFI16/Sp1 expression ratio in macrophages and T cells was generally higher than in 

transfected HEK293T cells (Figure S5E). Altogether, these results indicate that IFI16 binds 

Sp1 via its pyrin and/or linker domain and reduces the availability of Sp1 for proviral 

transcription.

Low IFI16 sensitivity and Sp1 dependency of subtype C HIV-1 strains

To further elucidate the anti-HIV-1 activity of IFI16, we selected five primary HIV-1 IMCs, 

differing widely in IFI16 sensitivity in transfected HEK293T cells (Figure 6A), for detailed 

analyses. IFI16 silencing in primary macrophages by siRNA increased infectious yield of 

IFI16 sensitive HIV-1 strains up to 13-fold but had only ~3-fold effects on IFI16 resistant 

HIV-1 IMCs (Figure 6B). Our analyses revealed a highly significant correlation between the 

enhancing effect of IFI16 knock-down on infectious virus yield in primary macrophages and 

the inhibitory effect of IFI16 overexpression in HEK293T cells (R2=0.936; p=0.007). Sp1 

overexpression increased infectious virus yield of IFI16 sensitive HIV-1 strains up to 7-fold 

but had little effect on IFI16 resistant viruses (Figure 6C). To further determine the Sp1 

dependency of the selected HIV-1 IMCs, we took advantage of the chronic myelogenous 

leukemia cell line HAP1 (Carette et al., 2009) and a derivative thereof lacking Sp1 

expression (Figure S6A). We found that lack of Sp1 reduces infectious virus yield of IFI16 

sensitive HIV-1 strains more severely than of IFI16 resistant HIV-1 IMCs (Figure 6D). To 

examine whether the viral accessory vpr, nef, vpu or vif genes affect IFI16 inhibition, we 

mutated them individually in HIV-1 IMCs showing high (CH058), intermediate (CH198) 

and low (CH293) susceptibility to inhibition by IFI16. We found that the differential 

susceptibility of HIV-1 to IFI16 inhibition is independent of viral accessory protein function 

(Figure S6B).
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Our results indicated that the susceptibility of primary HIV-1 strains to IFI16 inhibition 

correlates with their dependency on Sp1 for efficient virus production. To determine whether 

this is also the case for other primate lentiviruses, we analyzed a set of 43 different proviral 

constructs representing pandemic group M of HIV-1, as well as HIV-2 and their simian 

precursors SIVcpz and SIVsmm, respectively. Remarkably, HIV-2 was substantially less 

susceptible to IFI16 than SIVsmm, its direct simian counterpart (32.8±12.6% vs 86.3±2.4% 

inhibition, p=0.0006; mean±SEM) (Figure 6E). In addition, grouping by HIV-1 subtype 

revealed that subtype C viruses are on average less susceptible to IFI16 (~50% inhibition) 

than subtypes A, B and D (Figure 6F). All subtype A, B and D HIV-1 strains were inhibited 

by 60% to 98%, which was similar to the effects of IFI16 on the two SIVcpz strains tested. 

The only exception was the subtype B HIV-1 THRO IMC, which was largely resistant to 

IFI16 (Figure 6A) and hardly affected by IFI16 knock-out in THP-1 cells (Figure 2D) or 

IFI16 knock-down in macrophages (Figure 6B).

On average, HIV-2 strains were less responsive to Sp1 overexpression (172.1±38.64%, n=5) 

than SIVsmm strains (574.3±180.5%, n=7), although the difference failed to reach statistical 

significance (Figure 6G). Different subtypes of HIV-1 also showed marked differences in 

Sp1 responsiveness. For example, Sp1 overexpression increased infectious yield of HIV-1 

subtype A strains ~8-fold, while only 2-fold effects were observed for subtype C (Figure 

6H). Altogether, we observed a highly significant correlation between the sensitivity of 

primate lentiviruses to IFI16 and their responsiveness to Sp1 overexpression (Figure 6I). To 

assess a potential role in virus transmission, we examined IFI16 sensitivity of nine 

transmitted-founder (TF) HIV-1 IMCs and matched 6-month consensus molecular clones 

from the same individual (Fenton-May et al., 2013). We found that three of five clade C but 

none of the four clade B HIV-1 IMCs showed increases in their sensitivity to IFI16 after 6 

months of infection (Figure 6J). To map the determinants of IFI16 sensitivity, we swapped 

both LTRs between susceptible and resistant subtype B HIV-1 IMCs (Figure S6C). The 

THRO LTR rendered HIV-1 CH058 and CH040 resistant to IFI16, while the CH058 LTR 

conferred susceptibility to HIV-1 THRO (Figure 6K, left). These LTR sequences also 

governed the responsiveness of the HIV-1 constructs to Sp1 overexpression (Figure 6K, 

right). Altogether, these results reveal striking differences in IFI16 susceptibility and Sp1 

responsiveness of primate lentiviruses and demonstrate that HIV-1 subtype C is less 

dependent on Sp1 and less susceptible to IFI16 than subtypes A, B and D.

Inhibition of Sp1 suppresses reactivation of latent HIV-1

Our results show that IFI16 suppresses HIV-1 transcription by reducing the availability of 

Sp1. To examine the potential relevance of this transcription factor for reactivation of latent 

HIV, we analyzed the effect of the Sp1 inhibitor Mithramyin A in the Jurkat-based J-Lat 

10.6 clone containing a full-length integrated HIV-1 genome that expresses GFP upon 

reactivation (Jordan et al., 2003). Mithramyin A efficiently suppressed TNFα-induced 

reactivation of HIV-1 at a concentration of 50 nM (Figure 7A) that did not induce significant 

cytotoxic effects (Figure S7A). Notably, TNFα treatment did not affect Sp1 expression 

levels, but moderately increased IFI16 expression (Figure S7B). To further examine the role 

of Sp1 and IFI16 in reactivation of latent HIV-1, we generated J-Lat clones lacking these 

factors (Figure 7B, left). We found that induction of LTR-dependent gene expression by 
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TNFα in J-Lat cells is dependent on Sp1 and significantly inhibited by IFI16 (Figure 7B, 

right).

To verify the relevance of Sp1 in a primary viral target cell latency model, we infected CD4+ 

T cells with VSV-G pseudotyped NL4.3-deltaEnv-nLuc-2ANef (Figure S7C). This 

recombinant virus expresses both Nef and Vpu and downregulates CD4 in productively 

infected cells. Thus, latently infected and uninfected CD4+ cells are purified using anti-CD4 

conjugated beads, cultured with or without Mithramycin A, and subsequently treated with 

PMA or medium (unstimulated) as outlined in Figure S7C. Mithramycin A inhibited HIV-1 

gene expression and p24 antigen production in both PMA-stimulated as well as unstimulated 

CD4+ T cells (Figures 7C, S7D). Notably, Mithramycin A almost entirely abolished PMA-

mediated reactivation of HIV-1 at a concentration of 50 nM (Figures 7C; S7D) that did not 

display marked cytotoxicity (Figure S7E). Thus, inhibition of Sp1 suppresses reactivation of 

latent HIV-1 in primary CD4+ T cells.

IFI16 restricts LINE-1 retrotransposition

It is estimated that up to 17% of the human genome might be derived from LINE-1, the only 

autonomously active retrotransposon in humans. Control of retrotransposition is relevant in 

preventing autoimmunity as well as cancer development and it has been reported that Sp1 

and Sp3 interact with the rat LINE-1 promoter (Fedorov et al., 2006). To determine whether 

IFI16 restricts human LINE-1, we used a well-established reporter assay utilizing GFP 

expression as surrogate marker for successful retrotransposition (Herrmann et al., 2018). For 

control, we used active phosphorylation-deficient SAMHD1 (T592A) and an enzymatically 

inactive mutant (D207N) thereof lacking anti-LINE-1 activity (Herrmann et al., 2018). IFI16 

inhibited LINE-1 retrotransposition by 62% (Figure 7D). The N-terminal pyrin and linker 

domains were required and sufficient for potent inhibition (>95% reduction) of 

retrotransposition. In agreement with these findings, full-length IFI16 as well as the pyrin-

linker fragment significantly inhibited the LINE-1 but not the CMV promoter (Figure 7E). 

Altogether, these results suggest that IFI16 restricts HIV-1 and LINE-1 by the same 

mechanism.

PYHIN proteins restrict retroviral replication in vivo

Many previous reports suggested that PYHIN proteins play a key role in DNA sensing and 

the induction of antiviral IFN responses (reviewed in Bauernfeind and Hornung, 2013; 

Schattgen and Fitzgerald, 2011). Strikingly, however, a recent study demonstrated that 

knock-out of all 13 Pyhin genes in mice had no significant effect on their type I IFN 

response to DNA ligands or various viral pathogens, suggesting that their main function 

remains unknown (Gray et al., 2016). To determine whether the IFN-independent 

antiretroviral activity of PYHIN proteins is conserved between mice and men, we cloned 

and analyzed the IFI16 mouse homolog p204 (Deschamps et al., 2003). IFI16 and p204 

reduced infectious HIV-1 yield and LTR-driven proviral eGFP expression with similar 

efficiency (Figure 7F) and were both efficiently expressed (Figure 7G). For control, we also 

analyzed human AIM2. This member of the human PYHIN protein family lacks an NLS that 

is critical for the antiviral activity of IFI16 (Figure 4) and has been detected mainly in the 

cytoplasm (Lugrin and Martinon, 2018). Indeed, AIM2 did not display significant anti-
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HIV-1 activity (Figures 7F). To determine restriction of mouse retroviruses, we first 

examined the effect of p204 on murine leukemia virus (MLV) production in transfected 

HEK293T cells. p204 efficiently inhibited MLV in a dose-dependent manner (Figure 7H). 

To analyze whether PYHIN proteins restrict retroviruses in vivo, we infected parental 

C57BL/6 (B6) and Pyhin KO (ALR−/−; Aim2-like-receptor knock-out) mice (Gray et al., 

2016) with equal doses of Friend virus (FV). Early in infection, plasma viremia was ~50-

fold reduced in wt mice (Figure 7I) and the number of FV infected cells in the spleen was 

~2-fold lower (Figure 7J) compared to mice lacking PYHIN protein expression. Thus, even 

though they seem to be dispensable for IFN induction (Gray et al., 2016), PYHIN proteins 

inhibit retroviral replication in vivo.

DISCUSSION

In the present study, we show that the IFN-inducible PYHIN protein IFI16 inhibits retroviral 

transcription by reducing the availability of the transcription factor Sp1. The N-terminal 

pyrin domain involved in protein-protein interaction and nuclear localization of IFI16 are 

critical and sufficient for inhibition of HIV-1 and the LINE-1 retroelement, as well as for 

Sp1 binding. In contrast, the HIN domains thought to be critical for DNA interaction and 

sensing are dispensable for this function. Unexpectedly, we found that members of different 

HIV-1 subtypes exhibit marked variation in their dependency on Sp1 for viral gene 

expression that correlates with susceptibility to IFI16 inhibition. HIV-1 subtype C strains, 

which account for almost half of all HIV-1 infections, are less dependent on Sp1 and 

susceptible to IFI16 inhibition than other subtypes of HIV-1. IFI16 knockdown in primary 

human macrophages strongly enhanced infectious virus yield of HIV-1 strains that are 

susceptible to IFI16 inhibition in transient expression assays. Antiretroviral activity is 

conserved between primate IFI16 proteins and their mouse homolog p204 and knockout of 

all Pyhin genes in mice was associated with reduced control of Friend virus replication early 

after infection. Thus, PYHIN proteins restrict retroviruses and presumably endogenous 

retroelements both in cell culture and in vivo.

Previous studies reported that IFI16 boosts sensing of intracellular DNA and IFN induction 

via the cGAS-STING pathway in macrophages (Jakobsen et al., 2013; Jønsson et al., 2017). 

In addition, IFI16 was implicated as cytoplasmic immune sensor mediating pyroptotic death 

of tissue CD4+ T cells abortively infected with HIV-1 (Monroe et al., 2014) (Figure S7F). A 

main function of IFI16 as cytoplasmic sensor of viral DNA species, however, is at odds with 

the observation that this factor is predominantly found in the nucleus (Figure 4C; Li et al., 

2012). Indeed, several studies reported that IFI16 acts as nuclear sensor and direct restriction 

factor of a variety of DNA viruses (Lo Cigno et al., 2015a; Gariano et al., 2012; Johnson et 

al., 2014). Although retroviruses harbor single-stranded RNA genomes, they use their 

reverse transcriptase to generate linear double-stranded DNAs that enter the nucleus and 

integrate into the host cell genome for viral transcription. Our finding that IFI16 inhibits 

various retroviruses and the LINE-1 retroelement is thus in agreement with a role as a 

nuclear restriction factor of a diverse array of viral pathogens. Strikingly, it has recently been 

shown that knock-out of all 13 Pyhin genes in mice does not significantly affect the type I 

IFN response upon exposure to various DNA ligands or viral pathogens (Gray et al., 2016). 

Here, we show that lack of PYHIN proteins is associated with about 50-fold increased MLV 
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RNA loads early after infection (Figure 7I). The contribution of individual mouse PYHIN 

family members to this antiviral effect and their mode of action remains to be determined, 

but our data clearly support that PYHIN proteins restrict retroviral replication independently 

of IFN induction.

It has been reported that IFI16 cooperatively binds dsDNA in a length-dependent manner 

and clusters into protein filaments (Morrone et al., 2014). Assembly into filaments is 

mediated by conserved residues in the pyrin domain and required for high affinity binding of 

DNA via the HIN domains (Morrone et al., 2014). Thus, it was unexpected that both HIN 

domains thought to be critical for DNA interaction and sensing are dispensable for 

antiretroviral activity of IFI16 suggesting that DNA binding might not be required for the 

antiviral effect. In contrast, the presence of the pyrin domain in the nucleus was required and 

sufficient for inhibition of viral transcription (Figures 4, S4). Our results confirm data 

showing that IFI16 interacts with Sp1 (Gariano et al., 2012) and support the hypothesis that 

IFI16 limits the availability of this key transcription factor for viral gene expression 

potentially by competing with DNA for Sp1 binding.

Mutation of Sp1 binding sites abolished IFI16-mediated inhibition of LTR-driven gene 

expression (Figures 5B, 5D) and the susceptibility of various primate lentiviruses correlated 

significantly with their dependency on Sp1 for efficient transcription (Figure 6I). Thus, the 

antiretroviral effects of IFI16 are clearly dependent on Sp1. This result is in agreement with 

the finding that deletion of a putative Sp1 responsive element reduces inhibition of the 

HCMV UL44 promoter by IFI16 (Gariano et al., 2012). However, the inhibitory effects of 

IFI16 were always more pronounced in the presence of the viral transactivator of 

transcription Tat (Figures 5A, 5B, S5B). Functional interactions between Sp1 and Tat are 

documented but poorly understood (Das et al., 2011; Jeang et al., 1993; Loregian et al., 

2003). It has been shown that even in the absence of a functional TAR element, Tat boosts 

viral transcription via the Sp1 binding sites in the LTR (Das et al., 2011). Thus, IFI16 might 

interfere with the functional interactions between Tat and Sp1 that are critical for efficient 

viral gene expression.

One unexpected finding of our study is that primate lentiviruses differ strongly in their 

dependency on Sp1. Most notably, we found that subtype C HIV-1 strains are substantially 

less affected by differences in Sp1 expression levels than HIV-1 subtype A, B and D strains 

and relatively resistant to IFI16 inhibition (Figure 6). Importantly, these results were 

obtained using a comprehensive panel of transmitted-founder and chronic HIV-1 IMCs that 

were generated directly from patient-derived sequences and never passaged in cell culture. 

Thus, reduced IFI16 susceptibility and Sp1 dependency are characteristic features of primary 

subtype C HIV-1 strains that might contribute to their effective spread in the human 

population.

Analyses of recombinant HIV-1 constructs showed that susceptibility to IFI16 is determined 

by the viral LTR (Figure 6K). HIV-1 IMCs differing in IFI16 susceptibility showed multiple 

sequence variations in the LTR, although the three potential Sp1 binding sites are usually 

conserved in the LTRs of all primate lentiviruses (examples shown in Figure S6C). Notably, 

the only resistant HIV-1 subtype B strain (THRO) differed just by a single nucleotide change 
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across the three Sp1 sites from the susceptible HIV-1 CH058 IMC (Figure S6C). Thus, it is 

tempting to speculate that the presence of other regulatory elements allowing efficient viral 

transcription independently of Sp1, rather than differences in Sp1 binding sites themselves, 

might determine the differential susceptibility of primate lentiviruses to IFI16 inhibition. For 

example, HIV-1 THRO contains an extra 34 nucleotide stretch compared to other subtype B 

strains in the LTR (Figure S6C) and HIV-1 subtype C usually contains an additional NF-κB 

site compared to other subtypes of HIV-1 (Bachu et al., 2012; Montano et al., 2000). Our 

ongoing studies aim at fully defining the molecular determinants of IFI16 susceptibility and 

Sp1 dependency.

Although it is long known that Sp1 plays a key role in HIV-1 transcription (Jones et al., 

1986; Jeang et al., 1993), its significance for HIV-1 latency and reactivation has hardly been 

explored because it is commonly thought that Sp1 is constitutively and ubiquitously 

expressed. However, our results clearly demonstrate that Sp1 is a limiting factor in HIV-1 

transcription that is critical for HIV-1 reactivation in J-Lat cells (Figure 7B). In addition, our 

data show that IFI16 reduces the availability of Sp1, suggesting that this effector of the 

innate IFN response might promote the establishment of latent viral reservoirs. We also 

found that pharmacological inhibition of Sp1 by Mithramycin A suppresses reactivation of 

latent HIV-1 (Figures 7A, 7C). We show that the IFI16/Sp1 expression ratio in primary 

CD4+ T cells is high (Figure S5E) and it has been reported that IFI16 is expressed at high 

levels in resting central memory T cells, which harbor a significant part of the latent HIV-1 

reservoir (Cerboni et al., 2017). Thus, further studies to elucidate the role of IFI16-mediated 

suppression of Sp1 activity in the establishment and maintenance of latent HIV reservoirs 

seem highly warranted and may help to improve “block and lock” approaches aiming to 

prevent HIV reactivation.

In conclusion, we show that IFI16 is an antiviral factor that is expressed and IFN-inducible 

in primary CD4+ T cells and macrophages and suppresses viral transcription in an Sp1-

dependent manner. Altogether, our results show that IFI16 shares most properties of known 

antiviral restriction factors (Kluge et al., 2015), although based on more stringent criteria it 

could also be defined as “negative regulator” of HIV-1 since it targets a virus dependency 

factor (Sp1) that is also critical for numerous cellular functions (Bieniasz, 2004). Our results 

further show that HIV-1 subtype C strains are relatively resistant to IFI16 inhibition because 

they are less dependent on Sp1 for efficient transcription than other subtypes of HIV-1. The 

antiretroviral effect is conserved between p204 from mice and IFI16 from men. Lack of all 

PYHIN proteins in mice did not affect type I IFN responses upon exposure to DNA triggers 

or viruses (Gray et al., 2016) but was associated with increased viral loads early during 

Friend virus infection. Thus, further studies on the role of PYHIN proteins as effectors of 

innate antiviral immunity rather than as immune sensors seem highly warranted.

STAR METHODS TEXT

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Frank Kirchhoff (frank.kirchhoff@uni-ulm.de).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Studies in mice—All animal studies were performed under the LANUV NRW-approved 

animal study number A1536/15 in accordance with the regulations and guidelines of the 

animal protection law in Germany. The original source of the C57BL/6J controls were the 

Harlan Laboratories and the ARL−/− mice were from Jackson Laboratories. They were 

made using C57BL/6N mice, but the N and J strains do not behave differently during FV 

infection. All mice were females and 8-10 weeks of age at the time point of infection. Prior 

to the experiment controls and experimental animals were co-housed for at least 3 weeks. 

The central animal facility in Essen has a species-appropriate animal husbandry under SPF 

conditions.

Cell lines—All cells were cultured at 37°C in a 5% CO2 atmosphere. HEK293T and TZM-

b1 cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 10% FCS, glutamine (2 mM), streptomycin (100 μg/ml) and penicillin (100 U/ml). 

HEK293T cells were provided and authenticated by the ATCC. They were originally 

isolated from a female fetus and first described by DuBridge et al. (DuBridge et al., 1987). 

TZM-b1 cells were provided and authenticated by the NIH AIDS Reagent Program, 

Division of AIDS, NIAID, NIH from Dr. John C. Kappes, Dr. Xiaoyun Wu and Tranzyme 

Inc (Platt et al., 1998). TZM-b1 are derived from HeLa cells, which were isolated from a 30-

year-old female. HL116 cells were maintained in DMEM containing 10% FCS, glutamine (2 

mM), streptomycin (100 μg/ml) and penicillin (100 U/ml) and HAT supplement (sodium 

hypoxanthine (50 μM), aminopterin (200 nM) and thymidine (8 μM)). HL116 cells stably 

express an IFN-inducible firefly luciferase reporter gene and are derivatives of the human 

fibrosarcoma HT1080 cell line established from a 35-year-old male (Uze et al., 1994). HEK-

Blue IFN-α/β cells were cultured in DMEM supplemented with 10% FCS, glutamine (600 

μg/ml), penicillin (200 U/ml), streptomycin (100 μg/ml), normocin (100 μg/ml), blasticidin 

(30 μg/ml) and zeocin (100 μg/ml). HEK-Blue cells were provided and authenticated by 

InvivoGen. These cells produce SEAP upon stimulation with IFNα/β and were generated by 

stable transfection of HEK293 cells with the human STAT2 and IRF9 genes as well as a 

SEAP reporter gene under the control of the IFN-α/β inducible ISG54 promoter. THP-1 and 

J-Lat cells were maintained in RPMI-1640 medium supplemented with 10% FCS, glutamine 

(2 mM), streptomycin (100 μg/ml) and penicillin (100 U/ml). THP-1 cells are monocyte-like 

cells, which adopt a macrophage-like phenotype upon differentiation with PMA and were 

originally isolated from the peripheral blood of a 1-year-old male with acute monocytic 

leukaemia. IFI16 and STING knockout cell lines were created using CRISPR-Cas9 

technology (Jønsson et al., 2017). J-Lat cells (clone 10.6) were provided and authenticated 

by the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH from Dr. Eric Verdin 

(Jordan et al., 2003). J-Lat cells are latently infected with env- and nef- deficient HIV-1, 

expressing GFP upon reactivation, and are derived from Jurkat cells which were originally 

established from a 14-year-old boy with acute lymphoblastic leukemia. IFI16 and Sp1 KO 

cells were generated by transducing the J-Lat cells with VSV-G pseudotyped lentiviral 

vectors expressing the Cas9 nuclease and IFI16- (GACCAGCCCTATCAAGAAAG) or Sp1- 

(CATGGATGAAATGACAGCTG) specific or non-targeting (n.t.) guide RNAs. Successfully 

transduced cell were selected with Puromycin (0.75 μg/ml) and single cell clones were 

expanded. HAP1 cells were maintained in Iscove’s Modified Dulbecco’s Medium (IMDM) 
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supplemented with 10% FCS, streptomycin (100 μg/ml) and penicillin (100 U/ml). HAP1 

cells were provided and authenticated by Horizon and represent a near-haploid human cell 

line that was derived from the male chronic myelogenous leukemia (CML) cell line KBM-7 

(Carette et al., 2011)

Primary cell cultures—PBMCs from healthy human donors were isolated using 

lymphocyte separation medium (Biocoll separating solution; Biochrom) or lymphoprep 

(Stemcell). CD4+ T cells were negatively isolated using the RosetteSep™ Human CD4+ T 

Cell Enrichment Cocktail (Stem Cell Technologies) or the EasySep™ Human Naïve CD4+ T 

cell Isolation Kit (Stem Cell Technologies) according to the manufacturer’s instructions. 

Primary cells were cultured in RPMI-1640 medium containing 10% FCS, glutamine (2 

mM), streptomycin (100 μg/ml), penicillin (100 U/ml) and interleukin 2 (IL-2) (10 ng/ml). 

Monocyte-derived macrophages were obtained by stimulation of PBMC cultures with 15 

ng/ml recombinant human M-CSF (R&D systems) and 10 % human serum. The use of 

human PBMCs was approved by the Ethics Committee of the Ulm University Medical 

Center. All donors were anonymized and provided informed written consent.

METHOD DETAILS

Expression constructs—Expression vectors for IFI16 orthologs, AIM2, p204, Sp1 and 

STING were generated by gene amplification via PCR using cDNA as template and 

subsequent cloning via unique XbaI and MluI restriction sites into a pCG expression vector 

coexpressing BFP via an IRES. For the generation of the IFI16 Pyrin mutant (S27A, L28A, 

D50A) and IFI16 HinB mutant (K572A, K607A, R611A, S614A, K618A, N654A, K676A, 

K678A, K703A) the previously described variants IFI16 mut3 (Morrone et al., 2014) and 

IFI16 m4 (Jin et al., 2012) were used as templates. To facilitate detection of the expressed 

proteins a C-terminal HA tag (TACCCATACGATGTTCCAGATTACGCT) was introduced 

via the reverse PCR primer. Specific mutations or deletions in IFI16 were introduced using 

overlap-extension PCR. All constructs were sequenced to verify their integrity. PCR primers 

are listed in Table S1.

Generation of mutant HIV-1 LTR F-luc reporter constructs—Proviral HIV-1 

constructs with mutated transcription factor binding sites in the LTR were generated and 

provided by Vincente Planelles (Bosque and Planelles, 2009). A DNA fragment containing 

the 3’LTR was excised from the proviral constructs using XhoI and XbaI and used as 

template to amplify the LTR and insert unique MluI and XhoI restriction sites for cloning 

into a pGL3 firefly luciferase reporter vector. All constructs were sequenced to verify their 

integrity. PCR primers are listed in Table S2.

Chimeric HIV-1 proviral constructs—A DNA fragment containing the 3’LTR was 

excised from the proviral constructs using NotI and BstZ17I for CH058, NotI and AgeI for 

CH040 and NotI and SbflI for THRO. In parallel, a DNA fragment containing the 5’LTR 

was excised by digestion with StuI and MluI for CH058, BlpI and MluI for CH040 and MluI 

and BbvCI for THRO. These DNA fragments were used as template to amplify the 3’ and 5’ 

LTR of the different proviruses and the regions between the LTR and the next single cutter 

sites. Using overlap-extension PCR, the different LTRs were added to the proviral parts and 

Hotter et al. Page 14

Cell Host Microbe. Author manuscript; available in PMC 2020 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



religated with the proviral constructs. All primers are listed in Table S3. The 3’and 5’LTR of 

THRO were inserted into CH040 and CH058 using the respective single cutters. The 3’ and 

5’LTR of CH058 were inserted into THRO using SbflI and NotI and MluI and BbvCI. All 

constructs were sequenced to verify their accuracy.

Transfections and production of virus stocks—HEK293T cells were transiently 

transfected using the calcium-phosphate precipitation method. One day before transfection, 

5x105 HEK293T cells/well were seeded in 6-well plates in 2 ml medium to obtain a 

confluence of 50-60% at the time of transfection. For transfection, DNA was mixed with 13 

μl 2 M CaCl2 and filled up with water to 100 μl Afterwards, 100 μl 2 x HBS was added 

dropwise to this mixture, which was mixed by pipetting and added dropwise to the cells. To 

generate virus stocks, cells were transfected with proviral constructs (5 μg). To generate 

VSV-G pseudotypes, expression plasmids for the vesicular stomatitis virus glycoprotein (1 

μg) (Fouchier et al., 1997) were additionally added to the transfection mix. To test the 

antiviral effect of different proteins, pCG-based expression constructs were cotransfected 

with proviral constructs. Whenever different amounts of pCG expression vectors were used 

within an experiment, empty vector control plasmids were used to keep the total DNA 

amount for all samples constant. The transfected cells were incubated for 8-16 h before the 

medium was replaced by fresh supplemented DMEM. HAP1 cells were transfected using the 

TransIT®-LT1 Transfection Reagent (Mirus). One day before transfection, 2.5 x105 HAP1 

cells/well were seeded in 12-well plates in 1 ml medium. For transfection, DNA and 4 µl of 

TransIT®-LT1 Transfection Reagent were mixed with 50 µl Opti-MEM, each. These two 

solutions were then mixed, incubated at RT for 20 min and added dropwise to the cells. The 

transfected cells were incubated for 6 h before the medium was replaced by fresh 

supplemented IMDM. 40 h post transfection, cell culture supernatants were harvested, 

centrifuged at 1000 x g for 3 min and transferred to fresh tubes to remove cell remnants.

Viral infectivity test—To determine infectious virus yield, 6,000 TZM-b1 reporter cells/

well were seeded in 96-well plates and infected with cell culture supernatants in triplicates 

on the following day. Three days post-infection, cells were lysed and β-galactosidase 
reporter gene expression was determined using the GalScreen Kit (Applied Bioscience) 

according to the manufacturer’s instructions with an Orion microplate luminometer 

(Berthold).

Western blot—To determine expression of cellular and viral proteins, cells were washed in 

PBS and subsequently lysed in Western blot lysis buffer (150 mM NaCl, 50 mM HEPES, 5 

mM EDTA, 0.1% NP40, 500 μM Na3VO4, 500 μM NaF, pH 7.5). Lysates were mixed with 

Protein Sample Loading Buffer (LI-COR) supplemented with 10% β-mercaptoethanol, 

heated at 95°C for 5 min, separated on NuPAGE 4±12% Bis-Tris Gels (Invitrogen) and 

blotted onto Immobilon-FL PVDF membranes (Merck Millipore). Proteins were stained 

using primary antibodies directed against IFI16 (Santa Cruz #sc-8023), HA-tag (Abcam # ab 

18181), STING (Cell Signaling #13647), HIV-1 Env (obtained through the NIH AIDS 

Reagent Program, Division of AIDS, NIAID, NIH: 16H3 mAb from Drs. Barton F. Haynes 

and Hua-Xin Liao) (Gao et al., 2009), p24 (Abcam #ab9071), Vpu (kindly provided by S. 

Bolduan), AU-1 (Novus Biologicals #NB600-453), β-actin (Abcam #ab8226), GAPDH 
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(BioLegend #631401 or Santa Cruz #sc-365062), GFP/BFP (Abcam #ab290), Sp1 (Abcam 

#157123 or Abcam #227383) and Infrared Dye labeled secondary antibodies (LI-COR 

IRDye). Proteins were detected using a LI-COR Odyssey scanner and band intensities were 

quantified using LI-COR Image Studio Lite Version 3.1.

IFN release assay—HL116 cells were used to determine the release of bioactive 

interferon (IFN) from HEK293T and THP-1 cells. 20,000 HL116 cells/well were seeded in a 

96-well plate and stimulated in triplicates with 100 μl cell culture supernatants on the 

following day. As positive controls, supernatants from HEK293T cells infected with Sendai 

virus and different concentrations of IFNα were used. 8 h after stimulation, cells were lysed 

and firefly luciferase activity was determined using the Luciferase Assay Kit (Promega) 

according to the manufacturer’s instructions with an Orion microplate luminometer 

(Berthold).

IFNβ-promoter reporter assay—To determine the effect of IFI16 on IFNβ-promoter 

activity, 22,000 HEK293T cells/well were seeded in poly-L-lysine-coated 96-well plates and 

transfected in triplicates using the calcium-phosphate transfection method. Cells were 

cotransfected with a firefly luciferase reporter construct under the control of the IFNβ-

promoter (100 ng), a Gaussia luciferase construct under the control of a constitutively active 

pTAL promoter (5 ng) for normalization, and expression vectors or proviral constructs (50 

ng). As a positive control, the IFNβ-promoter was activated by infection of the cells with 

Sendai virus for 24 h. 40 h after transfection, activity of the secreted Gaussia luciferase was 

determined in the cell culture supernatants using the Gaussia- Juice Kit (p.j.k.), whereas 

firefly luciferase activity was determined in cell lysates using a Luciferase Assay Kit 

(Promega) according to the manufacturer’s instructions with an Orion microplate 

luminometer (Berthold). Firefly luciferase signals were normalized to the corresponding 

Gaussia luciferase control values to normalize for transfection efficiency.

qRT-PCR—Viral transcript levels were determined in HEK293T cells cotransfected with 

proviral constructs of NL4-3 (2.5 μg) and increasing doses of expression constructs for 

IFI16. 40 h post-transfection cells were washed with PBS and lysed in RLT Plus buffer 

containing 1% β-mercaptoethanol. Total RNA was isolated using the RNeasy Plus Mini Kit 

(QIAGEN) according to the manufacturer’s instructions. Residual genomic DNA was 

removed from the RNA preparations using the DNA-free™ DNA Removal Kit 

(ThermoFisher). RNA concentrations were determined using the NanoDrop 2000 

Spectrophotometer and for each sample equal RNA amounts were subjected to cDNA 

synthesis using the PrimeScript RT Reagent Kit (TAKARA) with random 6-mers and oligo 

dT primers. Reactions without reverse transcriptase were included as controls to exclude 

contaminations with genomic DNA. cDNA was used for qRT-PCR using TaqMan™ Fast 

Universal PCR Master Mix (ThermoFisher) and viral primer/probe sets (Biomers/TIB 

Molbiol) in multiplex reactions with GAPDH (ThermoFisher) as control. Viral primers and 

probes were designed as previously described (Yukl et al., 2018) to measure R-U5/Gag 

mRNA as indicator of proximal elongation, Nef mRNA as indicator of transcription that has 

proceeded almost to the 3’LTR and U3-polyA mRNA as indicator for completed 

transcription. Primers and fluorescent probes are listed in Table S4.
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Differentiation, siRNA transfection and infection of macrophages—Monocyte-

derived macrophages (MDMs) were obtained by stimulation of PBMC cultures with 15 

ng/ml recombinant human M-CSF (R&D systems) and 10% human AB serum (Sigma 

Aldrich) in DMEM supplemented with glutamine (2 mM), streptomycin (100 μg/ml) and 

penicillin (100 U/ml) for 6 days. On days 7 and 9 of differentiation, MDMs were transfected 

with IFI16-sepcific (Invitrogen # IFI16HSS105205, IFI16HSS105206, IFI16HSS105207) or 

a non-targeting control (Eurofins (UUCUCCGAACGUGUCACGUdTdT)) siRNA. siRNA 

transfections were performed in 12-well plates with two technical replicates for each sample 

using the Lipofectamine RNAiMAX transfection reagent (Thermo Fisher). Prior to 

transfection the medium was replaced by 500 µl fresh supplemented DMEM. For one well, 

1.46 μl siRNA (20 μM) and 3 μl Lipofectamine RNAiMAX were mixed with 75 μl Opti-

MEM, each. These two solutions were then mixed, incubated at RT for 15 min and added 

dropwise to the cells. 16 h after transfection on day 7 of differentiation, the medium 

containing the transfection mix was replaced by fresh supplemented DMEM. 8 h after 

transfection on day 9 of differentiation, cells were infected. 12 h after infection, the input 

virus was removed by washing twice with 1 ml PBS and 1 ml fresh DMEM containing 10% 

FCS, glutamine (2 mM), streptomycin (100 μg/ml), penicillin (100 U/ml) was added to the 

cells. Infectious virus yield was determined in cell culture supernatants harvested 3 and 6 

days after infection. To monitor knockdown efficiencies by Western blot, cells were washed 

with 1 ml PBS and harvested 6 days after infection.

Flow cytometry—Flow cytometry was used to determine the effect of IFI16 on HIV-1 

LTR- or CMV IE-driven eGFP expression. HEK293T cells were cotransfected with 

expression constructs for IFI16 co-expressing BFP via an IRES and HIV-1 NL4-3 proviral 

constructs or CMV-IE promoter-driven control plasmids co-expressing eGFP via an IRES. 

40 h after transfection cells were harvested, washed in PBS with 1% FCS and fixed in 2% 

PFA for 30 min at 4°C. Mean fluorescence intensities (MFI) of eGFP in the BFP+/eGFP+ 

population and percentage of eGFP+ cells in the BFP+ population (P2/(P2+P1)) was 

determined. Monocyte-derived macrophages treated with IFI16 or non-targeting control 

siRNA and infected with VSV-G pseudotyped HIV-1 NL4-3 IRES eGFP constructs were 

harvested 3 days post-infection. Knockdown efficiency was determined by staining with 

anti-IFI16 (Santa Cruz #sc-8023) and anti-mouse AF647 (ThermoFisher #A31571) 

antibodies after fixation and permeabilization of the cells using the FIX&PERM kit (Nordic 

MUbio) according to the manufacturer’s instructions. Flow cytometric measurements were 

performed using a BD FACS Canto II flow cytometer.

Differentiation, stimulation and infection of THP-1 cells—The replication of HIV-1 

in the absence of STING/IFI16 was determined in knockout THP-1 or corresponding control 

cells. 2x105 cells/well were seeded in 12-well plates in 1 ml RPMI supplemented with with 

10% FCS, glutamine (2 mM), streptomycin (100 μg/ml), penicillin (100 U/ml) and PMA 

(100 nM) to induce differentiation into macrophage-like cells. 24 h later, the medium was 

replaced by fresh supplemented RPMI without PMA. On the following day, cells were 

infected with different VSV-G pseudotyped HIV-1 strains. 12 h after infection, the input 

virus was removed by washing twice with 1 ml PBS and 1 ml fresh supplemented RPMI 

without PMA was added. Cell culture supernatants were harvested 3 days post-infection to 
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determine infectious virus yield. To determine the ability of the THP-1 cell lines to produce 

bioactive interferon, the cells were stimulated with 2 μg/ml of HT-DNA or 2′-3′cGAMP 

using lipofectamine as transfection reagent for 8 hours before harvesting supernatants for 

analysis.

Microscopy—Confocal immunofluorescence microscopy was used to determine the 

subcellular localization of various IFI16 mutants. 75,000 HEK293T cells/well were seeded 

on 13 mm diameter glass cover slips coated with poly-L-lysine in 24-well plates. On the 

following day, cells were transfected with expression constructs for IFI16 mutants (250 ng) 

using the calcium phosphate precipitation method. The transfected cells were incubated for 

16 h before the medium was replaced by fresh supplemented DMEM. 40 h after 

transfection, cells were washed with cold PBS, fixed in 4% PFA for 20 min at RT and 

permeabilized in PBS 0.5% Triton X-100 5% FCS for 20 min at RT. IFI16 was stained using 

anti-IFI16 (Santa Cruz #sc-8023) and anti-mouse PE (ThermoFisher #P-852) antibodies, 

whereas the nucleus was stained using NucRed Live 647 ReadyProbes Reagent 

(ThermoFisher #R37106). Cover slips were mounted on glass slides using Mowiol mounting 

medium. Confocal microscopy was performed using an LSM710 confocal microscope (Carl 

Zeiss) and IFI16 signal intensities in at least 12 cells per sample were quantified using Fiji 

image processing software (ImageJ).

Viral promoter activity—To determine the effect of IFI16 on the activity of different viral 

promoters, 22,000 HEK293T cells/well were seeded in poly-L-lysine-coated 96-well plates 

and transfected in triplicates using the calcium-phosphate transfection method. Cells were 

cotransfected with firefly luciferase reporter constructs (5 ng) under the control of the HIV-1 

LTR, the HSV TK promoter or the CMV IE promoter, and expression constructs for IFI16 

(50 ng) or a vector control. In some cases, expression constructs for HIV-1 NL4-3 Tat (500 

pg) were cotransfected to activate the LTR promoter. 40 h post-transfection, cells were lysed 

and firefly luciferase activity was determined using the Luciferase Assay Kit (Promega) 

according to the manufacturer’s instructions with an Orion microplate luminometer 

(Berthold).

Doxycycline-responsive LTR activity—The effect of IFI16 on LTR reporter constructs 

lacking Sp1 binding sites were tested as previously described (Turrini et al., 2015). 22,000 

HEK293T cells/well were seeded in poly-L-lysine-coated 96-well plates and transfected in 

triplicates using the calcium-phosphate transfection method. Cells were cotransfected with 

expression constructs for IFI16 or a vector control (5 ng), CMV IE-dependent Gaussia 
luciferase constructs for normalization (0.05 ng) and the minimal LTR tetO Luc reporter (wt 

Sp1), two deletion mutants lacking either one (ΔSp1-III) or two (ΔSp1-III+II) Sp1 binding 

sites, a mutant with scrambled Sp1 target sequences (mSp1) or a LTR tetO Luc reporter with 

intact Sp1 binding sites that in contrast to the other constructs still contains the NF-κB 

binding sites and upstream U3 region (0.5 ng). As these constructs contain two tet operator 

(tetO) sites for the binding of the doxycycline-inducible transcriptional activator rtTA, rtTA-

expressing plasmids (0.01 ng) were cotransfected and transcription was activated adding 

doxycycline (1 μg/ml) to the culture medium. 40 h after transfection, activity of the secreted 

Gaussia luciferase was determined in the cell culture supernatants using the Gaussia-Juice 
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Kit (p.j.k.), whereas firefly luciferase activity was determined in cell lysates using a 

Luciferase Assay Kit (Promega) according to the manufacturer’s instructions with an Orion 

microplate luminometer (Berthold). Firefly luciferase signals were normalized to the 

corresponding Gaussia luciferase control values to normalize for transfection efficiency.

Release of doxycycline-responsive HIV-1 variants with mutant LTR—To 

investigate the influence of the U3 LTR, Sp1 binding sites, TAR and a functional Tat protein 

on the antiviral effect of IFI16, we took advantage of previously characterized HIV-rtTA 

variants, which use an incorporated Tet-On gene expression system for activation of 

transcription (Das et al., 2011). HEK293T cells were seeded in 6-well plates and 

cotransfected with expression constructs for IFI16 or a vector control (1μg) and different 

HIV-rtTA mutants (2.5 μg). Transcription was activated adding doxycycline (1 μg/ml) to the 

culture medium. 40 h post-transfection, HIV-1 p24 levels in cell culture supernatants were 

determined using an in-house ELISA (Konvalinka et al., 1995). Briefly, 96-well MaxiSorp™ 

microplates were coated with 500 ng/ml anti-HIV-1 p24 (100 μl/well) and incubated in a wet 

chamber at RT overnight. The next day, plates were washed 3 times with 350 μl PBS-T (PBS 

and 0.05% Tween 20) and incubated with 100 μl blocking solution (PBS and 10% (v/v) 

FCS) for 2 hours at 37 °C. After washing, the plates were loaded with 100 μl serially diluted 

HIV-1 p24 protein as standard and dilutions of virus stocks lysed with 1% (v/v) Triton 

X-100. After overnight incubation in a wet chamber at RT, plates were washed to remove 

unbound capsid proteins. 100 μl/well polyclonal rabbit antiserum against p24 antigen 

(1:1,000 in PBS-T (PBS, 0.05% Tween 20 and 10% (v/v) FCS)) was added for 1 hour at 

37 °C and after another washing step, 100 μl of a goat anti-rabbit HRP-coupled antibody 

(1:2,000) was loaded on the plate and incubated for another hour at 37°C. Finally, the plate 

was washed and 100 μl SureBlue TMB 1-Component Microwell Peroxidase Substrate was 

added. After 20 minutes shaking at 450 rpm and RT, the reaction was stopped with 0.5 M 

H2SO4 (100 μl/well). The optic density, proportional to the p24 capsid antigen amount, was 

determined by comparing with a standard curve and measured at 450 nm and 650 nm with 

the Thermo Max microplate reader (Molecular devices, UK).

Co-IP—The interaction between Sp1 and IFI16 was determined in HEK293T cells 

transfected with expression constructs for HA-tagged IFI16 mutants or a vector control (1 

μg). 40 h after transfection cells were lysed in Western blot lysis buffer and IFI16 was 

immunoprecipitated using anti-HA antibodies (Abcam #ab18181) and Pierce Protein A/G 

Magnetic Beads (ThermoFisher). To examine the effect of nucleic acids on the interaction 

between IFI16 and Sp1, cell lysates were treated with benzonase (750U/ml) in the presence 

of MgCl2 (1 mM) for 2 hours at room temperature before adding anti-HA antibodies. Beads 

were washed three times with 1 ml NP40 wash buffer (50 mM HEPES, 300 mM NaCl, 0.5% 

NP40, pH 7.4) before incubation with 60 μl 1 x Protein Sample Loading Buffer (LI-COR) at 

95°C for 10 minutes to remove bound proteins. After addition of 1.75 μl β-mercaptoethanol 

the eluate was used for Western blotting. Proteins were stained using goat anti-SP1 (Abcam 

#ab157123), rabbit anti-HA (Cell Signaling #3724) and mouse anti-GAPDH (Santa Cruz 

#sc-365062) antibodies.
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Sp1-DNA binding assay—HEK293T cells were transfected with expression constructs 

for different IFI16 mutants (1 μg) alone, or cotransfected with expression constructs for Sp1 

(0.2 μg). 40 h post transfection, cells were harvested and nuclear proteins were isolated. 

Cells were washed with PBS and collected in 1 ml ice-cold Phosphatase Inhibitor Buffer 

(6.25 μΜ NaF, 12.5 mM β-glycerophosphate, 1.25 mM NaVO3, in PBS). Cells were pelleted 

by centrifugation at 300 x g for 5 minutes at 4°C, resuspended in 1 ml Hypotonic Buffer (20 

mM HEPES, 5 mM NaF, 0.1 mM EDTA, pH 7.5) and incubated on ice for 15 min to allow 

swelling of the cells. After addition of 50 μl 10% NP40, the homogenate was centrifuged at 

20,800 x g for 1 min at 4°C. The supernatant was removed and the pellet was resuspended in 

50 μl Complete Lysis Buffer AM1 (ActiveMotif). Tubes were incubated for 30 min at 4°C 

with end-over-end mixing, centrifuged at 20,800 x g for 10 min at 4°C and the supernatants 

(nuclear cell extract) was transferred to fresh tubes. Protein concentrations were determined 

using the Pierce Gold BCA Protein Assay Kit (ThermoFisher) according to the 

manufacturer’s instructions. Volumes corresponding to 30 μg of nuclear extracts from 

samples with endogenous Sp1 levels and 10 μg of nuclear extracts from cells transfected 

with Sp1 were used to determine Sp1 binding to consensus target DNA sequences using the 

TransAM Sp1 Transcription Factor Assay Kit (ActiveMotif) according to the manufacturer’s 

instructions.

HIV reactivation from J-Lat cells—J-Lat cells (clone 10.6) were seeded in 24-well 

plates (250,000 cells/well) and treated with increasing doses of TNFα (0; 1; 5 ng/ml) and/or 

increasing doses of Mithramycin A (0; 5; 20; 50; 100 nM). 48 h later, GFP expression was 

determined by flow cytometry as a measure of HIV-1 reactivation.

MTT assay—To determine the effect of Mithramycin A on cell viability, J-Lat cells (clone 

10.6) were seeded in 96-well plates (50,000 cells/well) and treated with increasing doses of 

Mithramycin (0; 1; 5; 20; 50; 100; 200; 500 μM). 48 h later, cells were pelleted by 

centrifugation, the medium was removed and the cells were resuspended in 100 μl MTT 

solution (0.5 mg/ml). After 2 h incubation at 37°C, 200 μl of a DMSO:ethanol mixture (1:1) 

was added to dissolve the purple formazan product. The absorbance of the colored solution 

at 490 nm was determined using a spectrophotometer. The absorbance of a negative control 

in which cells were treated with DMSO (50 μl/well) was used as background signal and 

subtracted from all values before normalization to the samples without Mitramycin 

treatment (=100 %).

Construction of NL4.3-deltaEnv-nLuc-2ANef proviral construct—We constructed 

NL4.3-deltaEnv-nLuc-2ANef by replacing the 237 bp HpaI-XhoI fragment that contains the 

env/nef junction in NL4.3-deltaEnv, previously referred to as DHIV (Bosque and Planelles, 

2009), with a 930 bp fragment containing 130 bp of the 3’ terminus of the env gene, the 

nanoluciferase gene (Promega), and the 2A peptide cleavage (Verrier et al. 2011), and a 100 

bp fragment containing the 5’ terminus of the nef gene up to the unique XhoI site. The 

resulting plasmid encodes a bicistronic nanoluciferase and nef gene whose transcription is 

driven by the HIV-1 LTR. In NL4.3-deltaEnv-nLuc-2ANef, the env gene is not expressed 

due to deletion of a 600 bp BglII fragment overlapping gp120 coding sequences (Bosque 

and Planelles, 2009), and the Rev-responsive element is preserved.
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HIV reactivation from latently infected CD4+ T cells—Pseudotyped viruses were 

produced by cotransfection of HEK293T cells with pNL4.3-deltaEnv-nLuc-2ANef and 

pCMV-VSV-G. Cell supernatant was collected and filtered through a 0.22 μm filter after 2 

days. Virus stocks were aliquoted and stored at −80°C until infection of CD4+ T cells. 

PBMCs were isolated from healthy donors using Lymphoprep and cultured in complete 

medium (RPMI-1640 with 10% FCS, L-Glutamine and penicillin/streptomycin). Naïve cells 

were isolated from PBMCs following the instruction of EasySep™ Human Naïve CD4+ T 

Cell Isolation Kit and then activated by culturing in a 96-well plate with 1 mg/ml anti-IL-4 

antibody, 2 µg/ml anti-IL-12 antibody, 10 ng/ml TGF-β1 and anti-CD3/CD28 antibody 

beads (1 bead/cell). After 3 days, beads were removed using a magnetic column. Cells were 

cultured in complete medium supplemented with 30 IU/ml IL-2. At day 7, cells were 

infected with VSV-G pseudotyped NL4.3-deltaEnv-nLuc-2ANef viruses using spinoculation 

(Morton et al., 2019). At day 17, CD4+ cells were isolated using the Dynabeads™ CD4 

Positive Isolation Kit (ThermoFisher). Since the recombinant virus expresses both Nef and 

Vpu, CD4 is efficiently downregulated in productively infected cells. Only cells that are 

latently infected or uninfected maintain full levels of CD4 and are purified by this procedure 

(Martins et al., 2016). At Day 18, CD4+ cells were seeded in a 96-well plate and treated 

with increasing doses of Mithramycin in the presence or absence of PMA (10 ng/ml). 2 days 

after stimulation, the luciferase activity in the cell supernatant was measured by Nano-Glo 

Luciferase Assay System. Cells were stained with cell viability dye, anti-CD4-APC and 

anti-p24-FITC, and measured by flow cytometry to determine infection rates.

LINE-1 retrotransposition assay—The retrotransposition-competent L1-GFP reporter 

plasmid (99 PUR L1RP EGFP) and the retrotransposition-defective negative control plasmid 

(99 PUR JM111 EGFP) have been described previously (Ostertag et al., 2000). Both 

plasmids contain a CMV-eGFP reporter cassette interrupted by an intron in the opposite 

transcriptional orientation within the 3’ UTR. eGFP is used as a surrogate marker for 

successful retrotransposition and is only expressed upon RNA splicing, reverse transcription, 

and integration. The L1 reporter plasmid and the indicated IFI16 expression vector or empty 

vector were transfected into HEK293T cells at a molecular ratio of 3:1 using calcium 

phosphate. Two days post-transfection, 2.5 μg/ml puromycin were added to the medium to 

boost transfection efficiency. Five days post-transfection, GFP-positive cells were quantified 

by flow cytometry.

LINE-1 promoter assay—HEK293T cells were cotransfected with luciferase reporter 

constructs in which expression is driven by the LINE-1 (L1RP) or CMV promoter and 

expression constructs for IFI16 or a control vector using calcium phosphate. The reporter 

plasmid L1RP-luc and the L1 promoter activity assay have been described previously (Yu et 

al., 2001). Two days post-transfection, cells were lysed with Cell Culture Lysis 5x reagent 

(Promega) and the luciferase activity was quantified using commercially available 

components (Promega).

MLV RT assay—The inhibitory effect of p204 on murine leukaemia virus (MLV) gene 

expression was determined by cotransfecting HEK293T cells with env-deficient MLV 

proviral constructs (1.5 μg) and increasing doses of expression constructs for p204 (0; 0.02; 
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0.1; 0.5; 1 μg) in 6-well plate format. 40 h post-transfection, MLV reverse transcriptase (RT) 

activity in the cell culture supernatants was determined using the C-Type RT Activity Kit 

(CAVIDI) according to the manufacturer’s instructions.

Viral loads in ARL−/− mice infected with Friend virus—C57BL/6J mice (Harlan 

Laboratories) and homozygously bred ALR−/− mice (Jackson Laboratories) were infected 

with 20,000 SFFU (spleen focus-forming units) of Friend virus. At 3 dpi, plasma viremia 

was determined and spleens were harvested to analyze viral loads in an infectious center 

(IC) assay. 13 mice per group from at least two independent experiments were analyzed. 

Mean (±SEM) values are indicated by bars. All mice were females and 8-10 weeks of age at 

the time point of infection. Prior to the experiment controls and experimental animals were 

co-housed for at least 3 weeks.

Infectious center and viremia assay—FV-infected animals were sacrificed at 3 dpi 

and plasma and splenocytes were harvested. For the detection of viral loads, serial dilutions 

of single-cell suspensions or plasma onto Mus dunnis cells were prepared and incubated for 

3 days. At approximately 100% confluency, Mus dunnis cells were fixed with ethanol, 

stained with the F MuLV envelope-specific monoclonal antibody 720 and developed with a 

peroxidase-conjugated goat anti-mouse antibody and aminoethylcarbazol for the detection of 

foci.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using GraphPad PRISM 7 (GraphPad Software). P-

values were determined using a two-tailed Student’s t test. Correlations were calculated with 

the linear regression module. In the Friend virus in vivo experiment, statistically significant 

differences were determined using a Mann-Whitney test Unless otherwise stated, data are 

shown as the mean of at least three independent experiments ± SEM. Significant differences 

are indicated as: *, p < 0.05; **, p < 0.01; ***, p < 0.001. Statistical parameters are specified 

in the figure legends.
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Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• IFI16 targets Sp1 to restrict HIV-1 transcription and LINE-1 

retrotransposition

• The N-terminal pyrin and NLS domains of IFI16 are sufficient for restriction

• Sp1 inhibition by IFI16 or Mithramycin A suppresses reactivation of latent 

HIV-1

• Murine homologs of IFI16 restrict retroviral replication in vitro and in vivo
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Figure 1. IFI16 impairs infectious HIV-1 production independently of type I IFN induction.
(A-C) HEK293T cells were cotransfected with increasing doses of expression constructs for 

IFI16 (0.004, 0.02, 0.1, 0.5 and 2.5 μg) and constant quantities (2.5 μg) of the proviral HIV-1 

NL4-3 construct. Cells and supernatants were harvested 40 hours post-transfection. Data 

show mean percentages (±SEM) relative to those detected in the absence of IFI16 (100%) 

and were derived from three experiments each performed in triplicate. * p < 0.05, ** p < 

0.01, *** p < 0.001. (A) Infectious virus yield and p24 antigen levels in the HEK293T cell 

supernatants determined by TZM-b1 cell infection assay and p24 antigen ELISA, 

respectively. (B) Levels of different viral transcripts determined by qRT-PCR in multiplex 

reactions with GAPDH as control. (C) Expression of HIV-1 proteins, IFI16 and GAPDH in 

viral particles or cellular extracts was determined by Western blot.

(D) IFI16 does not induce IFN in HEK293T cells lacking STING expression. HEK293T 

cells were transfected with the indicated constructs (1 μg) or infected with Sendai virus 

(SeV). 40 hours later, cells and supernatants were harvested. Cells were used for Western 

blot analysis and supernatants were used to stimulate HL116 IFN-reporter cells in triplicates. 

An IFNα standard curve was used for comparison. After 8 hours, luciferase expression in 

the HL116 cells was determined. Shown are mean values from triplicates ± SD. See also 

Figure S1.
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Figure 2. Endogenous IFI16 is IFN-inducible and restricts HIV-1.
(A) Expression of IFI16 in primary macrophages (MDM) and CD4+ T cells. Cells were 

either left untreated or stimulated for 3 days with IL-2 [10 ng/ml] alone or together with 

IFNα2 [500 U/ml], IFNγ [200 U/ml], anti-CD3/CD28 beads or TNFα [20 ng/ml] and 

analyzed by Western blot. The left panel shows examples of primary data from two donors 

and the right panel shows mean IFI16 levels of five donors ± SEM. IFI16 expression levels 

were normalized to the corresponding GAPDH control. * p<0.05, ** p<0.01.

(B) IFI16 restricts infectious HIV-1 production in macrophages. Monocyte-derived 

macrophages were treated with IFI16-specific or control siRNA and transduced with VSV-G 

pseudotyped NL4-3 or infected with HIV-1 AD8. Infectious virus production was 

determined by infection of TZM-b1 cells. Each point represents data obtained from one 

donor.

(C) LTR-driven eGFP expression in macrophages transduced with VSV-G pseudotyped 

HIV-1 NL4-3 IRES-eGFP constructs after treatment with control or IFI16-specific siRNA. 

Shown are mean eGFP fluorescence intensities obtained by flow cytometry at 3 days post-

transduction from four donors (±SEM).

(D) PMA-differentiated parental, IFI16 or STING KO THP-1 cells were transduced with the 

indicated VSV-G pseudotyped viruses. Three days later, supernatants were harvested and 

infectious virus yield was determined by infection of TZM-b1 cells. Mean values of three 

independent experiments ± SEM are shown. See also Figure S2.
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Figure 3. Antiretroviral activity of IFI16 is conserved and species independent.
(A) Expression of IFI16 orthologs from different species. HEK293T cells were transfected 

with IRES-BFP constructs expressing human (hum), chimpanzee (cpz), African green 

monkey (agm) or rhesus macaque (mac) IFI16 orthologs with or without C-terminal HA-tag 

and examined by Western blot.

(B) Inhibition of primate lentiviruses by IFI16 orthologs from different species. HEK293T 

cells were cotransfected with the indicated proviral HIV or SIV constructs (2.5 μg) and a 

control plasmid or vectors expressing IFI16 from the indicated species (1 μg). Infectious 

virus yield in the presence of one IFI16 ortholog relative to the vector control (100%) was 

determined by infection of TZM-b1 cells. Each symbol represents the average values 

obtained in three independent experiments. See also Figure S3.
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Figure 4. Role of the pyrin domain and nuclear localization for anti-HIV activity of IFI16.
(A) Mutant IFI16 proteins analyzed (left) and infectious virus yield and levels of LTR-

dependent eGFP expression (right). HEK293T cells were cotransfected with constructs 

coexpressing the indicated IFI16 proteins and BFP (1 μg) and proviral HIV-1 NL4-3 IRES-

eGFP constructs (2.5 μg). At 40 hours post-transfection, BFP and eGFP expression was 

analyzed by flow cytometry. NLS, nuclear localization signal; OB, oligonucleotide binding 

fold. Purple crosses indicate mutated functional sites. Shown are mean values (±SEM) 
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derived from four experiments relative to those obtained in the absence of IFI16 (100%). * p 

< 0.05, ** p < 0.01, *** p < 0.001.

(B) Schematic presentation of the multipartite NLS in IFI16 and the heterologous SV40 

NLS and HIV-1 Rev NES sequences fused to the C-terminus of wt and mutant IFI16 

constructs.

(C) Confocal immunofluorescence microscopy analysis of IFI16 localization in HEK293T 

cells transfected with constructs expressing the indicated IFI16 proteins (1 μg) (Figure S4D). 

Cytoplasmic and nuclear IFI16 signal intensities were quantified in at least 12 cells using 

ImageJ software. NLS mut: all positively charged amino acids from the four NLS motifs 

were mutated to Ala. ΔNLS1/2: NLS motifs 1 and 2 deleted.

(D) Values represent mean levels of infectious virus production and eGFP expression 

(±SEM) in HEK293T cells cotransfected with constructs coexpressing the indicated IFI16 

mutants and BFP (1 μg) and proviral HIV-1 IRES-eGFP constructs (2.5 μg), relative to those 

obtained in the presence of the vector control (100%). See also Figure S4.
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Figure 5. IFI16 inhibits HIV-1 LTR activity in a Tat and Sp1 dependent manner.
(A) HEK293T cells were cotransfected with luciferase reporter constructs under the control 

of the indicated promoters and expression constructs for IFI16 or a vector control. A 

construct expressing NL4-3 Tat under the control of the CMV IE promoter was used to 

activate the LTR. The left panel shows absolute luciferase values and the right panel values 

measured in the presence of IFI16 relative to the vector control (100%). All panels show 

mean values (±SEM) obtained in three to four experiments. * p <0.05, ** p < 0.01, *** p 

<0.001.

Hotter et al. Page 34

Cell Host Microbe. Author manuscript; available in PMC 2020 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(B) Effect of IFI16 on mutant HIV-1 LTRs. Values represent mean luciferase activities 

(±SEM, n=4) of LTR reporter constructs with inactivating mutations in the indicated 

transcription factor binding sites in the presence of IFI16 relative to the vector control 

(100 %) as described for (A).

(C) HEK293T cells were cotransfected with expression constructs for Sp1, proviral HIV-1 

NL4-3 constructs (2.5 μg), and constructs for IFI16 or the vector control (1 μg). 40 h post-

transfection infectious virus yield was determined by infection of TZM-b1 cells. Values 

were normalized to infectious virus yield in the absence of Sp1 and IFI16 (100%).

(D) HEK293T cells were cotransfected with doxycycline-dependent firefly luciferase 

reporter constructs under the control of minimal wt or mutant LTRs, CMV IE-dependent 

Gaussia luciferase constructs for normalization, an expression vector for rtTA and 

expression constructs for IFI16 or a vector control. Doxycycline was added to the cell 

culture medium to activate transcription. 40 h after transfection, a dual luciferase assay was 

performed and firefly luciferase activity was normalized to the corresponding Gaussia 
luciferase activity. The graph shows mean luciferase activity (±SEM, n=3) in the presence of 

IFI16 relative to the vector control (100%).

(E) HEK293T cells were transfected with expression constructs for the indicated IFI16 

variants alone (1 μg) (left) or together with an expression construct for Sp1 (0.2 μg) (right). 

At 40 h post-transfection, nuclear proteins were isolated and equal quantities were used to 

determine the levels of active Sp1 using the TransAM Sp1 binding assay (ActiveMotif). 

Data represent mean values (± SEM) obtained from three experiments. As shown in Figure 

4A, ΔPyr-li (ΔPyrin-linker) lacks the N-terminal pyrin and linker regions, while Pyr-li only 

encompasses these two domains.

(F) HEK293T cells were transfected with increasing doses of IFI16 expression constructs 

(0.004, 0.02, 0.1, 0.5, 1 and 2.5 μg). At 40 h after transfection, cells were harvested and Sp1, 

IFI16 and GAPDH levels determined by Western blot.

(G) HEK293T cells were transfected with expression constructs for the indicated HA-tagged 

IFI16 variants or a vector control. 40 h post-transfection, cells were lysed and IFI16 was 

immunoprecipitated using anti-HA antibodies and protein A/G magnetic beads. Proteins 

were blotted and stained using anti-Sp1, anti-HA and anti-GAPDH antibodies. The left 

panel shows one representative Western blot. The right panel shows mean Sp1 signal 

intensities (±SEM, n=3) after pull-down.

(H) HEK293T cells were transfected with expression constructs for HA-tagged IFI16 or a 

vector control. 40 h post-transfection, cells were lysed and nucleic acids were degraded by 

benzonase treatment before co-immunoprecipitation experiments were performed as 

described for (G). Left: Protein lysates were run on an agarose gel stained with ethidium 

bromide to confirm degradation of nucleic acids. Middle: One representative Western blot is 

shown. Right: Mean Sp1 signal intensities (±SEM, n=3) after pull-down. See also Figure S5.
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Figure 6. IFI16 susceptibility and Sp1 dependency of different primate lentiviruses.
(A) Effect of IFI16 on HIV-1 IMCs. Values represent mean levels of infectious virus 

production (±SEM) in HEK293T cells in the presence of IFI16 relative to those obtained in 

its absence (100%). Results in all panels were derived from at least three independent 

experiments. * p < 0.05, ** p < 0.01, *** p < 0.001.

(B) MDM from five blood donors were treated with ctrl. or IFI16-specific siRNA and 

transduced with the indicated VSV-G pseudotyped viruses. Three days later, infectious virus 

yield was determined by TZM-b1 infection assay and normalized to ctrl. siRNA-treated cells 

(100%).
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(C) Effect of Sp1 overexpression on primary HIV-1 IMCs. Values represent mean levels of 

infectious virus production in HEK293T cells transfected with an Sp1 expression construct 

(1 μg) relative to those treated with the vector control (100%).

(D) Effect of lack of Sp1 expression on HIV-1 IMCs. Shown are the mean infectious virus 

yields from Sp1 KO HAP1 cells transfected with the indicated IMCs, compared to those 

obtained in the parental cell line (100%).

(E, F) Mean infectious virus yields obtained from HEK293T cells cotransfected with 43 

different proviral HIV or SIV constructs and expression constructs for IFI16 or a vector 

control (100%). (E) Comparison between HIVs and their SIV precursors and (F) between 

different subtypes of HIV-1 group M strains.

(G, H) Effect of Sp1 overexpression (OE) on various primate lentiviruses. Values were 

determined as described in panel C and grouped based on (G) virus origin and (H) subtype.

(I) Correlation between the effects of IFI16 and Sp1 overexpression on infectious virus 

yields. Shown are results obtained for all primate lentiviral IMCs analyzed.

(J) IFI16 sensitivity of TF/6-mo HIV-1 pairs. Values represent mean levels (±SEM; n=5) of 

infectious virus production in HEK293T cells cotransfected with the indicated HIV-1 IMCs 

and IFI16 or control vector (100%).

(K) Role of the HIV-1 LTRs in IFI16 sensitivity and Sp1 responsiveness. The effects of (left) 

IFI16 and (right) Sp1 overexpression on the indicated HIV-1 IMCs and otherwise isogenic 

forms in which both LTRs were replaced are shown. Values represent the mean levels of 

three experiments (±SEM) relative to the respective vector controls (100%). See also Figure 

S6.
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Figure 7. Effect of Sp1 inhibition and PYHIN proteins on retroviral production in vitro and in 
vivo.
(A) J-Lat cells (clone 10.6) were stimulated with the indicated doses of TNFα in the 

presence of increasing doses of Mithramycin A. Two days post-stimulation, GFP expression 

and MFI were determined by flow cytometry. The middle and right panels show mean values 

(±SEM) derived from three independent experiments.

(B) GFP expression in different clones of J-Lat 10.6 cells lacking IFI16 or Sp1 expression 

was determined two days post-stimulation with TNFα (1 ng/ml) and Mithramycin A (20 
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nM) by flow cytometry. Mean GFP fluorescence intensities (±SEM) derived from three 

independent experiments are shown. Asterisks indicate differences compared to the control 

cells (n.t.). * p < 0.05, ** p < 0.01, *** p < 0.001.

(C) Luciferase activities in PMA-stimulated or unstimulated CD4+ T cells from two donors 

latently infected with VSV-G pseudotyped HIV-1 nano-luc reporter constructs in the absence 

or presence of Mithramycin A.

(D) HEK293T cells were cotransfected with a retrotransposition-competent (L1) or -

defective (L1 neg) LINE-1-GFP reporter plasmid and a vector control or expression 

constructs for IFI16 or SAMHD1. Five days post-transfection, GFP+ cells were quantified 

by flow cytometry (n=3 ± SEM).

(E) HEK293T cells were cotransfected with LINE-1 or CMV promoter constructs driving 

luciferase gene expression and expression constructs for IFI16 or a control vector. Luciferase 

activities (relative light units, RLU) in cell lysates were determined two days later (n=3 ± 

SEM).

(F) Effects of human IFI16 or AIM2 and murine p204 on (left) infectious virus yield and 

(right) LTR-driven eGFP expression of HIV-1 in HEK293T cells 40 hours post-transfection. 

Values represent mean levels of infectious virus production or eGFP expression (±SEM; 

n=3) in the presence of increasing doses of the indicated PYHIN proteins relative to the 

vector control (100%).

(G) Expression of HA-tagged PYHIN proteins and co-expressed BFP in cells from (F) was 

analyzed by Western blot.

(H) HEK293T cells were cotransfected with increasing doses of expression constructs for 

p204 and a proviral MLV construct. At 40 h post-transfection, MLV RT activity in cell 

culture supernatants was determined. Shown are mean values (±SEM) derived from three 

independent experiments.

(I, J) Viral loads in wild type and ALR−/− mice infected with Friend virus. Wild-type 

C57BL/6 and ALR−/− mice lacking all 13 genes encoding AIM2-like receptors (also name 

PYHIN proteins; Gray et al., 2016) were infected with 20,000 SFFU (spleen focus-forming 

units) of Friend virus. At 3 dpi, (D) plasma viremia was determined and (E) spleens were 

harvested to analyze viral loads in an infectious center (IC) assay. Thirteen mice per group 

from at least two independent experiments were analyzed. Mean (±SEM) values are 

indicated by bars. Statistically significant differences between the groups were analyzed 

using a Mann-Whitney test and are indicated by * for p < 0.05 and ** for p < 0.01.
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