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Abstract

Squamous cell carcinoma of the head and neck is a lethal disease with suboptimal survival 

outcomes and standard therapies with significant comorbidities. Whole exome sequencing data 

recently revealed an abundance of genetic and expression alterations in a family of enzymes 

known as protein methyltransferases in a variety of cancer types, including squamous cell 

carcinoma of the head and neck. These enzymes are mostly known for their chromatin-modifying 

functions through methylation of various histone substrates, though evidence supports their 

function also through methylation of non-histone substrates. This review summarizes the current 

knowledge on the function of protein methyltransferases in squamous cell carcinoma of the head 

and neck and highlights their promising potential as the next generation of therapeutic targets in 

this disease.
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Introduction

Over the past decade, multiple studies have uncovered the significance of protein 

methylation in cancer development and progression. Protein lysine (PKMTs) and arginine 
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(PRMTs) methyltransferases comprise a group of 62 enzymes that mediate the reversible 

deposition of methyl groups on lysine and arginine residues, respectively, on either histone 

or non-histone substrates. Protein demethylases (PDMTs) comprise approximately 30 

enzymes and they erase these marks. Studies conducted by the Cancer Genome Atlas 

(TCGA) consortium have revealed multiple genetic and expression level alterations in these 

enzymes in multiple cancer types, including squamous cell carcinoma of the head and neck 

(SCCHN) [1]. More specifically, 95% of patients with SCCHN in the TCGA database carry 

genetic or expression alterations in any of the protein methyltransferases (PMTs).

Interestingly, while PMTs are mostly known to regulate epigenetic and transcriptional events 

through histone methylation, preclinical studies have also revealed a number of non-histone 

protein substrates that are methylated either at lysine or arginine residues. Functionally, 

methylation of a non-histone substrate may compete with or enable neighbouring post­

translational modifications, modify interactions with other proteins, regulate the stability 

of a protein, or its subcellular localization [2]. These effects may either enable or 

hinder oncogenesis and/or cancer progression in different cancer types. Based on these 

observations, PMTs and PDMTs have emerged as promising, novel anticancer targets, 

with multiple drug development programs focusing on the development of small molecule 

inhibitors, and a small number of inhibitors already being evaluated in clinical trials [3–6].

Squamous cell carcinoma of the head and neck (SCCHN) is the 6th most common 

malignancy with approximately 500,000 new cases worldwide every year [7]. It comprises a 

group of cancers deriving from the epithelium of the oral cavity, tonsils, pharynx (including 

the nasopharynx, oropharynx and hypopharynx), larynx, epiglottis, the paranasal sinuses and 

the nasal cavity. SCCHN is pathogenetically classified as human papilloma virus (HPV)­

positive and HPV-negative disease. Standard surgery and/or chemoradiotherapy treatment 

options are associated with high morbidity and toxicity rates, deformities, chronic disability 

and high 5-year recurrence rates of approximately 50% in patients with HPV-negative 

SCCHN [8]. In the metastatic setting, survival rates are poor and, although immunotherapy 

with checkpoint inhibition was recently approved as a promising second line standard of 

care treatment option, only a small fraction of patients benefit from it [9, 10]. For this 

reason, the search for novel approaches to control and cure this disease is urgent.

In this review, we comprehensively summarize the results of preclinical studies with 

mechanistic insight in the role of PMTs in SCCHN with the goal to highlight the 

emerging potential of the protein methylome as a novel therapeutic avenue in SCCHN. 

As a clarification, although the top five PMTs with the highest frequency of genetic and 

expression alterations in SCCHN are MLL2 (KMT2D, 20%), SUV420H1 (KMT5B, 18%), 

SETD3 (18%), NSD1 (17%) and NSD3 (17%), we found literature with mechanistic insight 

pertaining to SCCHN only on NSD1 and NSD3, as well as NSD2, EHMT2, EZH2, PRMT1 

and PRMT5.
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Protein lysine methyltransferases in SCCHN

The NSD family of protein lysine methyltransferases

The NSD (nuclear SET-Suppressor of variegation 3–9, Enhancer of zeste and Trithorax­

domain) family of PKMTs consisting of NSD1, NSD2 (MMSET/WHSC1, Wolf-Hirschhorn 

Syndrome Candidate 1) and NSD3 (WHSC1L1, Wolf-Hirschhorn Syndrome Candidate 

1-Like 1) is a group of chromatin modifiers known to catalyze the deposition of mono- 

and di-methyl groups on lysine 36 of histone H3 (H3K36mel, H3K36me2), marks which 

induce active gene expression. They share 70–75% homology in amino-acid sequences and 

they contain a SET domain that possesses methyltransferase activity. Recently, the Cancer 

Genome Atlas (TCGA) revealed aberrancies of these enzymes in various cancer types, 

with some preclinical data supporting their role in oncogenesis [11–13] Each of the family 

members of the NSD PKMTs was recently reported to play an important role in SCCHN 

biology.

NSD1

NSD1 is among the top 10 most frequently mutated genes in SCCHN, with most mutations 

predicted to be inactivating. Per TCGA, 17% of patients with SCCHN have genetic 

and expression alterations in NSD1 (Table 1). A recent study [14] reported a subset of 

HPV-negative SCCHN cases with impaired methylation of H3K36 which was attributed 

to NSD1 inactivating mutations or recurrent histone 3 lysine 36 (H3K36M) mutations, 

indicating that loss of H3K36 methylation contributes to SCCHN oncogenesis. The authors 

initially performed unsupervised hierarchical clustering of DNA methylation data available 

on the TCGA database for 528 SCCHN samples, and found a DNA hypomethylation 

subgroup enriched in NSD1 damaging mutations (n = 44), large chromosomal deletions 

(n = 2), focal deletions (n = 2) or splicing defects (n = 1) of the NSD1 gene. 84% (51 

out of 61) of the DNA hypomethylation samples had any of the above defects in the 

NSD1 gene. In silico analysis predicted that these NSD1 mutations are inactivating for the 

methyltransferase activity of this gene. Interrogation of other genes known to be involved 

in H3K36 methylation showed that 16% (10 out of 61) of the DNA hypomethylation 

samples had K36M mutations in histone H3 variant genes (H3.1, H3.2, H3.3), while other 

H3K36 methyltransferase genes, such as SETD2 and NSD2, were only rarely mutated. The 

DNA hypomethylation subgroup comprised 13% of the HPV-negative SCCHN samples 

and was also characterized by downregulation of the expression of genes involved in 

epidermal differentiation and keratinization processes, suggesting a turn towards a more 

undifferentiated state. NSD1-mutant tumors were noted to be significantly hypermutated 

and localized mostly in the larynx, whereas H3K36M-mutant tumors had similar number 

of mutations compared to the other DNA methylation clusters and were all localized 

in the oral cavity. No other clinicopathological features were significantly associated 

with this DNA hypomethylation cluster. The authors also detected the mutant H3K36M 

protein by immunohistochemical staining at a frequency of 2% in a tissue microarray 

of 158 oropharyngeal squamous cell carcinomas. These samples had concordant decrease 

in H3K36me2 and H3K36me3 levels. Patients with no NSD1 signal also had decreased 

H3K36me2 levels, but normal H3K36me3 levels, consistent with the di-methyltransferase 

but not tri-methyltransferase activity of NSD1. Accordingly, SCCHN cell lines with mutant 
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NSD1 showed decreased levels of H3K36me2, eventhough the levels of NSD2 and NSD3 

were normal, signifying a non-redundant role of NSD 1 in the production of H3K36me2 in 

SCCHN. Interestingly, ectopic expression of H3K36M in SCCHN cells lines with wild-type 

NSD1 also lead to decreased levels of H3K36me2, implying a dominant function and that 

H3K36M may operate as a “trap” for H3K36 methyltransferases in SCCHN [15]. These 

data support that reduced H3K36me2 levels contribute to the pathogenesis of this subtype of 

HPV-negative SCCHN.

In another report [16], inactivating NSD1 and NSD2 mutations were found to stratify 

patients with laryngeal cancer in two prognostically distinct subtypes, with patients with 

NSD1 or NSD2 mutations having a favorable prognosis. These results were obtained in 

the TCGA database and validated in a separate cohort of 63 laryngeal cancer patients. 

More specifically, the authors performed integrated clustering analysis that incorporated 

DNA mutation, copy number alteration, DNA methylation and gene expression data, and 

found that laryngeal cancers accumulated in two distinct clusters characterized by significant 

differences in overall (OS) and recurrence-free survival (RFS). The cluster with favorable 

OS and RFS had a significantly higher prevalence of inactivating NSD1 mutations. Also, 

NSD1 and/or NSD2 inactivating mutations in laryngeal cancer patients with more advanced 

stages (III, IV) rendered a more pronounced OS and PFS advantage. This survival impact 

was observed only in laryngeal cancers and not in other head and neck cancer anatomical 

sites. Also, there were no statistically significant differences between the two groups 

regarding nodal status or clinical stage. Interestingly, lower NSD1 mRNA levels were not 

associated with better survival outcomes, despite the fact that the majority of the NSD1 
mutations in the cluster with the favorable prognosis in the TCGA database seemed to be 

truncating, rather than missense, Selected protein lysine and arginine methyltransferases 

(PMTs): frequency of genetic/expression alterations per TCGA and clinicopathologic 

significance in SCCHN. inactivating mutations. This discrepancy could be explained if the 

truncating mutations render a functional, truncated NSD1 variant protein which activates 

pathways that render a favorable prognosis. Alternatively, it is possible that the statistical 

power to detect differences based on mRNA expression levels was limited. The authors 

also report that the laryngeal cluster with wild-type NSD1 overexpressed genes involved 

in stem cell maintenance and hypoxia, which could explain the poorer survival in these 

patients. This finding seems to contrast with the findings by the Papillon-Cavanagh study, 

which reported decreased expression of genes involved in epidermal differentiation and 

keratinization, alluding to a more undifferentiated phenotype in NSD1-mutant SCCHN 

tumors. Another important point in this study is that missense or truncating NSD1 mutations 

are identified as a favorable prognostic factor in laryngeal cancers but not other head and 

neck cancers. This signifies that NSD1 may be functioning as an oncogene in laryngeal 

cancer, though functional studies are necessary to validate this possibility. Although NSD1 

has been characterized to function as an oncogene in pediatric acute myeloid leukemias with 

recurrent NUP98-NSD1 translocations [11], it has also been reported as a putative tumor 

suppressor in neuroblastoma [17]. These data, as well as the fact that a recurrent hotspot 

mutation at Cl710 (C substituted for S or Y) was recently reported by TCGA allude to the 

possibility that the function of NSD1 is cell-context dependent. Preclinical studies to further 

dissect the function of NSD1 in SCCHN are warranted.
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One more report [18] has described the NSD1-mutant SCCHN sub-type to be associated 

with widespread DNA hypomethylation and overexpression of stem-cell related or genes 

that are active during embryonic development. Furthermore, this study revealed a significant 

association of the NSD1-mutant SCCHN subtype with an immune cold phenotype in this 

disease. More specifically, the authors found that NSD1-mutant SCCHN demonstrated the 

lowest tumor associated leukocyte levels, including Ml macrophages, CD8+ and CD4+ 

memory T-cells. Accordingly, the expression of immune checkpoints, such as PD-L1 

and PD-L2 were overall low compared to the other DNA methylation SCCHN subtypes. 

Additionally, the authors showed that NSD1 mRNA expression is positively correlated with 

T-cell infiltration and that knockdown of NSD1 in three SCCHN cell lines led to significant 

downregulation of the mRNA expression levels of a panel of multiple chemokines involved 

in immune cell recruitment, such as CXCL1 and CXCL3. This finding was corroborated 

by a mouse model of NOD-scid IL2Rgammanu11 (NSG) mice with flank subcutaneous 

SCCHN tumors treated with control versus NSD1 shRNAs, where after the infusion of 

human peripheral blood mononuclear cells, NSD1 knockdown tumors had decreased CD8+ 

T-cell infiltration compared to the control tumors. It is interesting to note that the Peri study 

showed that NSD1-mutant laryngeal SCCHN tumors are associated with better survival 

outcomes, even though NSD1 inactivation seems to induce an immune cold phenotype in 

SCCHN tumors. This could be explained if NSD1 promotes tumor infiltration not only by 

cytotoxic CD8+ T-cells, but also by other immune suppressive cell subtypes.

Overall, the above data support that NSD1 has a pathogenetic role in a subset of SCCHN 

patients. While its pattern of genetic alterations allude to its function as a tumor suppressor, 

the mechanism of action of NSD1 will need to be further dissected with in-depth functional 

studies.

NSD2

NSD2 or WHSC1/MMSET is a PKMT with an estimated 6% genetic and expression 

alteration rate in the SCCHN TCGA database (Table 1). While most of these alterations 

are deletions or missense mutations, a study published by our group [19] found that NSD2 

is moderately or strongly overexpressed in 73% of SCCHN patients with locoregionally 

advanced disease and that this overexpression was significantly higher compared to normal 

squamous epithelium. The levels of NSD2 increased significantly with the transition from 

normal squamous to dysplastic epithelium and then to SCCHN, supporting its pathogenetic 

role in the initial stages of SCCHN oncogenesis. We also found a significant association 

of higher NSD2 expression with poor grade, but no associations were found with other 

clinicopathological characteristics. Knockdown of NSD2 led to significant decrease in 

the cell viability of four SCCHN cell lines and to decreased levels of H3K36 di- and tri­

methylation, indicating its non-redundant role in establishing H3K36 methylation levels in 

SCCHN. Furthermore, NSD2 directly regulated the transcription of NIMA-related-kinase-7 

(NEK7), a cell cycle regulator necessary for progression into cytokinesis and mitotic 

spindle formation, and, accordingly, its knockdown delayed the cell-cycle progression of 

SCCHN cells. Although this is, to our knowledge, the only study that supports a role 

for NSD2 in SCCHN oncogenesis, further investigation is warranted to dissect the whole­

genome landscape regulated by NSD2 in SCCHN, to understand its interactions with other 
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H3K36 methyl-transferases and to delineate the specific therapeutic setting in which NSD2 

inhibition could be incorporated in the current treatment standards.

NSD3

NSD3 or WHSC1L1 is a PKMT encoded by a gene localized in the chromosomal locus 

8p11.23, which shows recurrent amplification in the TCGA SCCHN cohort and a genetic/

expression alteration rate of 17% (Table 1). Recently, our group reported that NSD3 

is moderately or strongly overexpressed compared to normal squamous epithelium by 

immunohistochemical analysis in 58% of patients with locoregionally advanced SCCHN 

and its expression is significantly increased from normal squamous to dysplastic epithelium 

and then to SCCHN [20]. Interestingly, correlative analysis of the protein levels of NSD3 

and NSD2 in the same tissue microarrays revealed only a mild correlation (rho = 0.37), 

potentially indicating non-redundant oncogenic roles in SCCHN. Significant associations 

were found between NSD3 protein levels with tumor grade and smoking status, in that 

higher NSD3 protein levels correlated positively with poor grade and heavier smoking 

history. No associations were found with survival outcomes or HPV-status, implying a 

significant role of NSD3 in the initial stages of SCCHN oncogenesis, similarly to NSD2. 

NSD3 knockdown caused a significant decrease in the cell viability of both HPV-positive 

and HPV-negative SCCHN cell lines, accompanied by a decrease in the global levels 

of H3K36 di-methylation. These findings support a non-redundant role of NSD3 as an 

oncogene and as a H3K36 methyltransferase in SCCHN. Mechanistically, this study showed 

that NSD3 is necessary for the transition of SCCHN cells from the G1 to the S phase 

through induction of H3K36 di-methylation in the gene body regions of two critical cell 

cycle regulators, cell division cycle 6 (CDC6) and cyclin-dependent kinase 2 (CDK2), and 

subsequent activation of their transcription.

In another study [21], our group reported the epidermal growth factor receptor (EGFR) 

as a novel non-histone substrate of NSD3. More specifically, we reported that NSD3 mono­

methylated EGFR at lysine K721, which is located within the tyrosine kinase domain 

of EGFR, and that this methylation enhances the activating phosphorylation marks of 

serine 845, 1148 and 1173, and activating the downstream ERK cascade. This constitutive 

activation of EGFR and its downstream ERK cascade was independent of the presence 

of epidermal growth factor. Given that NSD3 is a nuclear protein, we hypothesized that 

the methylation of EGFR takes place in the nucleus of SCCHN cells in which EGFR 

translocates to the nucleus. K721 mono-methylation of nuclear EGFR potentiated its 

interaction with proliferating cell nuclear antigen (PCNA), stabilized PCNA and led to 

enhanced DNA replication in SCCHN cells. We hypothesized that a fraction of the K721 

mono-methylated EGFR remains in the nucleus to exert its function through stabilization 

of PCNA, while another fraction translocates back to the cytoplasm and activates the 

membrane/cytoplasmic EGFR cascade. Furthermore, we showed that knockdown of NSD3 

sensitizes SCCHN cells to Erlotinib. This indicates that methylation of lysine K721 of 

EGFR may allosterically enhance the affinity of the ATP-binding site of EGFR with ATP 

and thus decrease its affinity to Erlotinib, rendering resistance to this drug. Alternatively, 

NSD3-mediated methylation of nuclear EGFR may be responsible for resistance to EGFR 

inhibition through the potentiation of the functions of nuclear EGFR which is known 

Saloura et al. Page 6

Oral Oncol. Author manuscript; available in PMC 2019 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



confer resistance to EGFR inhibitors and cetuximab. As moderate or strong K721 EGFR 

mono-methylation was detected in 82% of patients with SCCHN, it is not unlikely that 

NSD3-mediated K721 EGFR mono-methylation is a major resistance mechanism to EGFR 

inhibition and that NSD3 inhibition could increase the therapeutic efficacy of EGFR 

inhibition in SCCHN.

To summarize, the NSD family of protein lysine methyltransferases seems to have a distinct 

role in the pathogenesis and disease progression of SCCHN, and the above described studies 

already provide a biological rationale to target NSD2 and NSD3 in patients with SCCHN 

and aberrancies in these enzymes. Fig. 1 shows the protein structure and summarizes 

the mechanisms of function of the NSD family of PMTs in SCCHN. It is interesting to 

note that although all three NSDs are known to mono- and di-methylate H3K36, NSD2 

and NSD3 seem to function as oncogenes, while NSD1 appears to behave as a tumor 

suppressor gene in SCCHN. This observation could potentially be explained if one considers 

that histone methylation marks are not the only enzymatic product of PMTs and that 

other methylation substrates or protein interactions may dictate their function. This could 

have critical implications in drug development, as non-histone substrates may need to be 

identified as more accurate pharmacodynamic biomarkers of activity of relevant inhibitors. 

Furthermore, the differential genomic landscape and the contribution of each of these 

NSDs to the H3K36 di-methylation levels in SCCHN should be delineated, and further 

studies should aim at defining the specific subsets of SCCHN patients that would benefit 

from interventions in NSD-driven oncogenic mechanisms. Finally, the role of other known 

H3K36 methyltransferases, such as ASH1L, SMYD3, SETD2, SETD3 and SETMAR, in 

SCCHN biology and their interplay with the NSDs have not been investigated and would 

constitute an important focus of research in order to further dissect the function of H3K36 

methylation in SCCHN.

EHMT2

EHMT2 (euchromatic histone lysine methyltransferase 2, G9a) is a protein lysine 

methyltransferase that induces mono- and di-methylation of H3K9 and silences the 

transcription of target genes. Per TCGA, 9% of patients with SCCHN have genetic or 

expression alterations in this enzyme (Table 1). Liu et al. [22] found that G9a interacts 

with Snail in a metastatic SCCHN cell line derived from lymph-node metastasis (HN12) 

and suppresses the expression of E-cadherin through H3K9 promoter di-methylation in 

these cells, but not the non-metastatic parental cell line (HN4). Additionally, the authors 

showed that TGF-β-induced epithelial-mesenchymal transition (EMT) of the HN4 cells 

was reversed by BIX01294, a G9a inhibitor, and decreased the levels of di-methylated 

H3K9 at the E-cadherin promoter, suggesting that G9a is essential for the EMT of the 

HN4 cells. Accordingly, knockdown of G9a in the metastatic HN12 cells led to a decrease 

in the expression of EMT markers N-cadherin and vimentin, restored the expression of E­

cadherin and decreased the motility and invasiveness of HN12 cells. Furthermore, BIX01294 

treatment of HN4 cells suppressed TGF-β-induced tumorsphere formation and CD44 protein 

expression, both markers of cancer sternness in SCCHN cells. Accordingly, knockdown of 

G9a in HN12 cells led to abolishment of these cancer sternness features, supporting that G9a 
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promotes cancer sternness in SCCHN. These results support that G9a could be a rational 

drug target for cancer stem cells in SCCHN.

In another study by Li et al. [23], high protein levels of G9a were found to be associated 

with worse survival in patients with SCCHN. Knockdown of G9a by shRNAs or BIX01294 

led to decreased cell proliferation and colony formation, and this was mediated through 

induction of autophagy. The authors also showed that G9a inhibition induced transcriptional 

upregulation of the ERK dephosphatase dual specificity phosphatase44 (DUSP4), leading to 

inactivation of the ERK pathway, which is one of the mechanisms of autophagy induction. 

Tumor growth suppression via autophagy by G9a inhibition was also demonstrated 

in a doxycycline-inducible xenograft mouse model. Similar results demonstrating both 

autophagy and induction of apoptosis with BIX01294 in oral squamous cell carcinoma cell 

lines were obtained by a different group [24].

A recently published study also showed that G9a promotes cisplatin resistance and is 

associated with poor disease-free survival in patients with locoregionally advanced SCCHN 

[25]. This observation was validated in two independent cohorts of SCCHN patients with 

locoregionally advanced disease who received neoadjuvant cisplatin-based chemotherapy. 

G9a knockdown or treatment with the G9a inhibitor UNC0638 led to sensitization 

of resistant SCCHN and sphere forming SCCHN cells to cisplatin. Mechanistically, 

the cisplatin resistance was attributed to G9a-mediated H3K9 mono-methylation and 

subsequent transcriptional upregulation of the glutamate-cysteine ligase catalytic subunit 

which promotes glutathione biosynthesis.

As efforts for the development of potent and selective G9a inhibitors are underway, the 

above studies may provide the rationale to introduce such inhibitors in clinical trials for 

patients with SCCHN. The protein structure and a summary of the reported mechanisms of 

action of EHMT2 in SCCHN are shown in Fig. 2.

EZH2

EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) is a PKMT mostly 

known to tri-methylate H3K27 as the catalytic component of the polycomb repressive 

complex 2 (PRC2). EZH2 has been established as an oncogene in multiple cancer types, and 

an EZH2 inhibitor by Epizyme, Tazemetostat, is already being evaluated in a phase II trial of 

patients with relapsed/refractory non-Hodgkin lymphoma, synovial sarcoma and malignant 

mesothelioma. 5% of SCCHN patients in the TCGA database carry genetic or expression 

alterations in this PKMT (Table 1).

The first study to show an association of EZH2 protein expression with survival outcomes in 

patients with SCCHN was conducted by Kidani et al. [26]. Tissue sections from 102 patients 

with oral squamous cell carcinoma and available clinicopathological annotation were stained 

for EZH2. Analysis of the immunohistochemical scoring revealed that higher EZH2 protein 

levels were associated with poor survival and advanced tumor, nodal and clinical stage in 

patients with stage II-IV locoregionally advanced disease, supporting that EZH2 functions as 

an oncogene in SCCHN.

Saloura et al. Page 8

Oral Oncol. Author manuscript; available in PMC 2019 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EZH2 has been implicated in the regulation of cell cycle in nasopharyngeal carcinoma 

(NPC). More specifically, Lu et al. [27] reported EZH2 as a direct downstream target of the 

tumor suppressive microRNA miR-26a in NPC, which is downregulated in NPC. miR-26a 

directly downregulates the translation of EZH2 in NPC, leading to decreased proliferation as 

well as G1 cell cycle arrest in NPC cells. The authors showed that reconstitution of EZH2 

expression in NPC cells with suppressed miR-26a expression led to growth promotion, as 

well as overexpression of critical cell cycle regulators that regulate the G1-S transition, 

such as CDK4 and CDK6, implying that EZH2 enhances the expression of these cell cycle 

regulators. This study though did not examine the role of H3K27 tri-methylation in this 

regulatory network. Moreover, Huang et al. [28] also showed that overexpression of EZH2 

in laryngeal cancer cells promotes entry of the cells into the S phase of the cell cycle, and 

promotes proliferation, tumorigenicity as well as resistance to cisplatin.

Furthermore, numerous studies have supported the importance of EZH2 in the invasiveness 

and epithelial-mesenchymal transition (EMT) of SCCHN, as well as its prognostic 

significance independently of established survival risk factors. Cao et al. [29] showed that 

knockdown of EZH2 led to a decrease in the proliferation rate and invasive potential of 

two SCCHN cell lines, and that higher EZH2 protein levels were significantly associated 

with the presence of perineural invasion, and worse overall survival in multivariate analysis 

of a cohort of 117 SCCHN patients with locoregionally advanced disease. The prognostic 

significance of EZH2 in SCCHN was also shown in another study [30] where high protein 

levels of EZH2 were associated with poor overall survival in a cohort of 209 nasopharyngeal 

cancer patients with locoregionally advanced disease independently of other known risk 

factors. Furthermore, this study supported that shRNA-mediated knockdown of EZH2 

decreased the invasive potential of NPC cell lines and the metastatic burden of an in vivo 

tumor model of CNE2 nasopharyngeal cancer cells. Mechanistically, this was explained 

by the repression of E-cadherin, a cell adhesive molecule, by EZH2-mediated H3K27 

tri-methylation, which enhanced the metastatic potential of CNE2 cells. The authors also 

found that the EZH2-mediated repression of E-cadherin required the synergistic action of 

histone deacetylases 1 and 2 (HDAC1/2) and of the transcription factor Snail, and that 

EZH2, HDAC1/2 and Snail form a co-repressive complex that silences E-cadherin in NPC 

cells. Similar results were reported by Wang et al. [31], who showed that overexpression 

of EZH2 was anti-correlated with E-cadherin expression and was associated with lymph 

node stage and poor overall survival in patients with oral tongue squamous cell carcinoma. 

Con-cordantly, they showed that ectopic expression of EZH2 reduced E-cadherin expression 

and enhanced the invasive potential in oral tongue SCCHN cell lines. This mechanism of 

EZH2-mediated silencing of E-cadherin and subsequent enhancement of the migration and 

invasive properties of SCCHN cells was further confirmed in another study [32] which 

also supported upregulation of N-cadherin and vimentin, and thus the acquisition of an 

EMT state by EZH2 in SCCHN cells. Additional studies have found that EZH2 promotes 

invasiveness and EMT through miRNA networks in SCCHN. For example, Li et al. [33] 

showed that EZH2 is downregulated by miR-630, which is in turns suppressed by HI9. 

HI9 suppresses miR-630, which then leads to upregulation of EZH2 expression, subsequent 

decrease in E-cadherin levels and thus induces invasive properties in SCCHN.
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Gannon et al. [34] investigated whether H3K27 tri-methylation, which is known to maintain 

squamous cells in a de-differentiated state, may also play a vital role in the maintenance of 

de-differentiation features in SCCHN. Protein levels of EZH2 and H3K27 tri-methylation 

were evaluated in a tissue microarray of 59 patients with SCCHN (and 12 normal oral 

epithelial tissue sections). Interestingly, although higher levels of EZH2 would be expected 

to be associated with higher levels of H3K27 tri-methylation, no associations were found 

between these in this cohort of SCCHN patients. This finding could be explained either 

by the overexpression of H3K27 demethylases that reduce H3K27 methylation levels, or 

by the presence of other methyltransferases that tri-methylate H3K27, such as EZH1. 

The authors also found that EZH2 protein levels were significantly lower in normal oral 

mucosa compared to SCCHN tissue sections and that chromatin immunoprecipitation of 

tri-methylated H3K27 in normal oral mucosa versus SCCHN tissues revealed enrichment at 

the promoter of the differentiation gene involucrin in the SCCHN tissues. The authors also 

found that inhibition of EZH2-mediated H3K27 tri-methylation by EZH2-specific siRNAs 

or DZNep, an EZH2 inhibitor, increased the expression of squamous differentiation markers 

in SCCHN cell lines and induced cell cytotoxicity both in vitro and in in vivo xenograft 

mouse models. Although the global levels of H3K27 tri-methylation were not different 

between normal mucosa and SCCHN tissues, this study showed that it is likely that the 

distribution of the H3K27 tri-methylation mark is different, including the persistent presence 

of this mark on the promoters of differentiation genes in SCCHN tissues.

In summary, the above data suggest that EZH2 functions as an oncogene and independently 

predicts poor survival through promotion of cell cycle progression, EMT features, 

chemoresistance and de-differentiation in SCCHN, and could thus serve as a rational drug 

target, most likely as a cisplatin sensitizer or in the secondary prevention setting following 

curative-intent chemoradiotherapy. Fig. 3 shows the protein structure and summarizes the 

reported mechanisms of action of EZH2 in SCCHN.

Protein arginine methyltransferases in SCCHN

PRMT1

PRMT1 (protein arginine methyltransferase 1) is a protein arginine methyltransferase 

that mono- and asymmetrically di-methylates various histone and non-histone substrates. 

Per TCGA, 6% of SCCHN patients have genetic or expression alterations in this gene 

(Table 1). Recently, PRMT1 was found to mono-methylate arginine R198 and R200 

of the extracellular domain of the epidermal growth factor receptor (EGFR), enhancing 

EGF binding and subsequent EGFR dimerization and EGFR downstream activation [35]. 

Furthermore, PRMT1-mediated methylation of EGFR rendered colon cancer cells resistant 

to Cetuximab treatment and was associated with significantly higher recurrence rates and 

decreased overall survival in metastatic colon cancer patients treated with cetuximab.

Given that Cetuximab is also a standard of care treatment option for SCCHN patients, Hsu 

et al. [36] investigated mechanisms of Cetuximab resistance in SCCHN, beyond mutations 

in EGFR, RAS, PIK3CA and ERBB2 amplification that are known to be culprits for 

Cetuximab resistance, and found that Cetuximab resistant SCCHN cell lines upregulated 

Snail and that this transcription factor directly bound to the promoter and increased the 
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transcription of lymphotoxin-β which induced EMT transition. The authors also described 

that lymphotoxin-β directly and preferentially bound to R198/R200 methylated EGFR and 

that PRMT1, which induces this methylation, is directly upregulated by Snail. In summary, 

the authors suggest a mutation-independent model of Cetuximab resistance, whereby Snail 

induces the direct transcriptional upregulation of lymphotoxin-β and PRMT1, leading to the 

interaction of lymphotoxin-β and methylated EGFR, its subsequent constitutional activation 

and resistance to Cetuximab. The above data support PRMT1 inhibition as an approach 

to overcome Cetuximab resistance in SCCHN. Fig. 4 shows the protein structure and 

summarizes the reported mechanisms of action of PRMT1 in SCCHN.

PRMT5.—PRMT5 (protein arginine methyltransferase 5) is a protein arginine 

methyltransferase that mono- and symmetrically di-methylates both histone and non-histone 

proteins, and has been implicated as an oncogene in a variety of cancer types, such as lung 

adenocarcinoma and colon cancer. 14% of SCCHN patients in the TCGA database have 

genetic or expression alterations in this gene (Table 1).

In NPC, Yang et al. [37] analyzed the protein expression levels in a tissue microarray of 112 

patients with NPC at various stages and found that high nuclear PRMT5 protein levels were 

associated with more advanced clinical and lymph node stage, and poor overall survival. 

Furthermore, the authors report that PRMT5 enhances the radioresistance of NPC cells 

through the upregulation of fibroblast growth factor receptor 3 (FGFR3). Higher levels of 

nuclear PRMT5 have also been associated with poor survival in a cohort of 209 patients with 

oropharyngeal carcinoma [38].

PMT inhibitors and ongoing clinical trials

PMTs are increasingly being recognized as promising anticancer drug targets given their 

crucial role in the epigenetic regulation of cancer processes not only in SCCHN, as 

presented above, but also in multiple other cancer types. Thus, drug discovery programs 

to identify small-molecule inhibitors for these enzymes have already been initiated. The 

main inhibition strategies include blocking the binding either of S-adenosylmethionine, 

the methyl-donor in methyltransferase reactions, in its binding pocket, or of a specific 

enzymatic substrate to the respective binding site of a PMT [39]. A small number of 

inhibitors that disrupt protein-protein interactions of PMTs with partner proteins have also 

been reported, such as astemizole which disrupts the interaction of EZH2 with its binding 

partner EED (Embryonic Ectoderm Development protein), and a number of small-molecule 

compounds that inhibit protein-protein interactions of MLL proteins with their partners. The 

latter approach is important, especially in the context of PMTs that promote oncogenesis 

independent of their enzymatic activity, such as SMYD3 and the short isoform of NSD3 

[40].

To date, the inhibitor Tazemetostat targeting the protein methyl-transferase EZH2 is the 

first-in-class to have reached phase II clinical trials. Tazemetostat (EPZ-6438) is an 

orally administered, S-adeno-sylmethionine (SAM) competitive EZH2 inhibitor with high 

selectivity of ≥20,000 fold towards EZH2 compared to other PMTs. The first-inhuman phase 

I/II trial investigating EPZ-6438 (NCT01897571) is a multicenter single-agent study that 
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was initiated in 2013 and is still enrolling patients. Eligible patients have advanced solid 

tumors or relapsed/refractory B-cell non-Hodgkin lymphoma (NHL) [41]. Tazemetostat 

demonstrated an acceptable safety profile, and objective responses were observed in 9 out 

of 15 evaluable patients with both wild-type and mutant EZH2 relapsed/refractory B-cell 

NHL, as well as in INI1 (integrase interactor 1)- or SMARCA4 (SWI/SNF Related, Matrix 

Associated, Actin Dependent Regulator Of Chromatin, Subfamily A, Member 4)-negative 

tumors. INI1 or SMARCA4 loss has been shown to create oncogenic dependency on 

EZH2 in solid tumors, such as sarcomas and rhabdoid tumors [42]. In 2017, Tazemetostat 

received fast track designation by the Food and Drug Administration for the treatment of 

relapsed/refractory diffuse large B-cell lymphoma with EZH2 activating mutations and for 

relapsed/refractory follicular lymphoma regardless of EZH2 mutation status. Furthermore, 

Tazemetostat is being further investigated in phase II trials for pediatric or adult relapsed/

refractory or INI-negative synovial sarcoma, in advanced solid tumors and NHL with EZH2 

or SMARC4 mutations and in malignant mesothelioma.

Drug discovery programs are under way for multiple other PMTs, including DOT1L 

(disruptor of telomeric silencing 1-like protein), NSD2, EHMT2, PRMT1 and PRMT5 

[40]. Such efforts are truly promising and portend the next generation of anticancer therapy 

targeting the protein methylome in cancer.

Conclusion

In this review, we have summarized the preclinical evidence and reported mechanisms of 

action of PMTs in SCCHN, and have highlighted relevant clinicopathological associations 

(Table 1). Despite the plethora of genetic and expression aberrations revealed in these 

enzymes by the TCGA, which underlines their importance in SCCHN, there is still a 

profound gap in our in-depth knowledge of the function of PMTs in this disease. To 

date, available studies have uncovered versatile functions of these enzymes in SCCHN 

biology, including cell cycle progression, epidermal differentiation, epithelial-mesenchymal 

transition, cancer sternness, DNA replication, constitutive activation of cellular signaling 

pathways (i.e. EGFR cascade) and more recently, immune cell infiltration of the tumor 

microenvironment. Of paramount importance is that methylation substrates are not only 

restricted to histone proteins, but also to non-histone proteins, and this pertains also to 

SCCHN, with EGFR being the first non-histone substrate reported in this cancer type. 

This realization will likely have a significant impact on the speed of progress towards 

accurate functional dissection of the protein methylome in SCCHN and thus towards the 

successful development and translation of novel therapeutics in this disease. Furthermore, 

given that methylation is a reversible mark, it is important to understand the balance 

between methylation “writers” and “erasers” and to characterize the differences generated 

in the phenotypes driven by the overactive state of a “writer” versus the hypoactive state 

of an “eraser” and vice versa. Also, it would be of interest to investigate differences 

in the function of each of these enzymes based on cell-context specificity derived from 

variations in the embryonal origin of each of the head and neck structures. Finally, as more 

selective, potent and better bioavailable PMT inhibitors are being developed, it is exciting to 

envision the possibility of combinatorial therapies which could enhance immunotherapy and 

chemoradiotherapy efficacy, and that resistance mechanisms may be more difficult to ensue 
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compared to the more “targeted” kinase inhibitors, given the broader range of epigenetically 

and non-epigenetically mediated functions of these enzymes.
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Fig. 1. 
Protein structure and mechanisms of action of the NSD family of protein methyltransferases 

in SCCHN. A. (i) Protein structure of NSD1 (UniProt, 2696 aminoacids). PWWP: domain 

with conserved proline-tryptophan-tryptophan-proline motif, PHD: plant homeodomain zinc 

finger, RING: really interesting new gene finger domain, AWS: associated with SET 

domain, SET: Su(var)3–9, Enhancer-of-zeste, Trithorax domain, PostSET: cysteine-rich 

motif following the SET domain, (ii) Mechanisms of action of NSD 1. Truncating NSD1 

mutations downregulate chemokine expression in SCCHN cells, inducing T-cell exclusion 

from the tissue microenvironment. NSD1 mutations are also associated with decreased 

expression of epidermal differentiation genes in SCCHN. B. (i) Molecular structure of the 

long isoform of NSD2 (UniProt, 1365 aminoacids). Domains described as per A(i) and 

HMG: High mobility group domain, (ii) Mechanism of action of NSD2 in SCCHN. NSD2 

di-methylates H3K36 and induces transcriptional upregulation of NIMA-related kinase 7 

(NEK7), leading to entry of SCCHN cells to cytokinesis. C. (i) Molecular structure of the 

long isoform of NSD3 (UniProt, 1437 aminoacids). Domains described as per A(i). (ii) 

Mechanisms of action of NSD3. NSD3 di-methylates H3K36 and induces transcriptional 

upregulation of cell-cycle related genes CDC6 and CDK2, leading to promotion of Gl-S 

phase progression in SCCHN cells. Additionally, NSD3 directly mono-methylates the 

epidermal growth factor receptor (EGFR) at lysine K721 within its tyrosine kinase domain. 

This induces EGF-independent activation of EGFR and its downstream ERK pathway, as 

well as increased affinity of nuclear EGFR for PCNA and subsequent enhancement of DNA 

replication in SCCHN cells.
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Fig. 2. 
Molecular structure and mechanisms of action of EHMT2 in SCCHN. A. Molecular 

structure of EHMT2 (UniProt, 1210 aminoacids). ANK: ankyrin repeats, PreSET: N­

terminal to SET, cys-rich putative Zn2+-binding domain, SET: Su(var)3–9, Enhancer-of­

zeste, Trithorax, PostSET: cysteine-rich motif following the SET domain. B. Mechanisms 

of action of EHMT2. EHMT2 associates with Snail and induces silencing of E-cadherin 

through H3K9 mono- and di-methylation, leading to induction of epithelial-mesenchymal 

transition (EMT) and cancer sternness features in SCCHN cells. Additionally, EHMT2 

binds to ATF4 to induce mono-methylation of H3K9 and transcriptional upregulation of the 

glutamate-cysteine ligase catalytic subunit which promotes cisplatin resistance.
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Fig. 3. 
Molecular structure and mechanisms of action of EZH2 in SCCHN. A. Molecular structure 

of EZH2 (UniProt, 751 aminoacids, isoform a). SANT: SANT SWI3, ADA2, N-CoR and 

TFIIIB” DNA-binding domain, CXC: Tesmin/TSOl-like CXC domain, SET: Su (var)3–9, 

Enhancer-of-zeste, Trithorax. B. Mechanisms of action of EZH2. EZH2 forms a repressive 

complex with histone deacetylase 1 (HDAC1), histone deacetylase 2 (HDAC2) and Snail 

and induces transcriptional silencing of E-cadherin through tri-methylation of H3K27 and 

EMT features in nasopharyngeal carcinoma cells. EZH2-in-duced tri-methylation of H3K27 

also silences the expression of differentiation genes in SCCHN.
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Fig. 4. 
Protein structure and mechanisms of action of PRMT1 in SCCHN. A. Protein structure of 

PRMT1 (UniProt, 361 aminoacids, isoform 1). Signature motif I, post I, post II, post III, 

conserved TWH loop: tandem winged-helix. B. Mechanisms of action of PRMT1. PRMT1 

and lymphotoxin-β (LTβ) are upregulated by Snail in SCCHN cells with EMT features. 

PRMT1 then methylates EGFR at R198/R200, and LTβ preferentially interacts with R198/

R200-methylated EGFR, inducing its activation and resistance to Cetuximab.
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