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Abstract

Motivation: Predicting the secondary structure of an ribonucleic acid (RNA) sequence is useful in

many applications. Existing algorithms [based on dynamic programming] suffer from a major limi-

tation: their runtimes scale cubically with the RNA length, and this slowness limits their use in

genome-wide applications.

Results: We present a novel alternative O(n3)-time dynamic programming algorithm for RNA folding that

is amenable to heuristics that make it run in O(n) time and O(n) space, while producing a high-quality ap-

proximation to the optimal solution. Inspired by incremental parsing for context-free grammars in com-

putational linguistics, our alternative dynamic programming algorithm scans the sequence in a left-to-

right (50-to-30) direction rather than in a bottom-up fashion, which allows us to employ the effective beam

pruning heuristic. Our work, though inexact, is the first RNA folding algorithm to achieve linear runtime

(and linear space) without imposing constraints on the output structure. Surprisingly, our approximate

search results in even higher overall accuracy on a diverse database of sequences with known structures.

More interestingly, it leads to significantly more accurate predictions on the longest sequence families in

that database (16S and 23S Ribosomal RNAs), as well as improved accuracies for long-range base pairs

(500þ nucleotides apart), both of which are well known to be challenging for the current models.

Availability and implementation: Our source code is available at https://github.com/LinearFold/

LinearFold, and our webserver is at http://linearfold.org (sequence limit: 100 000nt).

Contact: liang.huang.sh@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ribonucleic acid (RNA) is involved in numerous cellular processes

(Eddy, 2001). The dual nature of RNA as both a genetic material

and functional molecule led to the RNA World hypothesis, that

RNA was the first molecule of life (Gilbert, 1986), and this dual na-

ture has also been utilized to develop in vitro methods to evolve

functional sequences (Joyce, 1994). Furthermore, RNA is an import-

ant drug target and agent (Angelbello et al., 2018; Castanotto and

Rossi, 2009; Childs-Disney et al., 2007; Crooke, 2004; Gareiss

et al., 2008; Palde et al., 2010; Sazani et al., 2002).

Predicting the secondary structure of an RNA sequence, defined as

the set of all canonical base pairs (A–U, G–C, G–U, see Fig. 1A), is an

important and challenging problem (Hofacker and Lorenz, 2014;

Seetin and Mathews, 2012). Knowing the structure reveals crucial in-

formation about the RNA’s function, which is useful in many applica-

tions ranging from ncRNA detection (Fu et al., 2015; Gruber et al.,

2010; Washietl et al., 2012) to the design of oligonucleotides for

knockdown of message (Lu and Mathews, 2008; Tafer et al., 2008).

Since experimentally determining the structure is expensive and time-

consuming, and given the overwhelming increase in genomic data

(about 1021 base-pairs per year) (Stephens et al., 2015),
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computational methods have been widely used as an alternative to

automatically predict the structure. Widely used systems such as

RNAstructure (Mathews and Turner, 2006), Vienna RNAfold

(Lorenz et al., 2011), CONTRAfold (Do et al., 2006) and

CentroidFold (Sato et al., 2009), all use virtually the same dynamic

programming algorithm (Nussinov et al., 1978; Zuker and Stiegler,

1981) to find the best-scoring (lowest free energy, maximum expected

accuracy or best model score) structure (Mathews and Turner, 2006;

Washietl et al., 2012). However, this set of algorithms, borrowed

from computational linguistics (Kasami, 1965; Younger, 1967), has a

running time of O(n3) that scales cubically with the sequence length n,

which is too slow for long RNA sequences (Lange et al., 2012).

As an alternative, faster algorithms that predict only a restricted

subset of structures have been proposed. On the one hand, local

folding methods such as Rfold (Kiryu et al., 2008), Vienna

RNAplfold (Bernhart et al., 2006) and LocalFold (Lange et al.,

2012) run in linear time but only predict base pairs up to L nucleoti-

des apart (L � 150 in the literature; see Fig. 1C). On the other

hand, due to the prohibitive cubic runtime of standard methods, it

has been a common practice to divide long RNA sequences into

short segments (e.g. �700nt) and predict structures within each seg-

ment only (Andronescu et al., 2007; Licon et al., 2010; Watts et al.,

2009). All these local methods omit long-range base pairs, which

theoretical and experimental studies have demonstrated to be com-

mon in natural RNAs, especially between the 50 and 30 ends (Lai

et al., 2018; Li and Reidys, 2018; Seetin and Mathews, 2012).

We instead design LinearFold, an approximate algorithm that is

the first in RNA folding to achieve linear runtime (and linear space)

without imposing constraints on the output structure such as base pair

distance. While the classical O(n3)-time algorithm is bottom-up, mak-

ing it hard to linearize, ours runs left-to-right (i.e. 50-to-30), incremen-

tally tagging each nucleotide in the dot-bracket format (Fig. 1B). While

this naive version runs in the exponential time of O(3n), we borrow an

efficient packing idea from computational linguistic (Tomita, 1988)

that reduces the runtime back to O(n3). This novel left-to-right O(n3)

dynamic program is also a contribution of this article. Furthermore, on

top of this exact algorithm, we apply beam search, a popular heuristic

to prune the search space (Huang and Sagae, 2010), which keeps only

the top b highest-scoring (or lowest energy) states for each prefix of the

input sequence, resulting in an O nb log bð Þ time approximate search

algorithm, where b is the beam size chosen by the user.

Our approach can ‘linearize’ any dynamic programming-based

pseudoknot-free RNA folding system. In particular, we demonstrate

two versions of LinearFold, LinearFold-V using the thermodynamic

free energy model (Mathews et al., 2004) from Vienna RNAfold

(Lorenz et al., 2011), and LinearFold-C using the machine learned

model from CONTRAfold (Do et al., 2006). We evaluate our sys-

tems on a diverse dataset of RNA sequences with well-established

structures, and show that while being substantially more efficient,

LinearFold leads to even higher average accuracies over all families,

and more interestingly, LinearFold is significantly more accurate

than the exact search methods on the longest families, 16S and 23S

Ribosomal RNAs. In addition, LinearFold is also more accurate on

long-range base pairs, which is well known to be a challenging prob-

lem for the current models (Amman et al., 2013).

Finally, our work establishes a new connection among computa-

tional linguistics, compiler theory and RNA folding (see Supplemen-

tary Fig. SI 7).

2 The LinearFold algorithm

2.1 Problem formulation
Given an RNA sequence x ¼ x1x2 . . . xn, where each

xi 2 A;C;G;Uf g, the secondary structure prediction problem aims

to find the best-scoring pseudoknot-free structure ŷ by maximizing

a scoring function scw (e.g. model score or negative free energy)

where w are the model parameters:

ŷ ¼ argmax
y2Y xð Þ

scw x; yð Þ: (1)

Here Y xð Þ is the set of all possible pseudoknot-free secondary struc-

tures for input x of length n

y 2 :; ð ; Þ
� �n j balanced yð Þ; valid x; pairs yð Þ

� �n o

where balanced yð Þ checks if y has balanced brackets,

valid x;pairs yð Þ
� �

checks if all pairs in y are valid (CG, AU, GU),

and pairs yð Þ returns the set of (i, j) pairs where xi and xj form a base

pair in y, e.g. pairs ‘‘ðð:ÞÞ’’ð Þ ¼ 1; 5ð Þ; 2; 4ð Þ
� �

. See Supplementary

section A for detailed definitions.

All dynamic programming-based prediction algorithms, includ-

ing ours, require the scoring function scw x; �ð Þ to decompose to

smaller structures. For simplicity of presentation, in the main text

we will use a very simple decomposition to individual pairs and un-

paired nucleotides:

scw x; yð Þ ¼
X

i;jð Þ2pairs yð Þ
wxixj

þ
X

i2unpaired yð Þ
wunpaired (2)

In this framework, we can assign different scores for different pairs,

and incur a penalty for each unpaired nucleotide. For the example in

Figure 2, we simply set wCG¼wAU¼wGU ¼1 and wunpaired ¼�0:1;

therefore, scw ‘‘CCAGG’’; ‘‘ðð:ÞÞ’’ð Þ¼2wCGþwunpaired ¼1:9.

In reality, however, the actual scoring functions used by

CONTRAfold, RNAfold, and our LinearFold are much more com-

plex, and they decompose into individual loops. See Supplementary

section B for details.
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(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
1 our linear-time heuristic algorithm scans from 5’ to 3’ n

C type pair distance time space systems/examples
global unbounded O(n3) O(n2) RNAstructure, RNAfold, ...
local ≤ L O(nL2) O(nL) Rfold, RNAplfold, LocalFold, ...

global unbounded O(nb log b) O(nb) LinearFold (this work)

Fig. 1. Summary of our work. (A) Secondary structure representations of

E.coli tRNAGly; (B) the corresponding dot-bracket format and an illustration of

our algorithm, which scans the sequence left-to-right, and tags each nucleo-

tide as ‘.’ (unpaired), ‘(’ (to be paired with a future nucleotide) or ‘)’ (paired

with a previous nucleotide). (C) Comparison between our work and existing

ones. L is the limit of pair distance in local folding methods (often �150), and

b is the beam size in our work (default 100). Our algorithm, though approxi-

mate, is the first to achieve linear runtime without imposing constraints on

the output structure
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2.2 Idea 0: Brute-force search: O(3n)
The initial idea, introduced in Figure 1B, is to scan the RNA se-

quence left-to-right, maintaining a stack along the way, and per-

forming one of the three actions (push, skip or pop) at each step.

More formally, we denote each state at step j (j¼0. . .n) as a tuple

along with a score s:

hy;r; ji : s;

where y is the (sub)structure for the prefix x1 . . . xj, and r is the

stack consisting of unmatched opening bracket positions in y. For

example, in Step 4, if y ¼ ‘((.)’, then r ¼ [1] and s¼0.9 (see

Fig. 2A); note that we denote open brackets in bold. Each state at

step j can transition into a subsequent state of step jþ1, taking one

of the three actions:

1. push: label xjþ1 as ‘(’ for it to be paired with a downstream nu-

cleotide, and pushing j þ 1 on to the stack, notated:

hy;r; ji : s

hy� ‘ð’;rjðjþ 1Þ; jþ 1i : s

2. skip: label xjþ1 as ‘.’ (unpaired and skipped):

hy;r; ji : s

hy� ‘: ’;r; jþ 1i : sþwunpaired

A

B

C

D

E

F

G

Fig. 2. Illustration of the LinearFold approach, using a short sequence CCAGG and the simple scoring function (Eq. 2). (A) An example state and an example (actu-

ally optimal) path, showing states (predicted prefix structures), actions (push ‘(’, skip ‘.’, and pop ‘)’), and stacks (unpaired open brackets, which are shown in bold

in states). (B) Two example paths (the optimal one in blue and a suboptimal one in green) and two essential ideas of left-to-right dynamic programming: merging

equivalent states with identical stacks (Idea 1) and packing temporarily equivalent states sharing the same stack top, and corresponding unpacking upon pop

(Idea 2). (C) Illustration of beam search, which keeps top b states (those in the shaded region) per step (Idea 3). (D) The whole search space of the naive algorithm

(O(3n) time). (E) Improving to O(2n) time with Idea 1. (F) Further improving to O(n3) time with Idea 2. (G) Further improving to O(n) time (but with approximate

search) with Idea 3. In B, F, and G, each green/blue arrow pair ?( ?(. is actually a single arrow, denoting two paths temporarily packed as one; we draw paired

arrows to highlight that two states .( and (( are performing skip action together. Note the version up to Idea 2 is exact and worst-case O(n3) time

LinearFold: linear-time RNA folding i297

Deleted Text: S
Deleted Text: ,


3. pop: label xjþ1 as ‘)’, paired with the upstream nucleotide xi

where i is the top of the stack, and pop i (if xixjþ1 pair is

allowed):

hy;rji; ji : s

hy� ‘Þ’;r; jþ 1i : sþwxixjþ1

We start with the init state h‘’; ½ �; 0i : 0 and finish with any state

hy; ½ �;ni : s with an empty stack (ensuring the output is a well-

balanced dot-bracket sequence). See Figure 2A for an example path

for input sequence CCAGG, and Figure 2D for all valid paths.

The above procedure describes a naive exhaustive search without

dynamic programming which has exponential runtime O(3n), as

there are up to three actions per step (see Fig. 2D).

Next, Figure 2B sketches the two key dynamic programming ideas

that speed up this algorithm to O(n3) by merging and packing states.

2.3 Idea 1: merge states with identical stacks: O(2n)
We first observe that different states can have the same stack; for ex-

ample, in Step 5, both ‘.(.).’ and ‘((.))’ have the same empty stack (see

Fig. 2B, Idea 1); and in step 4, both ‘(. . .’ and ‘((.)’ have the same stack

[1] (see Fig. 2D). These states can be merged, because even though

they have different histories, going forward they are exactly equiva-

lent. After merging we save the state with the highest score and dis-

card all others which have no potential to lead to the optimal

structure. More formally, we merge two states with the same stack:

hy;r; ji : s

hy0; r; ji : s0

)
! hr; ji : hy00; s00i

where

hy00; s00i ¼
hy; si if s > s0

hy0; s0i otherwise

(

This algorithm is faster but still has exponential O(2n) time as there

are exponentially many different stacks (see Fig. 2E).

2.4 Idea 2: pack temporarily equivalent states: O(n3)
We further observe that even though some states have different

stacks, they might share the same stack top. For example, in step 2,

‘.(’ and ‘((’ have [2] and [1, 2] as their stacks, resp., but with the

same stack top 2. Our key insight is that two states with the same

stack-top are ‘temporarily equivalent’ and can be ‘packed’ as they

would behave equivalently until the stack-top open bracket is closed

(i.e. matched), after which they ‘unpack’ and diverge. As shown in

Fig. 2B (Idea 2), both ‘.(’ and ‘((’ are looking for a ‘G’ to match with

the stack top x2¼‘C’, and can be packed as ‘?(’ with stack [. . .2]

where ‘?’ and ‘. . .’ represent histories that are not important for

now. After skipping the next nucleotide x3¼‘A’, they become ‘?(.’

and upon matching the next nucleotide x4¼‘G’ with the stack-top

x2¼‘C’, they unpack, resulting in ‘.(.)’ and ‘((.)’.

More formally, two states hrji; ii : hy; si and hr0ji; ii : hy0; s0i shar-

ing the same stack top can be packed:

hrji; ii : hy; si
hr0ji; ii : hy0; s0i

)
! hi; ii : h(; 0i

Note that (i) we only need two indices to index the packed state; (ii)

we omit the ?’s since they contain no information; and (iii) some-

what counterintuitively, the resulting packed state’s (sub)structure

and score, h(, 0i do not depend on the original states before packing.

More formally, for any packed state hi; ji : hy; si, its y is a substruc-

ture only for the substring xi . . . xj, and its score s is also for that por-

tion only, i.e. s ¼ scwðxi . . . xj; yÞ. We can grow it by skip

hi; ji : hy; si
hi; jþ 1i : hy � ‘:’; sþwunpairedi

or push actions

hi; ji : hy; si
hjþ 1; jþ 1i : h(; 0i :

The pop action is more involved. If xi and xjþ1 match, we pop i, but

where can we find the ‘previous stack top’? It is not specified in the

packed state. Therefore, we need to find a state hk; i� 1i : hy0; s0i
that combines with the current state:

hk; i� 1i : hy0; s0i hi; ji : hy; si
hk; jþ 1i : hy0 � y � ‘Þ’; s0 þ sþwxixjþ1

i

This version (see Fig. 2F) runs in worst-case O(n3) time, because

the pop step involve three free indices. It guarantees to return the

optimal-scoring structure. It is inspired by a well-established algo-

rithm in natural language parsing (Huang and Sagae, 2010;

Tomita, 1988); see Supplementary Figure SI 7. Although this

O(n3) runtime is the same as those classical bottom-up ones, its

unique left-to-right nature makes it amenable to O(n) beam

search.

2.5 Idea 3 (approximate search): beam pruning: O(n)
We further employ beam pruning (Huang et al., 2012), a popular

heuristic widely used in computational linguistics, to reduce the

complexity from O(n3) to O(n), but with the cost of exact search.

Basically, at each step j, we only keep the b top-scoring (lowest-en-

ergy) states and prune the other, less promising, ones (because they

are less likely to be part of the optimal final structure). This results

in an approximate search algorithm in O(nb2) time, depicted in

Figure 2C and G. On top of beam search, we borrow k-best pars-

ing (Huang and Chiang, 2005) to reduce the runtime to

Oðnb log bÞ. Here, the beam size b is a small constant (by default

100) so the overall runtime is linear in n. We will show that our ap-

proximate search achieves even higher overall accuracy than the

classical exact search methods. The space complexity is O(nb). See

Supplementary Figure SI 6 for the real system. There are two minor

restrictions in our real system: the length of an interior loop is

bounded by 30nt (a standard limit found in most existing RNA

folding software such as CONTRAfold), so is the leftmost (50-end)

unpaired segment of a multiloop (new constraint). These condi-

tions are valid for 37�C, and no violations were found in the

ArchiveII dataset.

3 Results

3.1 Efficiency and scalability
We compare LinearFold’s efficiency with classical cubic-time algo-

rithms represented by CONTRAfold (Version 2.02) and Vienna

RNAfold (Version 2.4.10) (http://contra.stanford.edu/ and https://

www.tbi.univie.ac.at/RNA/download/sourcecode/2_4_x/ViennaRNA-

2.4.10.tar.gz). We use two datasets: (i) the ArchiveII dataset (Sloma

and Mathews, 2016), a diverse set of RNA sequences with known

structures (http://rna.urmc.rochester.edu/pub/archiveII.tar.gz; we

removed those sequences found in the S-Processed set, see

Supplementary Table SI 1 for details), and (ii) a sampled subset of

RNAcentral (The RNAcentral Consortium, 2017) (https://rnacentral.
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org/), a comprehensive set of ncRNA sequences from many databases.

While ArchiveII contains sequences of 3000nt or less, RNAcentral has

many much longer ones, with the longest being 244 296nt (Homo

Sapiens Transcript NONHSAT168677.1, from the NONCODE data-

base (Zhao et al., 2016)). We run all programs (compiled by GCC

4.9.0) on Linux, with 3.40GHz Intel Xeon E3-1231 CPU and 32G

memory.

Figure 3A shows that on the relatively short ArchiveII set,

LinearFold’s runtime scales almost linearly with the sequence

length, while the two baselines have superquadratic runtimes. On

the much longer RNAcentral set, Figure 3B shows strictly linear

runtime for LinearFold and near-cubic runtimes for the baselines,

which agrees with the asymptotic analyses and suggests that

the minor deviations from the theoretical runtimes are due to the

short sequence lengths in the ArchiveII set. For a sequence of

�10 000nt (e.g. the HIV genome), LinearFold takes only 8 s, while

the baselines take 4 min. For a sequence of 32 753nt, LinearFold

takes 26 s, while CONTRAfold and RNAfold take 2 and 1.7 h,

respectively.

In addition, LinearFold uses only O(n) memory (Fig. 3C). The

classical O(n3)-time algorithm uses O(n2) space, because it needs to

solve the best-scoring substructure for each substring [i, j] bottom-

up. LinearFold, in contrast, uses O(n) space thanks to left-to-right

beam search, and is the first O(n)-space algorithm to be able to pre-

dict base pairs of unbounded distance. It is able to fold the longest

sequence in RNAcentral (244 296nt) within 3 min, while neither

CONTRAfold or RNAfold runs on anything longer than 32 767nt

due to datastructure limitations. As a result, the sequence limit on

our web server (105nt, see abstract) is 10� that of RNAfold web ser-

ver (the previous largest), being by far the largest limit among all

available servers (as of March 2019). The curve-fittings in Figure 3

were done log-log in gnuplot with n>103 in A, n > 3�103 in B,

and n>104 in C, to focus on the asymptotics.

3.2 Accuracy
We next compare LinearFold with the two baselines in accuracy,

reporting both positive predictive value (PPV, the fraction of pre-

dicted pairs in the known structure) and sensitivity (the fraction of

known pairs predicted) on each RNA family in the ArchiveII data-

set, allowing correctly predicted pairs to be offset by one position

for one nucleotide as compared to the known structure (Sloma and

Mathews, 2016); we also report exact match accuracies in

Supplementary Table SI 2. We test statistical significance using a

paired, one-sided permutation test, following (Aghaeepour and

Hoos, 2013).

Figure 4 shows that LinearFold is more accurate than the baselines,

and interestingly, this advantage is more pronunced on longer sequen-

ces. Individually, LinearFold-C (the LinearFold implementation of the
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Fig. 4. Accuracy of LinearFold. (A) Each bar represents PPV/sensitivity averaged over all sequences in one family. Statistical significance is marked as 	ð0:01 �
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exact search baselines, especially on longer families and long-range pairs
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CONTRAfold model) is significantly more accurate in sensitivity than

CONTRAfold on one family (Group I Intron), and both PPV/sensitiv-

ity on two families (16S and 23S ribosomal RNAs), with the last two

being the longest families in this dataset, where they have average

lengths 1548nt and 2927nt, and enjoyed þ3.56%/þ3.09% and

þ8.65%/þ5.66% (absolute) improvements in PPV/sensitivity, respect-

ively. LinearFold-V (the LinearFold implementation of the Vienna

RNAfold model) also outperforms RNAfold with significant improve-

ments in PPV on two families (SRP and 16S rRNA), and both PPV/sen-

sitivity on one family (Group I Intron). Overall (across all families),

LinearFold-C outperforms CONTRAfold by þ1.3%/þ0.9% PPV/sen-

sitivity, while LinearFold-V outperforms RNAfold by þ0.3%/þ0.2%.

See Supplementary Table SI 1 for details.

Long-range base pairs are notoriously difficult to predict under

current models (Amman et al., 2013). Interestingly, LinearFold is

more accurate in both PPV and sensitivity than the exact search al-

gorithm for long-range base pairs of nucleotides greater than 500

nucleotides apart, as shown in Figure 4C. Combined with

Supplementary Figure SI 1, we conclude that LinearFold is more se-

lective in predicting long-range base pairs (higher PPV), but never-

theless predicts more such pairs that are correct (higher Sensitivity).

Supplementary Figure SI 2B and C further shows that both

LinearFold-C and LinearFold-V correct the severe overprediction of

those long-range base pairs in exact search baselines.

Interestingly, even though our algorithm scans 50-to-30, the ac-

curacy does not degrade toward the 30-end, shown in

Supplementary Figure SI 4.

3.3 Search quality
Above we used beam size 100. Now we investigate the impacts of

varying beam size. We first study its impact on search quality. Since

our search is approximate, we quantify the notion of search error

(Huang and Sagae, 2010) as the difference in score or free energy be-

tween ŷ, the optimal structure returned by exact search, and �y, the

one found by our linear-time beam search, i.e.

scw x; ŷð Þ � scw x; �yð Þ:

The smaller this gap, the better the search quality. Figure 5A shows

that search error shrinks with beam size, quickly converging to 0

(exact search); Figure 5B–C show that the search error (at b¼100)

grows linearly with sequence length, indicating that our search qual-

ity does not degrade with longer sequences (the average search error

per nucleotide stays the same).

3.4 Impacts of beam size on prediction accuracy
Figure 6A plots PPV and sensitivity as a function of beam size.

LinearFold-C outperforms CONTRAfold MFE in both PPV and

sensitivity with b 
 75 and is stable with b 2 100; 150½ �. Figure 6B

shows the tradeoff between PPV and sensitivity. Both PPV and sensi-

tivity increase initially with beam size, culminating at b¼120, and

then decrease, converging to exact search. We do not tune the beam

size on any dataset and use the round number of 100 as default.

Figure 6C–D shows a similar trend for LinearFold-V.

3.5 Example predictions: Group I intron, 16S & 23S

rRNAs
Figure 7 visualizes the predicted secondary structures from three

RNA families: Cryptothallus mirabilis Group I Intron, Bacillus sub-

tilis 16S rRNA and Escherichia coli 23S rRNA. We observe that

LinearFold substantially reduces false positives (shown in red), espe-

cially on the CONTRAfold model. It also correctly predicts many
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C. mirabilis Group I Intron (526nt, 143 pairs) B. subtilis 16S rRNA (1552nt, 451 pairs) E. coli 23S rRNA (2904nt, 830 pairs)
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Fig. 7. Circular plots of the prediction results on three RNA sequences (from three different RNA families) comparing the baselines (A–C: CONTRAfold MFE; G–I:

Vienna RNAfold) and our LinearFold (D–F: LinearFold-C; J–L: LinearFold-V). Correctly predicted base pairs are in blue (true positives), incorrectly predicted pairs

in red (false positives) and missing true base pairs in light gray (false negatives). Each plot is clockwise from 50 to 30. We can observe that (i) our LinearFold greatly

reduces the false positives, especially on CONTRAfold; (ii) our LinearFold correctly predicts many long-range pairs, e.g. LinearFold-C on all three sequences and

LinearFold-V on E.coli 23S rRNA(L); (iii) our LinearFold is able to predict the longest 50–30 pairs, even with the beam size of 100, which is an order of magnitude

smaller than the sequence lengths of 16S and 23S rRNAs. (iv) In almost all cases (except for LinearFold-V on B.subtilis 16S rRNA(K)), LinearFold substantially out-

performs the corresponding baseline
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(clusters of) long-range base pairs (true positives, shown in blue),

e.g. in C.mirabilis Group I Intron with LinearFold-C (Fig. 7D, pair

distance 237nt), B.subtilis 16S rRNA with LinearFold-C (Fig. 7E,

pair distance 460nt), E.coli 23S rRNA with both LinearFold-C and

LinearFold-V (Fig. 7F and L, pair distance 582nt). This reconfirms

LinearFold’s advantage in predicting long-range base pairs shown in

Figure 4C. Moreover, LinearFold is able to predict the longest 50–30

pairs, as shown in E. coli 23S rRNA with LinearFold-V (Fig. 7L,

pair distance 2901nt). In most cases (except LinearFold-V on B.

subtilis 16S rRNA, Fig. 7K), LinearFold improves substantially over

the corresponding baselines. By contrast, local folding methods do

not predict any long-range pairs, shown in Fig. 8. We use RNAfold

–maxBPspan 150 for local folding, and this limit of 150 is the larg-

est default limit in the local folding literature and softwares.

4 Discussion

There are several reasons why our beam search algorithm, though

approximate, outperforms the exact search baselines in terms of ac-

curacy (esp. in 16S and 23S rRNAs and long-range base pairs).

1. First, the scoring functions are imperfect, so it is totally possible

for a suboptimal structure (in terms of model score or free en-

ergy) to be more accurate than the optimal-score structure. For

example, it was well-studied that while the lowest free energy

structure contains only 72.9% of the actual base pairs (given a

dataset), a structure containing 86.1% of them can be found

with a free energy within 4.8% of the optimal structure

(Mathews et al., 1999; Zuker et al., 1991).

2. Secondly, the beam search algorithm prunes lower-scoring (sub)-

structures at each step, requiring the surviving (sub)structures

and the final result to be highly scored for each prefix. Our

results suggest that this extra constraint, like ‘regularization’,

could compensate for the inaccuracy of the (physical or

machine-learning) model, as LinearFold systematically picks a

more accurate suboptimal structure without knowing the

ground truth; indeed, this seemingly surprising phenomenon has

been observed before in computational linguistics (Huang and

Sagae, 2010) which inspired this work.

3. Finally, our LinearFold algorithm resembles cotranscriptional

folding where RNA molecules start to fold immediately before

being fully transcribed (Gultyaev et al., 1995; Meyer and

Miklós, 2004). This is analogous to psycholinguistic evidence

that humans incrementally parse a sentence before it is fully read

or heard (Frazier and Rayner, 1982). We hypothesize that some

RNA sequences have evolved to fold co-transcriptionally (Meyer

and Miklós, 2004), thus making our 50-to-30 incremental ap-

proach more accurate than bottom-up baselines. Supplementary

Figure SI 5B shows a slight preference for 50-to-30 order over 30-

to-50.

There are other algorithmic efforts to speed up RNA folding,

including an O n3= log n
� �

algorithm using the Four-Russians

method (Venkatachalam et al., 2014), and two other sub-cubic algo-

rithms inspired by fast matrix multiplication and context-free pars-

ing (Bringmann et al., 2016; Zakov et al., 2011). We note that all of

them are based on the classical cubic-time bottom-up algorithm,

and thus orthogonal to our left-to-right approach. There also exists

a linear-time algorithm (Rastegari and Condon, 2005) to analyze a

given structure, but not to predict one de novo.

5 Conclusion and future work

We designed an O(n)-time, O(n)-space, approximate search algo-

rithm, using incremental dynamic programming plus beam search,

and apply this algorithm to both machine-learned and thermo-

dynamic models. Besides the linearity in both time and memory

(Fig. 3), we also found:

1. Though LinearFold uses only a fraction of time and memory

compared with existing algorithms, our predicted structures are

even more accurate overall in both PPV and sensitivity and on

both machine-learned and thermodynamic models (see Fig. 4).

2. The accuracy improvement of LinearFold is more pronunced on

longer families such as 16S and 23S rRNAs (see Figs 4 and 7).

3. LinearFold is also more accurate than the baselines at predicting

long-range base pairs over 500nt apart (Fig. 4C), which is well

known to be challenging for the current models (Amman et al.,

2013).

4. Although the performance of LinearFold depends on the beam

size b, the number of base pairs and the accuracy of prediction

are stable when b is in the range of 100–200.

There is a crucial difference between our LinearFold and local

folding algorithms (Bernhart et al., 2006; Kiryu et al., 2008; Lange

et al., 2012) that can only predict pairs up to a certain distance.

Theoretical and empirical studies found several evidences that un-

boundedly long-distance pairs are actually quite common in natural

RNA structures: (i) the length of the longest base pair grows nearly

linearly with sequence length n (Li and Reidys, 2018); (ii) the physic-

al distance between the 50–30 ends in folded structures is short and

nearly constant (Lai et al., 2018; Leija-Martı́nez et al., 2014; Yoffe

et al., 2011).

Our work has several potential extensions.

1. It is possible that LinearFold can be extended to calculate the

partition function and base pair probabilities for natural RNA

sequences with well-defined structures, since the classical

method for that task, the McCaskill (1990) algorithm, is iso-

morphic in structure to the cubic-time algorithms that are used

as baselines in this article.

2. This linear-time approach to calculate base pair probabilities

should facilitate the linear-time identification of pseudoknots, by

either replacing the cubic-time McCaskill algorithm with a

Fig. 8. Circular plots of prediction results using the local folding mode of

Vienna RNAfold (which only predicts local pairs no more than 150nt apart) on

the E.coli 23S rRNA (corresponding to Fig. 7I). Moreover, the O(nL2)-time

local folding (with default L¼150) is twice as slow as the Oðnb log bÞ-time

LinearFold-V (with default b¼100)
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linear-time one in those heuristic pseudoknot-prediction pro-

grams (Bellaousov and Mathews, 2010; Sato et al., 2011), or lin-

earizing a supercubic-time dynamic program for direct

prediction with pseudoknots (Dirks and Pierce, 2003; Reeder

and Giegerich, 2004).

3. We will test the hypothesis that our beams potentially capture

cotranscriptional folding with empirical data on cotranscrip-

tional folding (Watters et al., 2016).

4. Being linear-time, LinearFold also facilitates faster parameter

training than the cubic-time CONTRAfold using structured pre-

diction methods (Huang et al., 2012), and we envision a more

accurate LinearFold using a model tailored to its own search.
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