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Introduction

Model organisms are meant to reduce complexity and allow testing of mechanisms. 

However, for nervous system control of arm and hand movements, testing in rodents poses 

several challenges. First, much time is spent trying to get rodents to understand what is 

expected of them, rather than building skill (motor learning), per se. Shaping behavior varies 

by the skill of the experimenter and how natural the behavior is for the animal. In addition, 

rodents are able to perform tasks using a wide repertoire of movements in health and 

compensatory strategies after injury or disease1,2. This makes discrimination of how a task is 

performed and the level of task performance difficult. Finally, one of the most accurate 

methods of tracking hand movements in people is through marker based motion tracking3,4. 

However, using similar technology in rodents is very challenging given the small size of 

rodents (particularly the paw) and the difficulty of attaching markers on their paws without 

being gnawed.

Current assays of rodent forelimb movements meet several of these challenges, but they have 

important limitations. Since most tasks are performed and scored by human experimenters, 

they are labor-intensive, and the evaluation of kinematics can be subjective and largely 

qualitative5,6. We argue that these limitations are the biggest motivation for inventing 

automated devices7–11. By automation, we mean that human tasks are done by a machine or 

computer, including training or analysis of forelimb movements7.

In this Point of View article, we weigh the use of automated forelimb tasks against 

traditional manual tasks. We first describe the different types of manual tasks that are 

currently in use, followed by discussion of available automated tasks. We detail the 

challenges of adopting automated systems, as well as ways to mitigate these challenges. We 
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conclude by describing some attributes for design of future automated tasks and the 

validation studies that might lead to their wide scale adoption.

Manual Tasks

We define manual tasks as those that require human experimenters for testing and analysis. 

This method involves directly observing or video recording rodents reaching, walking, or 

manipulating. Examples of manual tasks that rely on human experimenters are shown in Fig. 

112,13. Much of our current understanding about motor skills comes from studies using these 

tasks5,14–19. Examples include the single pellet reaching task (SPRT), Irvine, Beatties, and 

Bresnahan (IBB) task20, Montoya staircase test, vermicelli manipulation task13, and the 

pasta matrix reaching task21. Among these tasks, the SPRT is both common and 

representative of reaching, a key forelimb task, so we will use this task to illustrate many of 

our points.

We have chosen to specifically focus on SPRT due to three specific advantages it has over 

other available tasks. First, despite its labor intensive nature, many scientists prefer this task 

over others because it is highly sensitive to chronic neuronal injuries. Second, it also 

provides success rate outcomes along with kinematics of movements. Finally, this task tests 

a forelimb movement that is homologous to human movement22. There are other tasks that 

are widely used by many laboratories like the Montoya staircase, but it is beyond the scope 

of this article to compare automated tasks to these all available tasks. To facilitate the 

discussion on distinctions between Manual and Automated tasks, we have summarized the 

advantages and disadvantages of both the ‘Automated Tasks’ and ‘Manual Tasks’ in Table 1.

Advantages of manual tasks

There are number of reasons why manual tasks are still very popular today. Many 

researchers prefer these methods because they have a track record of efficacy and an 

extensive publication history which allows for comparison against previous studies. Also, 

these tasks are intuitive for both the rodents performing the task and human experimenter. In 

addition, they have low start-up costs, are simple to implement, and do not take up much 

space. For example, in our experience new Single Pellet Reaching Task (SPRT) costs only 

around US $700 for the clear plastic materials and the video camera, and this can be set up 

on any lab bench.

The ability to combine multiple manual tasks into one study is another major advantage of 

using these tasks. Combining several tasks provides performance evaluation over a larger 

repertoire of movements and ability levels. For example, while the SPRT or Montoya 

staircase evaluates reaching and grasping skill, the cylinder test measure paw movement 

during rearing and preference between the paws. Manual tests like the cylinder test and 

vermicelli handling task that measure paw preference can evaluate differences between paws 

that are often missed in single forelimb assessments.

Disadvantages of Manual Tasks

The main disadvantages of manual tasks are 1) they are labor-intensive to conduct and to 

analyze, 2) the analysis is subjective, and 3) often the outcomes are qualitative. The large 
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amount of time needed to train, test, and analyze the data from these tasks means that it 

takes significant resources. One study estimated that it can take up 47 hours of training time 

and 141 of testing to collect and score data from a longitudinal experiment with 10 rats6.

Kinematic performance measures produced by manual scoring are often qualitative. For 

example, scoring of kinematics of the SPRT usually involves assigning values to different 

aspects of movement based on a categorical scale such as normal, abnormal, or absent. This 

type of scoring system cannot track movements with high resolution. Precise limb 

movements are necessary for rodent models because nervous system injury or manipulation 

often causes more subtle effects than those observed in humans, who rely more on dexterous 

movement. It should be noted that success rate is the main outcome measure in this task, 

which is computed in a quantitative manner.

Another major drawback to manual tasks is that they rely on human observers for kinematic 

evaluation, which can introduce variability. Errors can arise from multiple users scoring data 

from same subject (low inter-observer reliability) or from one observer measuring 

performance from multiple subjects or time points (intra-observer reliability). For example, 

the IBB test used to measure fine motor functions of forelimb and digits after cervical SCI in 

rodents requires grading forelimb function using a 9 point scale20. In one study, the authors 

identified at least six possible ways that raters can differ in their scores. There was more than 

1 point difference in scoring for novice raters, and expert input on the scoring did not reduce 

this difference. Such variability lowers the power of studies that use manual assessment 

methods. However, subjectivity can be mitigated to an extent by adopting good laboratory 

practices with standardized protocols and properly training staff. Such training lowered the 

variability of a manual clinical movement test, the Fugl-Meyer23, in people with stroke.

Automated Tasks

Innovations in the behavioral neuroscience community have led to the development of many 

types of automated tasks to test forelimb function. Several factors drive this innovation. 

Computing power and operator expertise have improved tremendously in recent decades 

along with a drop in prices of the devices. In addition, sensors, including cameras and 

microcontrollers (like Arduinos), are also becoming cheaper and easier to use. Finally, 

innovations in computer vision and machine learning algorithms have enabled the automated 

detection of movements. In this section, we point out how automated approach to some 

currently available manual tests and some newly invented ones may allow more precise 

measurement of impairments as well as save time and money in the long run.

Advantages of Automated Tasks

All tests of forelimb function require training, testing, and analysis. Automation has 

attempted to decrease human participation and increase objectivity and quantification of 

each of these components.

a) Automated training—Training animals involves habituating to the environment, 

teaching the task, baiting with food rewards, and shaping out unwanted movements during 

execution of the task. In order to illustrate how automation can help with these complex 
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steps, we will discuss an automated system that was specifically developed for the SPRT. 

Training in the traditional manual version of SPRT task involves placing animals in the 

reaching box and encouraging them to reach and grasp the pellets through an aperture. The 

most common outcome measure is the percentage of pellets successfully retrieved.

Baiting the animals to reach towards pellets in the SPRT task can be done with an automated 

dispenser. One research group has developed an Automatic Pellet Presenting (APP) system 

that places food rewards on the left or right of the aperture to the reaching box8. The APP is 

only initiated when the rodent breaks an infrared beam fixed at the back of the box; this 

forces the animal to go to the back of cage after each attempt thereby allowing a reset 

between trials. Automating the baiting of the task enables more trials, and this leads to faster 

acquisition of the task. It typically takes 3 weeks to train animals to proficiency using a 

traditional training paradigm of 25-trial session per day. Using the APP, training only took 

about 3 days. The rats were trained up to 250 trials each day, resulting in a rapid attainment 

of peak performance. The large number of trials is difficult to achieve and maintain using 

manual methods.

A similar automated reward presentation has also been implemented in a rodent version of 

the center-out reaching task that is frequently used in human and primate experiments24,25. 

However, in the rodent version water droplets are presented in an automated manner to head-

fixed mice26. The main advantage of such automatic reward presentation is that animals 

spontaneously learned to reach and grasp within 3–5 sessions, each lasting around 30 

minutes. In addition, the reward position can also be automated to three separate locations: 

Right, Center or Left, which provides a method to study the effect of target change.

Another benefit of automated training is that it allows standardized training protocols. It is 

difficult for human users to treat every animal the same when training animals with 

traditional methods. Differences in training between trainers or between animals can 

produce variability in task acquisition and performance. Even with standard protocols and 

experimenter training, the skill and even the sex of the human experimenter can affect the 

animals27. Training animals with automated equipment and computer protocols is likely to 

reduce this variability.

One more key feature of automated training is that it can be adapted to performance in real-

time. Adaptive training protocols can be designed to vary difficulty of the task automatically 

based on how animals perform. For instance, when training animals on tasks that require 

them to manipulate a target mounted on a sensor9,28, a computer algorithm can adjust the 

criterion for task success based on the animals’ performance. The software computes the 

success rate of the 10 most recent trials and automatically either increases or decreases the 

difficulty of the task. Adaptive algorithms can be developed to enable training with a failure 

rate optimized for learning, decreasing training time29. The reward criterion for a task can be 

adjusted to push animals to their peak performance. From the rehabilitation perspective, 

varying the difficulty of the task allows optimally challenging subjects to keep them engaged 

in task for better learning30 and to better match the complexity with skill level of the 

performer31 than if the task difficulty is the same for all subjects.
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b) Automated testing—Adaptive algorithms can also measure task performance more 

accurately and faster than tests that apply the same task difficulty for each trial32. Although 

adaptive testing can be done with manual tasks, this procedure can be implemented more 

easily with automated tasks driven by computer algorithms. In human motor performance, 

peak performance is usually more informative than performance of a task with a static 

difficulty. In addition, adaptive testing allows performance measurement across a larger 

range of ability.

Automated baiting of the SPRT and measurement of the number of pellets left is used to 

quantify success rate of reaching and grasping. The APP system described above has also 

been successfully used for assessment8. A pair of infrared LEDs were used in combination 

with infrared cameras to detect when rats removed a pellet from the tray as well as location 

of rats between trials (Fig. 2). If the rats failed and the pellet dropped off the trays, a 15 

degree ramp allowed dropped pellets to roll toward a camera, which then detected these 

trials as misses using image analysis. All the information from different sensors were fed to 

a computer using custom MATLAB software to compute success rate. Thus, automated 

methods were used to score the success rate of pellet retrieval, obviating the need for hand 

scoring. The authors report that they spent more than 50% less time per rat (21 min/rat/week 

vs. 50 mins/rat/week) using the automated setup when compared to manual methods8.

There are a few studies that have attempted to automate the testing of kinematic of reaching 

as well. Most of these studies use computer vision to track the reaching paw33–35. In one of 

the studies, the reaching paw of mice was identified by applying green dye to the forepaw 

and using color contrast analysis to track the reaching movements33. These methods were 

able to extract the tip of the paw, which allowed measurement of reach trajectory, speed, and 

smoothness. In a demonstration of the utility of this approach, the authors provide evidence 

that even though mice spontaneously recovered retrieval of pellets (2 weeks after injury), the 

kinematics of reach showed sustained deficits, even out to 30 days after injury. It should be 

noted that authors found deficits in mice using the cylinder test and the foot fault test 

throughout their testing period. In other words, if the authors were to use the more laborious 

kinematic analyses of the SPRT test, it is possible that they would have arrived at same 

conclusions as they did with other manual tasks. However, automated kinematic analysis 

allows reaching this conclusion quickly and using a single test.

Automated testing has also been implemented in another type of task that require animals to 

reach, grasp, and manipulate an instrumented device, known as a manipulandum. Thus far 

we have discussed tasks where animals reach and grasp food rewards directly with forepaws. 

The main advantage of manipulandum tasks is that they can isolate specific aspects of 

forelimb movement instead of trying to capture an entire reach and grasp sequence. One 

example of such task is the knob supination task (Fig. 3) that was designed to specifically 

measure distal forelimb supination in rodents9,28,36. Supination loss is a relatively specific 

sign of injury to the descending motor circuits37. In addition to being a sensitive sign of 

motor circuit impairment, supination loss strongly correlates with loss of hand function38–40. 

Once animals are trained to supinate, automated testing allows quantifying supination angles 

without any need for human intervention. Animals are automatically rewarded with food 
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pellets when the knob is turned beyond a user-defined threshold. The angle is used to 

compute angular velocity and latency to the peak angle among other metrics.

This task showed significant and lasting deficits in rats after unilateral injury to the 

corticospinal tract9, the most important pathway for voluntary movement, while the SPRT 

did not1. The isometric pull41 and the lever42 tasks are some other examples of 

manipulandum tasks designed to quantify other specific forelimb movements: the pull task 

measures the grip strength and the lever task is used to quantify pressing movement that 

must be repeated quickly respectively. Besides the specificity offered by these types of tasks, 

another benefit of this type of task is that they can to be very sensitive. This is due to the 

sensors that detect forelimb movements which can keep track of subtle changes with a high 

sampling rate. For example, the knob task can measure angle changes as small as 1/4 of a 

degree, and position is sampled at 100Hz9,28,36. The ability to measure movements at such 

high resolution is a theoretical advantage at this time due to lack of head-to-head 

comparisons with manual assessment of movement kinetics.

Another innovation in automated systems is integration of the devices into the home cage. 

These allow training and testing of rodents in the same cage in which they are housed. An 

advantage with home cage based tasks is that animals can engage continuously in the task, 

allowing quicker habituation and learning. Objective assessments can also be done 

continuously, which provides a much richer data set about motor learning. All of this can be 

done without human intervention or movement to a testing apparatus. Such conditions limit 

human interaction and enable standardized protocols within and between laboratories.

The SPRT has been modified into a home cage system. One such iteration, shown in Fig. 4, 

consists of three main parts: an automated pellet presenting (APP) system, a barrier 

mechanism to limit access to the pellet presenting platform based on location of the rat; and 

sensors that detect the location of the rats. This system allows for automation at three levels: 

tracking of animals undergoing training; placing pellets in front of the animals; and the 

barrier mechanism, which helps reset individual trials by ensuring animals move to the back 

of the cage between reaches. The authors report that the home cage system was very 

efficient at training and testing animals; home cage trained rats were proficient at task by 5–

6 days compared to more than 11 days with a manual approach43.

Joystick tasks have also been implemented into home cage systems. Joystick tasks are useful 

because they can track forelimb movements with multiple degrees of freedom, and they can 

also measure movements with high precision10,44,45. A joystick is part of a home cage 

system called the automated rodent training system (ARTS)10. The software controlling the 

system can control multiple home cages simultaneously and independently, using protocols 

specified by the user. While designed to control a joystick, the authors designed the software 

to be flexible to run different types of behavior tasks, by writing custom scripts. The 

capability of automated training and the flexibility to add new behavior tasks makes this 

system highly modular. However, the authors have yet to add new tasks to take advantage of 

this modular system, and this should be prioritized in future iterations of the task.
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c) Automated analysis—Automation can also help in making data analysis step more 

robust and efficient. The analyzing data from manual behavior tasks typically involves 

scoring video recordings after they have been recorded and making judgements about the 

quality of performance. Many of these steps can be implemented with automated methods. 

There have been attempts to develop automated analysis using computer vision for reaching 

and sensor data for tasks involving a manipulandum as well.

Some of the best examples of automated analysis come from automated kinematic data 

analysis in the SPRT. To quantify of the reaching kinematics, a few groups use computer 

vision to extract kinematics33–35,46–48. In one such approach, motion tracking was 

performed by computer vision through machine learning algorithms46. Instead of relying on 

models of rodents reaching and grasping manipulandum, this method uses a data set from an 

advanced human pose estimation algorithm called DeeperCut. This tracking system can 

accurately predict the location of different components of the forelimb, including individual 

digits. Remarkably, this system reaches a level of accuracy in tracking these body parts that 

is similar to humans, and using only a small number (141) of labeled frames. There are 

several advantages of using this particular machine learning approach. First, it does not 

require building a model of the reaching limb in order to accurately track the position. Also, 

the approach does not require that markers be placed on the limb, which is less invasive for 

the animals and easier for the experimenter. In addition, only a small amount of data was 

needed to train the system accurately, making this method easy to adopt.

A different model-based approach that does require a model was adopted by another group 

to study reaching34. In this study, video recordings were used to generate a model of the rat 

paw, an approach adopted by others as well33–35. Rats are video recorded performing single 

pellet reaching from the front and the side, and the images synchronized and combined34. 

These video images are then compared to a 3D model of the paw to estimate the pose. This 

analysis enables correlation of forelimb impairments with specific aspect of reaching. This 

analysis allows the determination of movements about multiple joints meaningful to 

patients, like multi-joint coordination. This would not be possible without a highly 

quantitative automated method. Despite advanced computer vision based approach, this 

group uses data from only one animal and such, this approach has not been widely adopted 

perhaps owing to complex image processing and automation requirements.

One of the repercussions of collecting data with highly quantitative tools is the large amount 

of data generated. Analysis methods are being developed to translate voluminous data into 

sensible outcomes. Dexterity49 is one example of such software, developed in conjunction 

with the knob supination task. Dexterity is MATLAB-based software that is capable of 

handling large data sets and quickly visualize or prepare the data sets for more complex 

analysis. This is made possible by a Graphical User Interface as shown in Fig. 5 (A-E) 

which is designed to be used by even those investigators without advanced MATLAB or 

computer programming skills. Another main advantage of Dexterity is that even though it 

was developed for the knob supination task, it can analyze many different types of data, both 

automated and manual. For example, it has been used to analyze the automated pull task as 

well as manual tasks like pasta manipulation, as shown in Fig. 5 (F).
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Disadvantages of Automated Tests

The most significant downside of adopting automated tasks is the loss of human observation 

during behavior training and analysis. The role of observation is particularly important for 

behavior because unexpected changes are often found. For example, many improvements in 

function in human50 and animal models1 after injury are related to trunk adjustments and 

automated tasks are specifically designed only to measure paw or wrist movements. These 

changes are likely to be picked up by a skilled observer, but may go unrecognized with 

automated methods.

High initial set-up cost is another challenge faced by groups adopting automated tasks. The 

equipment and material required to set up automated systems can be costly compared to 

manual methods. For example, the knob supination devices are currently priced at $3,500 

per device. Given the high-throughput design of these tasks, it’s not unusual to use several of 

these devices in a laboratory. Although the long-term savings in personnel more than offset 

high equipment cost, the initial investment is considerable. The amount of time required to 

train the animals to proficiency can become a potential downside when using automated 

devices as well, particularly manipulandum tasks. The main motivation for studying skilled 

forelimb movements in rodent models is to better understand movement and its neural 

control. Therefore, it is not surprising that we model human centric behavior in the rodents 

like reach and grasp. Training the rodents to perform unnatural movements like reaching to 

grasp a knob can be challenging and time-consuming. Training rodents with automated 

methods can compound this difficulty, since the food reward is not the target of reach. In 

addition, a human trainer can provide helpful motivation or novelty to a task.

Another downside of adopting automated tasks is the need for dedicated technical and 

financial resources to maintain and debug such system. Automated systems are often built 

with sophisticated hardware and software, and malfunction of these components is 

unavoidable. In order to maintain uninterrupted operation in labs, there has to be either a 

technical expert available on-site to deal with such events or pay fees to companies that 

manufacture these devices and software.

Future Promise

Automated tasks of the future must build on the current advantages of the systems. While 

current automated devices measure specific movements with high fidelity, the forelimb has 

enormous behavioral flexibility, and measurement of even a complicated reach and grasp 

movement tests only a small portion of the large repertoire. Future automated tasks should 

incorporate interchangeable modules that can test multiple aspects of forelimb movements. 

Another advantage in some of the available automated systems is that they allow training 

and testing in the home cage. The next generation of automated tasks must strive towards 

systems that can be incorporated into standard cages easily and affordably. Home cage based 

systems should also track multiple animals simultaneously to enable social housing. 

Modular systems should also be compatible with enriched or more natural environments. 

Finally, future systems should enable testing of natural rodent behaviors—eating, grooming, 

and exploration—to determine how these behaviors are controlled in health and disease.
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Another important priority is to limit the disadvantages in current automated tasks. Most 

automated tasks use custom-written complex software that can be difficult to adopt and to 

modify. Similarly, current tasks often rely on custom built robotic platforms and machinery. 

Reliance on customized software and hardware necessitates ongoing support of the makers, 

or local expertise to troubleshoot and maintain the complex automated devices. This adds 

ongoing expense to the high startup costs. Use of simple user interfaces, such as voice 

activation and touch screens, could make the operation simple and fast. In addition, with 

sensors now being developed for mass markets, using these components and the control 

software can simplify devices and make them more affordable. Designing the automated 

tasks of the future will require using the power of sophisticated technologies like computer 

vision and modular robots, but with the methods that are easy to implement and to scale.

Finally, future automated tasks should use artificial intelligence to continuously improve the 

systems. One of the current advantages of using automated tasks is the use of computer 

algorithms that adapt to performance. These algorithms need to be optimized empirically 

and also need to be updated according to the need of the experiment. For example, the 

algorithm to optimize training will be different than the algorithm to measure performance. 

The algorithms may also differ by the type of task, species or strain of rodent, and type of 

intervention. An intelligent system can also partially address the lack of human observation 

during automated tasks. Specifically, behavior that is observed to be outside the norms of the 

system could trigger an alert about forelimb performance or compensatory movements of the 

body, for example. We imagine that such integrated system will utilize computer vision to 

detect and alert users at desired time intervals for feedback. We also envision a smart 

automated system that learns from such human feedback when problems arise and can 

suggest steps to solve such problems based on previous feedback. Further, intelligent 

systems could compare studies in multiple labs to ensure that data is generated in the same 

way. Having such automated method to validate data will also encourage wider adoption of 

these tasks. These systems may, therefore, deepen our understanding of forelimb function 

through methods that ensure high rigor and reproducibility.
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Figure 1. 
Manual rodent tasks. A) An experimenter baits the single pellet reaching task. B) Two 

experimenters run the horizontal ladder task. C) The vermicelli handling task requires an 

experimenter to actively bait and video record the behavior. Figure B and C are courtesy of 

JoVE.
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Figure 2: 
Automated single pellet reaching task. A) Schematic of rat pellet reaching box is shown with 

IR LEDs and detectors along with camera to detect fallen pellets. B) Side view of the same 

reaching box as in (A) is shown with a rat inside the box interacting with pellets. Also 

shown is another set of IR LEDs and detectors that helps locate animal position inside the 

box. (Courtesy: Elsevier)
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Figure 3: 
The knob supination task. (A) The knob supination device. (B) The software user interface. 

(C) Turn profile from a single 30-minute session. (D) A rat performing a task. (D1) A rat 

reaches toward the knob, (D2) grasps it with a precision grip and, (D3) turns it in supination. 

(Courtesy: Sage Publications).
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Figure 4: 
Home cage based system. Automated training, testing and analysis of forelimb reaching task 

is achieved by connecting home cage to task enclosure that is coupled with automated pellet 

presenting (APP) robot. (Courtesy: Elsevier)
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Figure 5. 
Dexterity software. (A) A user can select between three options: “Standard” “Custom,” and 

“Previous.” If the user selects “Standard”, the user will (B) load in their data, and Dexterity 

will prompt the user to provide the directory where files are located and (C) select subjects. 

(D) It will then step through each file and prompt the user to keep or discard files with 

incomplete or no data. (E) If the user chooses, they can annotate their experiment now or 

later. (F) Dexterity identifies which task it is analyzing, (G) utilizes the appropriate file 

reading MATLAB function, (H) analyzes that task, and then (I) creates a Master File with all 

of the processed data organized by subject.
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Table 1:

Comparison of Automated and Manual Forelimb Tasks.

Parameters Manual Automated Tasks

Time Commitment (Training and Testing) Train: ++
Test: +++

Train: +
Test: +

Time Commitment (Analysis) Analysis: +++ Analysis: ++ (initial) / + (subsequent)

Objectivity Low High

Sensitivity Low High

Kinematics Qualitative Quantitative (not always)

Repertoire (range of captured mvmts) Full Range Full Range

Ease of Use Initial: +++
Ongoing: +++

Initial: +
Ongoing: ++

Overall Cost (Hardware/Software) Equipment: $
Labor: $$$

Equipment: $$/$$$
Labor: $

Note: this analysis is relative and may change over time for both automated and manual methods.
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