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Learning outside the box
Raviv Pryluka and Rony Paza,1

Learning a new skill, whether it is riding a bicycle or
playing chess, usually requires at least several days of
practice if not much more. Due to experimental
limitations, however, most neuroscience studies that
attempt to unveil the neural representations of skill
learning explore tasks that can be learned within much
shorter time scales, a few hours at most. Therefore, the
neural substrates of long-term learning remain poorly
understood. An intriguing important question is why
some tasks can be learned within hours, whereas other
tasks require longer-term practice. Oby et al. (1) tackle
this challenge by using a brain−computer interface
(BCI) approach combined with chronic neural record-
ings. Although, originally, BCI was used to demon-
strate the feasibility of designing neural prostheses
(2, 3), a clever exploitation of this technique can help
to discover properties of the neural code and how it
changes during learning. In this study, they show that
new patterns of neural activity emerge with long-term
learning—patterns that were not previously observed
in the neural population they measured. Some of
these new patterns enable the longer-term learning.

A common paradigm to study motor control is the
arm reaching paradigm in which primates move a
manipulandum to control the location of a cursor on
the screen, while neurons are recorded in motor re-
gions of the brain. Although this paradigm has led to
many successful discoveries about how neurons rep-
resent directional movements and new motor skills (4,
5), it remains unclear why some skills can be acquired
within minutes or hours, whereas other skills require a
much lengthier learning process that lasts days or
weeks. A BCI paradigm, as used here, is one that di-
rectly links the changes in themonkey brain, namely the
patterns of neural activity, with the desired outcome—
the moving of a cursor to a desired location, in this
particular case (Fig. 1A). In general, it allows defining
a specificmapping function between neural activity and
behavior so that it addresses the question at hand.
Here, the main goal is to ask which mapping functions
are easier or harder to learn, and, as a result, one can
determine which neural patterns can be attained faster

and drive learning, and which require more practice and
emerge later.

The BCI is fed with real-time activity of∼90 neurons
recorded in the arm region of the primary motor cor-
tex, a region that is known to show directional- and
velocity-related responses during movement genera-
tion. This means that, in each time point, the com-
bined activity is actually a vector in a 90-dimensional
(90D) space. By using a dimensionality reduction tech-
nique, Oby et al. (1) first noticed that a much lower
number of dimensions (10D) is sufficient to explain the
observed neural patterns. This relatively low number
of dimensions was chosen such that it explains most of
the variance in the 90D neural patterns that occur dur-
ing movement (more than 95%). The fact that 10 out of
90 dimensions explain so much already hints that the
actual neural code potentially lies in a low-dimensional
space, termed a manifold, or an intrinsic manifold (IM).
Importantly, it also makes it possible to map the neural
activity into the 2D movement of the cursor, so that, for
example, if the neural activity resides in the left part of
this manifold, the cursor will move left, and, if it resides
in the right side, it will move right. In the real experi-
ment, the mapping was a bit more complex between
the 10D vector and 2D cursor velocity, yet the concept
is similar (Fig. 1 A and B).

Using this sophisticated approach, this group has
previously shown that short-term learning can be
achieved when the mapping is constrained to a
“within-manifold perturbation” (WMP; Fig. 1C) (6).
When the animals are required to learn by using pat-
terns of neural activity which lie on this low-
dimensional manifold of neural patterns that were
characterized prelearning, they can do so reasonably
over a few continuous hours within 1 d. Moreover, it
was shown that changes in population activity after
such short-term learning followed a strategy they term
“reassociation” (Fig. 1C). This strategy uses the exist-
ing repertoire of activity patterns, yet associates them
differently with movements after learning (7). As a sim-
plified example, if patterns A, B, C, and D occurred
during movement before learning (dots on the
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manifold in Fig. 1B), where A and Bmoved the cursor leftward and
C and D moved it rightward, the monkey could learn to produce
(reassociate) A, C to move leftward and B, D to move rightward,
when such mapping was imposed (e.g., dots in Fig. 1C).

In contrast to WMP, “outside-manifold perturbations” (OMP;
Fig. 1D) are not well learned within a single day (6). OMP means
that the monkeys’ neurons are required to generate patterns of
activity that are novel and were not observed before (or observed
only rarely, e.g., patterns E, F). Oby et al. (1) leverage this to
induce long-term learning and to study its neural mechanism.
They waited patiently to allow the monkeys to train day after
day, a real “tour de force” in such hard monkey experiments,
where most studies stop after a few days if no learning occurs.
When they noticed that learning was still too hard, they cleverly
facilitated it by using an incremental training strategy (8). This
indeed allowed learning to proceed with gradual improvements
from day to day, albeit with dips and rebounds in the performance
that likely reflect the difficulty of acquiring the new skill. Impor-
tantly, the chronic recordings of the same neurons across days
enabled detection of new activity patterns that did not exist be-
fore learning. The evidence is clear. First, the number of emerging
new patterns is correlated with the progress in learning perfor-
mance, and second, there are 2 types of new patterns: (i) patterns
that reside on the outside-manifold they imposed; and (ii) patterns
that reside on the IM but that can contribute to the new mapping.

Together, the results nicely show that the brain can learn to
generate new activity patterns to achieve the desired goal, but it
requires more time if these patterns are very different from the
patterns that already existed and were used before learning
started (9). This provides a simple intuition and potential explana-
tion why some tasks are harder to learn and take more practice
time—because the brain is required to learn to produce new pat-
terns of neural activity. Moreover, it is not only new patterns but
new patterns that are outside of the IM, meaning that formerly
inactive neurons become activated. In future studies, it might be
important to expand and understand more precisely the contri-
bution of completely new patterns and the contribution by

reassignment of old patterns (similar to the reassociation they
previously showed).

As an analogy to the finding, someone who is an experienced
surfer will likely easily learn to snowboard, yet it would require
much more time to learn to play soccer well. This is despite the
fact that all 3 activities require mainly mid-to-lower body motor
skills, and because they require different muscle and joint
combinations which are somewhat more similar for snowboard
and wave surfing than for soccer. If neural activity in primary motor
cortex is related to generation of muscle−joint combinations, and
not only to direction of movement and its velocity, then perhaps
the manifold identified before learning (but after substantial train-
ing on the 2D task) relates to similar movement on 2 dimensions,
and therefore new mapping that is based on WMP mainly means
mapping of velocity and direction, namely, activating the same
muscle−joint pairs but in different combinations of intensity. This
might resemble more motor “adaptation,” either a visuomotor or
a force-field one, and might be identical to swimming in water
with different viscosities/densities, or running with or against the
wind. In contrast, a mapping that requires OMP patterns might be
more similar to the performance of new joint−muscle activations
that were rarely performed before, as if learning a totally new
motor skill.

Here, the space of neural activity patterns was defined during
same-task performance; this is, of course, a clever approach that
likely helped obtain the current results. It also raises the question
of what would happen if they characterized the baseline activity
and used it to define the IM. Would it be a much more complex
one, i.e., requiring many more dimensions to reach 95%
explained variance? If so, would it mean that OMP would be
even harder to learn, as new patterns would have to come from an
even less likely repertoire? Alternatively, it could well be that
baseline ongoing activity characterizes network states and that
stimulus- or movement-evoked patterns are a subset of these
patterns (10). In this case, identifying the IM would allow design-
ing a richer set of tasks that lie on the WMP and can be learned
relatively fast.
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Fig. 1. Long-term learning requires emergence of new neural patterns: a BCI approach. (A) Schematic of the BCI paradigm: Monkeys controlled a
cursor (yellow) to acquire 1 (cyan) of 8 possible (gray) targets by modulating their own neural activity. The activity of ∼90 neurons in the motor
cortex is recorded, and this 90D activity space is reduced into a 10D IM by a dimensionality reduction technique, and then mapped to 2D cursor
velocity. (B) A simplified conceptual schematic of observed−recorded neural activity patterns (dots). The neural activity tends to lie in a low-
dimensional subspace, termed the IM (gray plane). Monkeys move the BCI cursor by volitionally modulating their neural activity. Initially, cursor
velocities were determined by the previously observed patterns (termed “intuitive”mapping, black arrow). Here, green patterns would result in
cursor movement to the right, and purple patterns would result in left movement. (C) To induce short-term learning, WMP mapping is imposed.
Under the WMP, neural activity patterns map to different cursor velocities than under the intuitive mapping. This encourages the monkeys to
learn, and it was shown that they can do so within a few hours, mainly by reassociation of existing patterns to different outcome results, i.e.,
directional cursor movement. (D) The same as in C, but for OMP. This entailed much longer learning, lasting several days, and resulted in
emergence of new activity patterns that were not observed before. (E) TM is a manifold that bounds all of the activity patterns observed during a
specific task. However, it is highly likely that there is a GM, which bounds this specific TM as well as other TMs for different tasks. Such a GMwould
be constrained by the efficiency and robustness of the neural code, determined by network interactions and architecture. How to unveil this GM
is a future goal that would yield important insights on how the brain enables as well as constraints adaptive as well as maladaptive behaviors.

Pryluk and Paz PNAS | July 30, 2019 | vol. 116 | no. 31 | 15317



More broadly, we suggest that, aside from manifolds for
specific tasks, either in short-term or long-term learning (task
manifold [TM]; Fig. 1E), there is likely a global manifold (GM) that
bounds all possible (real) combinations of neural activity and
therefore includes also all of the possible TMs (Fig. 1E). In the
motor world, this can be analogous to the possible combinations
of movements—the degrees of freedom allowed by our muscles
and joints—and include all possible movement combinations
even if never performed before by a specific individual. Even
more broadly, is there a GM that is similar across brain regions
and modalities? If such a GM has a defined structure, it would
identify what can or cannot be learned in principle, and,

importantly, what tasks are easier to transfer (generalize) and aid
learning of other tasks. Although such questions were addressed
across modalities (11, 12), and even using BCI (13), the identifica-
tion of a common structure for such a manifold is still an important
goal for brain research, and the question of whether it is similar
across modalities, cognitive functions, and brain regions remains
open. Such a GM would be dependent on many factors, develop
across evolution and across development (Fig. 1E), and rely on
network architecture and connectivity that vary across species and
regions (14). A BCI approach as used here can help tremendously in
probing such questions directly, as well as in aiding the design of
neural prostheses for different tasks, motor and cognitive.

1 E. R. Oby et al., New neural activity patterns emerge with long-term learning. Proc. Natl. Acad. Sci. U.S.A. 116, 15210–15215 (2019).
2 D. M. Taylor, S. I. Tillery, A. B. Schwartz, Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002).
3 L. R. Hochberg et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).
4 R. Paz, T. Boraud, C. Natan, H. Bergman, E. Vaadia, Preparatory activity in motor cortex reflects learning of local visuomotor skills. Nat. Neurosci. 6, 882–890
(2003).

5 C. S. Li, C. Padoa-Schioppa, E. Bizzi, Neuronal correlates of motor performance andmotor learning in the primary motor cortex of monkeys adapting to an external
force field. Neuron 30, 593–607 (2001).

6 P. T. Sadtler et al., Neural constraints on learning. Nature 512, 423–426 (2014).
7 M. D. Golub et al., Learning by neural reassociation. Nat. Neurosci. 21, 607–616 (2018).
8 B. A. Linkenhoker, E. I. Knudsen, Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 419, 293–296 (2002).
9 K. Ganguly, D. F. Dimitrov, J. D. Wallis, J. M. Carmena, Reversible large-scale modification of cortical networks during neuroprosthetic control. Nat. Neurosci.
14, 662–667 (2011).

10 M. Tsodyks, T. Kenet, A. Grinvald, A. Arieli, Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286, 1943–
1946 (1999).

11 T. Poggio, E. Bizzi, Generalization in vision and motor control. Nature 431, 768–774 (2004).
12 R. Paz, S. P. Wise, E. Vaadia, Viewing and doing: Similar cortical mechanisms for perceptual and motor learning. Trends Neurosci. 27, 496–503 (2004).
13 A. C. Koralek, X. Jin, J. D. Long, 2nd, R. M. Costa, J. M. Carmena, Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature

483, 331–335 (2012).
14 R. Pryluk, Y. Kfir, H. Gelbard-Sagiv, I. Fried, R. Paz, A tradeoff in the neural code across regions and species. Cell 176, 597–609.e18 (2019).

15318 | www.pnas.org/cgi/doi/10.1073/pnas.1908871116 Pryluk and Paz

https://www.pnas.org/cgi/doi/10.1073/pnas.1908871116

