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Next generation sequencing (NGS) holds potential for improving clinical and public health 

microbiology.1 In addition to identifying pathogens faster and more precisely, high-

throughput technologies and bioinformatics can provide new insights into disease 

transmission, virulence, and antimicrobial resistance. The US public health system is 

integrating pathogen genome sequencing into infectious disease surveillance with support 

from the Advanced Molecular Detection (AMD) program established by Congress at the 

Centers for Disease Control and Prevention (CDC) in 2014.2 Population-level data on 

pathogen genomes in turn supports the development of more precise and efficient clinical 

diagnostics. In time, laboratories may be able to replace many traditional microbiology 

processes with a single workflow that accommodates a wide array of pathogens.3

How Next Generation Sequencing of Pathogens Works

NGS is a versatile technology, broadly applicable to viruses, bacteria, fungi, parasites, 

animal vectors, and human hosts. Choosing among available methods depends on 

sequencing objectives and involves tradeoffs in accuracy, efficiency and cost.4 For routine 

sequencing, most US clinical and public health microbiology laboratories use short-read 

sequencing platforms (such as Illumina MiSeq, San Diego, CA), which produce sequence 

fragments up to 1000 base-pairs long.. Although microbial genomes are generally smaller 

and less complex than human genomes, long-read sequencing technologies (such as single-

molecule real-time (SMRT) sequencing, Pacific Biosciences, Menlo Park, CA) are useful for 

constructing complete, highly accurate genomes and sorting out plasmids, repeats, and other 

complex regions.

A different approach, nanopore sequencing, relies on threading individual DNA or RNA 

molecules through engineered protein nanopores and monitoring the electric current across 
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each pore. The first such commercially available instrument, the MinION (Oxford 

Nanopore, Oxford, UK), offers relatively long sequence reads and allows data analysis to 

begin while sequencing is still in progress.Early limitations in throughput and accuracy have 

been mitigated by continued improvements in hardware and reagents. Because of device 

portability, fast sample preparation, flexibility, and relatively low cost, nanopore sequencing 

is becoming a feasible first-line strategy for pathogen sequencing in clinical and public 

health settings.4,5

The transformation of raw sequence data into actionable information is complex and 

computationally intensive (Figure). The first step is typically to assemble shorter fragments 

into a complete sequence, either by mapping against a known reference genome or by 

assembling the sequence de novo using overlapping reads. Comparing the assembled 

genome with reference strains facilitates many different inferences, such as pathogen 

identification, high-resolution strain typing, and prediction of important phenotypic 

characteristics (e.g., virulence, antimicrobial resistance). Well-curated and up-to-date 

reference databases are crucially important because microbial pathogens evolve rapidly and 

bacteria can exchange plasmids—often encoding virulence and antimicrobial resistance 

traits—across strains and species.. Assembled genomes can be compared with others to look 

for phylogenetic clustering as evidence of transmission. Each step—assembly, strain typing, 

phenotyping, and clustering—requires different bioinformatics tools that must be 

harmonized into a consistent workflow.4,5

Important Practice Considerations

In public health, NGS offers crucial advantages for surveillance and outbreak investigation 

in terms of speed and resolution of sequence differences.1 For example, the transition to 

NGS from an older molecular method (pulsed-field gel electrophoresis, PFGE) is well 

underway in PulseNet, the foodborne disease surveillance system maintained by CDC and 

its public health partners. PulseNet is now able to detect outbreaks earlier, to distinguish 

clusters of related cases more accurately, and to link illnesses to potential contaminated food 

sources more quickly.4

Integrating pathogen genomics with epidemiology is enhancing public health efforts to 

prevent transmission of communicable diseases, such as tuberculosis (TB).6 Genotyping TB 

isolates can corroborate transmission inferred from contact investigations or suggest 

connections among apparently unrelated cases, helping health departments to better focus 

their resources. NGS has the potential to yield information on likely anti-mycobacterial drug 

susceptibility more quickly than conventional testing, enabling more specific and timely 

treatment.7

NGS data are amenable to standardization and sharing, important advantages for global 

health partnerships like the World Health Organization’s (WHO) influenza surveillance 

system. An open, “sequencing first” approach can help produce timely and accurate data for 

selection of candidate influenza vaccines, quickly identifying prevalent variants while 

monitoring the dynamics of co-circulating viral populations.1
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NGS also offers advantages for challenging field investigations. In one example, a research 

team from the United Kingdom packed a nanopore sequencing laboratory into standard 

luggage for transport to Guinea during the 2015 Ebola outbreak.8 During an 8-month period, 

they sequenced 142 Ebola virus genomes on site, usually within one working day; data were 

transmitted to the cloud for analysis and results returned the next day. Despite significant 

logistical challenges, including unreliable electrical power and internet service, the team 

provided actionable information for epidemic response without exporting samples from the 

country. The Figure describes an example of how these data helped inform outbreak control 

strategy.

US public health laboratories, with support from the AMD program, are rapidly adopting 

NGS for surveillance and investigation of foodborne disease, TB, hepatitis C, Legionella, 

and other pathogens.2 Nevertheless, the transition from research to routine public health and 

clinical use faces substantial challenges.4 At the laboratory level, these include 

infrastructure, workforce development, efficiency and cost. At a broader, systemic level, 

substantial efforts are needed to develop standard protocols, proficiency-testing programs, 

professional guidelines, and regulatory requirements.3,9

Value

Compared with conventional methods, NGS increases speed, accuracy, and detail, but also 

increases cost. For example, a CDC analysis (unpublished data) estimated that NGS cost 

approximately $150–200 per bacterial isolate, compared with $94 for PFGE. Consolidating 

workflows for multiple pathogens may improve laboratory efficiency and help offset this 

cost; however, the transition to NGS also entails significant up-front investment in laboratory 

equipment, computer resources, and training. Much more information will be needed to 

evaluate the value of NGS technologies for microbiology at patient, programmatic, and 

societal levels.

Evidence

Evidence-based guidelines exist for only a few specific, clinical uses of pathogen sequence 

data, for example, in selecting antiretroviral treatment for HIV infection (SORT evidence 

level A). Informative sequences from bacterial, viral, fungal, and parasite genomes are the 

basis for many new, nucleic acid-based diagnostic tests, including “point-of-care” tests that 

bypass the microbiology laboratory completely. As multiplex panels for syndromic 

diagnosis (e.g., for diarrhea) become more widely used, systematic efforts are needed to 

assess their clinical validity and utility, as well as their effect on laboratory-based public 

health surveillance.

Bottom Line

NGS is transforming the public health approach to infectious diseases, as well as the 

treatment of individual patients. Better coordination in establishing quality standards, 

reporting, and interpretation of NGS data could make these efforts synergistic. 9
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Brief glossary of terms in pathogen genome sequencing

High-throughput sequencing
Also called “next generation sequencing,” since the mid-2000’s has largely replaced Sanger 

sequencing; generally divided into short-read (<500- to 1000-base read lengths) and long-

read (>1000-base read lengths) technologies, although there is no distinct cut-off.

Read length
The number of bases in a continuous sequence fragment; longer read-lengths improve the 

ease and accuracy of genome assembly.

Coverage (read depth)
The average number of reads that include a given nucleotide in the reconstructed sequence.

Assembly
Organizing overlapping reads into longer sequences, up to and including full-length 

genomes.

Strain typing
Distinguishing among different variants of the same bacterial or viral species.

Phenotyping
Characterizing microbial biological properties, such as virulence or antimicrobial resistance.

Clustering
Phylogenetic analysis of sequence differences to assess relatedness, used in combination 

with epidemiologic data to infer transmission.
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Figure : 
[Slide 1] Workflow transforming pathogen genome sequence data into actionable 

information.

[Slide 2, legend indicating data sources.]

[Slide 3] Example: Use of nanopore sequencing to distinguish among possible routes of 

Ebola virus transmission.
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