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Abstract

Polylactic acid (PLA) is the most commonly used biodegradable polymer in clinical applications 

today. Examples range from drug delivery systems, tissue engineering, temporary and long-term 

implantable devices; constantly expanding to new fields. This is owed greatly to the polymer's 

favorable biocompatibility and to its safe degradation products. Once coming in contact with 

biological media, the polymer begins breaking down, usually by hydrolysis, into lactic acid (LA) 

or to carbon dioxide and water. These products are metabolized intracellularly or excreted in the 

urine and breath. Bacterial infection and foreign-body inflammation enhance the breakdown of 

PLA, through the secretion of enzymes that degrade the polymeric matrix.

The biodegradation occurs both on the surface of the polymeric device and inside the polymer 

body, by diffusion of water between the polymer chains.

The median half-life of the polymer is 30 weeks; however, this can be lengthened or shortened to 

address the clinical needs. Degradation kinetics can be tuned by determining the molecular 

composition and the physical architecture of the device. Using L- or D- chirality of the LA will 

greatly slow or lengthen the degradation rates, respectively.

Despite the fact that this polymer is more than 150 years old, PLA remains a fertile platform for 

biomedical innovation and fundamental understanding of how artificial polymers can safely 

coexist with biological systems.
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Introduction

Polymers are probably the most important and widely used class of materials that 

contributed to the industrial revolution. The ability to tailor a polymer's mechanical 

properties and bio-degradation kinetics, made these materials extremely appealing for 

biomedical applications [1–7].

Lactic acid (LA) is a naturally-occurring compound, which is the precursor of downstream 

metabolic product of pyruvate, through the Cori cycle [8, 9]. LA can also be manufactured 

synthetically in large scale by the fermentation of corn, beets and carbohydrates from other 

crops [10]. The monomeric form of LA is approved by the regulatory agencies as a food 

additive [11].

Polylactic acid (PLA), was first synthesized by the French chemist Theophile-Jules Pelouze 

in 1845, through the poly-condensation of LA into low molecular weight PLA, ranging from 

800-5,000 g/mol [12]. Later, DuPont's chemist Wallace Hume Carothers, inventor of nylon, 

improved the production process, enabling to increase the average molecular weight of the 

polymer to 100,000 g/mol [13]. This improved PLA's mechanical properties, making it a 

promising new candidate to compete with other commercial polymers. However, PLA's 

costly production process hampered broad implementation, narrowing the polymer's use to 

biomedical applications. In 1989, Dr. Patrick R. Gruber invented a low-cost commercial 

process for producing high molecular weight PLA, expanding its use to many additional 

areas, such as agricultural sheets and biodegradable disposable bags [14]. In fact, today PLA 

is the second most traded polymer worldwide [15].

The surge in the biomedical use of PLA is evident even after a brief look at the increasing 

number of publications in the field, averaging above 1,000 research papers per year over the 

past five years (Pubmed; search term: polylactic acid). The impact of PLA is increasingly 

growing as new modes for tailoring the polymer's properties to address different biomedical 

needs are being discovered (Figure 1). It is estimated that the biomedical market of PLA is 

expanding by more than 10% annually, making it one of the most important polymers in 

biomedical use [16].

This review focuses on the biocompatibility of PLA with special attention to the 

biodegradation and bio-elimination this class of polymers has inside the body.

Permanent and temporary biomedical systems

Biomedical systems can be divided into two groups: permanent and temporary [17–20]. For 

example, we would want an artificial knee to be non-degradable and permanent, so that the 

patient would not need to undergo replacement surgeries every decade [21]. Contrarily, 

sutures, should ultimately degrade after the sewed tissue heals and regains sufficient physical 

strength to support itself [22–24]. In another example, in the past, when orthopedic surgeons 

used screws during repair processes these were permanent, displacing any bone that could 

have grown back over time [1, 25–29]. New materials, such as PLA, have transient 

properties, starting strong and supportive, and degrading over time to give space to newly 
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grown bone to take over the space the device took in the body [30]. Table 1 summarizes 

different PLA-based devices and their degradation profiles.

PLA Chemistry

Lactide, PLA's primary monomeric building block, can have an L-lactide or D-lactide 

chirality. Selecting L-chirality over D will determine the polymer's biodegradability and 

mechanical properties, as well as if the polymer is semi-crystalline or amorphous, 

respectively. In general, the D and L/D forms degrade more rapidly than the L form [40–42].

PLA, having L, D or L/D (the former, a blend of both enantiomers) forms are semi-

permeable to water and oxygen, making it even more susceptible to biodegradation 

compared to other biomedical polymers [16, 43]. Increasing the porosity of the polymer, or 

the surface area-to-volume ratio, will enhance the degradation rate [44]. Moreover, when the 

device is porous, the degradation will occur both on the outer surface and in the inner core of 

the polymer [45].

The biodegradation of PLA

ASTM International Standardization Organization (standard #D-5488-94d) defines 

'biodegradable' as 'capable of undergoing decomposition into carbon dioxide, methane, 

water, inorganic compounds, and biomass' [16].

The primary mechanism by which PLA is degraded inside the body is hydrolysis of the 

ester-bond backbone, Figure 2 [31]. The degradation products can be either monomeric LA 

or oligomers of LA. The hydrolytic degradation is then further catalyzed by the newly-

formed carboxylic groups at the terminal ends of the cleaved PLA chains [32].

Degradation occurs on the surface of the polymer and inside the polymer bulk, creating LA 

monomers and oligomers [46]. Moreover the diffusion of water into the polymer bulk 

degrades the polymer microstructure through the formation of internal cavities [46]. The 

cleaved monomers will diffuse out of the polymer over time; however, the diffusion of 

hydrolyzing water molecules throughout the polymer is far more rapid.

The degradation of PLA is greatly dependent on pH and temperature [33, 47]. Xu and co-

workers [47] demonstrated that in physiological pH of 7.4 PLA brushes have a degradation 

time of 100 hours, in acidic pH of 3 there was no apparent degradation after 400 hours. They 

also showed that PLA's degradation rate was 4-folds faster in 37°C in comparison to 25°C in 

which full degradation occurred after 400 hours. Increasing the temperature further to 60°C 

resulted in an even faster degradation, reaching full degradation after less than 10 hours. The 

effect of pH on the degradation time can be utilized in order to tailor the half-life of the 

polymer construct towards the target tissue, as different tissues have different pH ranges [48, 

49].

Kulkarni and co-workers [50] measured the degradation kinetics of PLA in biological media. 

They found that the polymer degrades by random scission of the polymer backbone, obeying 
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second-order kinetics, having an activation energy of 11 kcal/mol. Interestingly, they and 

others show that L-PLA degrades in a slower manner compared to the D/L-PLA.

Beck and coworkers showed that the half-life of D/L-PLA microspheres injected 

intramuscularly to rats was 34 weeks [35, 51, 52]. Incorporating other monomers into the 

PLA matrix, increased the degradation rate; reiterating the concept that neat PLA polymer 

has slower degradation compared to di-block polymers.

In another study, Reed and Gilding [33], demonstrated that PLA sutures lose 50% of their 

weight after approx. 14 weeks at pH 7 and 37°C. However, the decline in the suture's tensile 

strength is far more rapid, declining 50% over 6-8 weeks. This indicates that the degradation 

process is not only erosion of the suture's surface, but also internal cleavage of molecular 

bonds inside the suture bulk, without mass loss [31, 53].

Multi-year degradation rates may be less suitable for drug delivery systems. To increase the 

degradation rate, PLA foams were created [45]. These systems have an extremely high 

surface area/polymer weight ratio, as well as large internal volumes into which the drugs are 

loaded. Such systems can release therapeutic doses of the drugs immediately after 

implantation and over several months [9, 54–58].

Enzymatic biodegradation

In 1981 David Franklin Williams discovered the ability to enzymatically degrade PLA into 

LA [59]. Surprisingly, he showed that proteinase K (sourced from Tritirachium album) and 

pronase (sourced from Streptomyces griseus) detached the PLA polymeric matrix at 37 °C. 

Later, it was shown that PLA-depolymerase, a 24 kDa bacterial enzyme, degrades PLA into 

monomeric LA [60, 61]. While such enzymes may be associated with infection, also 

inflammation can catalyze the degradation of PLA. Specifically, when any polymeric object 

is implanted in the body, a foreign body immune response is triggered [36, 62]. Immune 

cells swarm to the site of implantation to detect, quarantine and remove the foreign object 

[63]. These cells, include neutrophils, macrophages and fibroblasts, secrete an array of 

enzymes, such as acid phosphatase and lactate dehydrogenase, which enhance PLA 

degradation [57, 64, 65].

Clinical degradation and excretion of PLA

Stener and coworkers examined 77 patients eight years after being implanted L-PLA screws 

in their tibia and femor during tendon reconstruction [66]. The recovery of the PLA-treated 

group was similar to patients implanted with metal screws. One advantage a biodegradable 

screw grants is the ability to be replaced by endogenous tissue, during the healing and 

reconstruction process [2]. The half-life of L-PLA screws in tissue averages 24 months, 

verses, 12 months of L/D-PLA screws [2].

Facial reconstruction surgeries after trauma also demonstrated excellent tissue compatibility 

[37]. Remnants of the PLA implants (sheets) were found at the surgical site 38-weeks post 

implantation.
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Upon tissue implantation, the PLA polymer is coated by phagocytic cells and a fibrous 

capsule, denoting a foreign body reaction [36]. A close look at radiolabeled PLA 

degradation products indicated these are secreted from the body, and not retained in any 

primary organ [36]. It is assumed excretion occurs through kidney filtration and urine or as 

carbon dioxide.

Cutright and Hunsuck [23], noticed that the diameter of PLA sutures increased slightly after 

implantation. This is most likely due to the diffusion of water between the polymer chains. 

They noticed the suture is partially degraded one month post implantation, but remnants of 

the suture were found in the tissue nearly two months after the procedure [23].

Polylactic acid in theranostics

The favorable biocompatibility of PLA has been utilized for combined drug delivery systems 

and diagnostics [22, 67]. For example, polymeric micelles (mean size of 20nm) accumulated 

in glioma tumors in mice 24 hr after intravenous administration [68]. To improve tissue-

specific targeting various ligands (such as antibodies and sugars) are conjugated to the 

corona of the particles [69]. Liu and co-workers loaded PLA-based nanoscale micelles with 

the anti-cancer agent paclitaxel, together with the MRI contrast agent Gd and a specific 

cancer marker antibody [70]. In this manner they were able to track the biodistribution and 

targeting capacity of the nanoparticles to H22 (liver cancer) tumors, as well as observe the 

therapeutic response to the treatment. In a similar manner, Yang et al. developed PLA-based 

nanoparticles for siRNA co-delivery together with fluorescent and MRI diagnostic contrast 

agents [71]. These studies emphasize the modularity of PLA; allowing block polymerization 

with other materials such as polyethylene glycol (PEG), or complexation with inorganic 

materials such as iron-oxide and gold nanoparticles [72]. The ability to engineer modular 

theranostic systems of nanoscale dimensions which are safely biodegraded and secreted, 

opened the door to new applications that combine therapy and diagnostics [67, 73–77].

Adverse reactions

In the enormous body of literature, and thousands of clinical reports regarding the use of 

PLA devices since the 1980's, we found only a handful of reports that describe adverse 

effects of PLA in patients.

L-PLA orthopedic implant' complications may occur due to physical damage of the 

instrument or migration within joints [78]. For example, a posterior cruciate ligament 

reconstruction performed on a 16-year-old patient resulted in synovitis due to breakage of an 

L-PLA screw 2 years post implantation, required the removal of the screw fragments. In 

another case, 15 months after an anterior cruciate ligament reconstruction, the patient 

suffered from pain and swelling after the biodegradable screw broke and its head migrated 

intra-articularly. Awareness to the possible screw breakage and performing arthroscopy if 

symptoms arise can enable immediate removal of the damaged implant and minimizing 

further adverse effects [25]. However, these examples are rare, and in general only 0.2% of 

the procedures involved PLA implants present a foreign body reaction [79], as a result from 

the new interaction of the tissue and device at the implementation site and the device 
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breakdown. It includes protein absorption, recruitment of macrophages and foreign body 

giant cells [80, 81]. A foreign body reaction is manifested as a cyst-like mass and can be 

addressed by the removal of device fragments [81, 82].

In one report a systemic allergic reaction occurred in a 30-year-old patient, after being 

implanted a PLA screws for anterior cruciate ligament reconstruction [83]. The patient 

suffered from a rash in the right femur, chronic fatigue, and localized alopecia. A skin end-

point titration revealed that the PLA screws had allergenicity in this patient, by evaluating 

the skin reaction towards different concentration of PLA antigen solution [84].. After total 

removal of the screws, the symptoms disappeared. When PLA was injected intra-dermally, 

mild nodularity at the site of the injection were reported [85]. When an improper injection 

technique (incorrect depth for example) was applied, intraoral lesions were observed due to 

the migration of the dermal filler substance [86]. In summary, few patients were reported to 

have allergic responses to PLA. However, breakage, or wearing-down of the medical implant 

can induce foreign body reaction and inflammation. Tuning the mechanical properties of the 

polymer to the application site, is a prerequisite for a successful implant.

PLA in imensional (3D) printing technologies

Polymeric based 3D scaffolds have become a fundamental part of tissue engineering [87]. 

They are used in vitro as a platform for cell adhesion that simulates the ECM mechanical 

support, and in vivo as templates for organ regeneration. Table 2 summarizes different PLA 

based scaffolds printed with a 3D system. Scaffold design has a great impact on scaffolds’ 

mechanical properties and permeability. PLA High quality and resolution 3D scaffolds can 

be fabricated using 3D printing techniques [88]. For example, patient-specific scaffold 

design can be produced according to the anatomical data of the specific patient[89]. PLA is 

one of the most common biodegradable polymers used for 3D scaffold printing. The 

biodegradation time of PLA makes it a very attractive candidate for in vivo implantation. 

Recently, different combinations of PLA with other materials such as glass particles and 

PEG have been used to better control the scaffolds physical and mechanical properties and 

to improve the printing process [90–92].

Summary

Polylactic acid is widely used clinically as a biomedical scaffold for implants, theranostics 

and drug delivery systems. It is simple to synthesize, and can be tailored for different 

therapeutic needs. PLA is naturally degraded over time into well-tolerated and safe 

degradation products, which are secreted from the body. When coming to design new 

systems with biomedical applications, considering PLA as a scaffold may prove as a wise 

decision.
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Highlights

- Polylactic acid (PLA) is a biocompatible polymer that is used widely for 

biomedical applications.

- PLA biodegrades into lactic acid (LA) or to carbon dioxide and water.

- PLA degradation products are metabolized intracellularly or excreted in the 

urine and breath.

Adverse reactions or foreign body response to PLA are extremely rare.
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Figure 1. Natural biodegrading pathways of polylactic acid (PLA) in primary sites of medical 
device implantation
The main mechanism for PLA degradation inside the body is hydrolysis of the ester-bond 

backbone. The degradation rate is dependent on pH and temperature in the tissue, on one 

hand, and on the composition of the polymer, on the other. Therefore the degradation rate in 

sites of inflammation will be higher compared to healthy tissues. Chirality also affects the 

degradation rate, D-PLA will degrade faster compared to L-PLA. This enables to tailor the 

implant to the desired organ and for the desired biomedical application.
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Figure 2. The chemical synthesis and natural biodegradation pathway of polylactic acid (PLA) in 
vivo
The synthesis of PLA is initiated by poly-condensation of lactic acid into low molecular 

weight polymer. Biodegradation occurs mostly at the inflammation site and enhanced by 

acid phosphatase and lactate dehydrogenase secreted by fibroblasts, macrophages and 

neutrophils.
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Table 1
PLA based formulations degradation profiles

PLA composition Chirality Degradation conditions Degradation time Usage References

(PEG-5k)2-tartarate-PLA D,L
In vitro: 0.1 M 
phosphate buffer, pH 
7.4, 37 C°

60% weight loss 
after 4 weeks Drug delivery nanospheres [3]

PLA-octreotide microparticles D
In vitro: 0.1 M 
phosphate buffer, pH 
7.4, 37 C°

15-30% weight 
loss after 40 days Octreotide drug delivery [4]

PLA-octreotide microparticles D,L
In vitro: 0.1 M 
phosphate buffer, pH 
7.4, 37 C°

10-20% weight 
loss after 40 days Octreotide drug delivery [4]

PLA fibers -* In vivo: rat oral tissue
Full degradation 
between 42-70 
days

Sutures [23]

PLA D,L
In vitro: 0.13 M 
phosphate buffer, pH 
7.4, 37 C°

Plates: 11 weeks 
Films: 25 weeks Size-dependence degradation testing [31]

PLA films - initial Intrinsic 
viscosity OF 3.24 dL/g D,L In vivo: subdermal 

implantation in rabbits
58% weight loss 
over 60 weeks Experimental degradation rate study [32]

PLA films L In vitro: 0.2 M citrate 
buffer, pH 7, 37 C°

10% weight loss 
over 16 weeks Materials in surgery [33]

PLA microcapsules D,L In vivo: Intra-muscular 
injection to rats

Breakdown first 
observed after 150 
days and total 
erosion after 420 
days

Drug delivery [34]

PLA microspheres L In vivo: injection to rats' 
livers

Implant conserved 
its geometrical 
form 14 months 
after injection

Drug delivery [35]

PLA implant L In vivo transplantation 
to rats

14% weight loss 
after 3 months Implants [36]

PLA sheet -*
In vivo: transplantation 
in the infraorbital rim of 
macace monkeys

Remnants found 
at the surgical site 
38-weeks post 
implantation

PLA bone implants [37]

PLA-Zn 0.05% (98% L) D,L
In vitro: 0.13 M 
phosphate buffer, pH 
7.4, 37 C°

9% weight loss 
after 12 months PLA screws [38]

PLA plates D,L In vivo: subperiosteal in 
rabbits

70% loss of 
molecular weight 
after 42 days

PLA bone implants [39]

*
Chirality isn’t indicated.
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Table 2
PLA based scaffolds printed with a 3D system.

Material Experiment Application References

PLA/Polydopamine In vitro - hADSCs Craniomaxillofacial bone lesion repair [93]

PLLA/PLGA In vitro – Human skin fibroblasts Tissue engineering – skin fibroblasts [94]

HA/Collagen/PLA In vivo – Rabbits Bone scaffold [95]

PLA/PEG/G5 glass particles In vitro – rMSC adhesion Tissue engineering [96]

PLA/β-TCP In vivo – Rabbits heterotopic bone formation [97]

PDLA/rhBMP-2 In vivo – Rats Mandibular bone repair [98]
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