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Abstract
Cell therapy offers great promises in replacing the neurons lost due to
neurodegenerative diseases or injuries. However, a key challenge is the cellular
source for transplantation which is often limited by donor availability. Direct
reprogramming provides an exciting avenue to generate specialized neuron
subtypes in vitro, which have the potential to be used for autologous
transplantation, as well as generation of patient-specific disease models in the lab
for drug discovery and testing gene therapy. Here we present a detailed review
on transcription factors that promote direct reprogramming of specific neuronal
subtypes with particular focus on glutamatergic, GABAergic, dopaminergic,
sensory and retinal neurons. We will discuss the developmental role of master
transcriptional regulators and specification factors for neuronal subtypes, and
summarize their use in promoting direct reprogramming into different neuronal
subtypes. Furthermore, we will discuss up-and-coming technologies that advance
the cell reprogramming field, including the use of computational prediction of
reprogramming factors, opportunity of cellular reprogramming using small
chemicals and microRNA, as well as the exciting potential for applying direct
reprogramming in vivo as a novel approach to promote neuro-regeneration
within the body. Finally, we will highlight the clinical potential of direct
reprogramming and discuss the hurdles that need to be overcome for clinical
translation.
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Core tip: Direct reprogramming represents an innovative technology to generate neurons
in the lab, which can be used for cell therapy, drug screening and disease modeling for
neurodegenerative diseases. In this review we will discuss the current advance in
identifying transcription factors to promote direct reprogramming of specialized
neuronal subtypes, including glutamatergic, GABAergic, dopaminergic, sensory and
retinal neurons. We will also discuss the hurdles that need to be overcome for clinical
translation.
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INTRODUCTION
The mammalian nervous system in adults has limited regenerative capacity, thus
disease or trauma often cause permanent neuronal damages and have debilitating
repercussions[1]. To facilitate regenerative medicine and repair damages in the nervous
systems,  we  must  develop  robust  methods  to  generate  specialized  subtypes  of
neurons efficiently in the laboratory. Cellular reprogramming could be the key to this
issue. This is a technique that utilizes transcription factors to convert one cell type into
another. This was demonstrated by the early work of Takahashi and Yamanaka who
were able to reprogram somatic cells into induced pluripotent stem (iPS) cells, using
Oct-3/4, Sox2, c-Myc, and Klf[2].This seminal work established cellular reprogramming
as a major game changer in generation of patient-specific cells in vitro[3] and enabled
subsequent  development  of  direct  reprogramming,  also  known  as  trans-
differentiation.  A key characteristic  of  direct  reprogramming is  that this method
bypasses the pluripotency stage and allows the conversion of one cell lineage directly
to another, which represents a potentially faster method to generate cells compared to
iPS cell generation and subsequent differentiation[4].

Direct reprogramming allows the rapid generation of patient-derived neurons in
vitro,  providing  a  cellular  source  for  transplantation,  disease  modelling,  drug
screening and gene therapy[5]. Previous studies have identified transcription factors
that promote direct reprogramming of multiple starting cell types into specialized
neuronal subtypes (Table 1, Figure 1). Here, we will summarize the role of proneural
transcription factors in development and highlight their use in direct reprogramming,
with particular focus on their use for specification of neuronal subtypes in vitro.

MASTER REGULATORS OF THE NEURONAL LINEAGE
Proneural genes were first discovered in Drosophila by knockout studies to determine
genes responsible for development of sensory bristles[6]. A lack of bristles in a scute
mutant fly led to the discovery of many proneural genes essential to proper neural
development of the fly[7].  Likewise in the early developmental stages of humans,
proneural factors promote neurogenesis and differentiation of progenitor cells to
become specialised neurons[6]. For instances, basic helix loop helix (bHLH) genes are
important regulators for the specification of neuronal cell fate and differentiation of
neural cells in the central and peripheral nervous system[8]. Due to their importance in
neural development, bHLH genes are often utilized in direct reprogramming to direct
cells into the neuronal lineages[9]. bHLH genes can be categorized into two subtypes;
specification and differentiation, both of which are important in the reprogramming
of a neuronal subtype[8].

Mash1/Ascl1, is a specification bHLH transcription factor found to be expressed in
neural  precursors  of  the  developing  embryo  with  a  transient  expression[8,10].
Mash1/Ascl1 double knockout mice die within 24 h of birth and show major defects in
the development of neuronal progenitors in olfactory epithelium, as well as lack of
generation of sympathetic neurons. Hence, Mash1/Ascl1 plays an important role in the
development of neuronal progenitors[11].  In terms of direct reprogramming, Ascl1
alone was shown to have the ability to reprogram mouse fibroblasts into functional
induced neurons (iN). These iN exhibited the expression of mature neuronal markers,
including Tuj1, NEUN, MAP2 and synapsin, after 21 d of induction. Notably, the iN
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Table 1  Summary of in vitro neuronal reprogramming studies discussed in this review with details of transcription factors used and
neuronal characteristics

Species Cell of origin Target cell Transcription
factor(s)

Neuronal
characteristic Year and ref.

Mouse Embryonic fibroblast iN Ascl1 Neuronal morphology
Neuronal markers
Functional
electrophysiology

2014[12]

Human Fetal fibroblast iN ASCL1 Neuronal morphology
Neuronal markers

2014[12]

Human Fibroblast iN ASCL1, SOX2 and
NGN2

Neuronal morphology
Neuronal markers
Neuronal gene
expression profile
Functional
electrophysiology

2015[14]

Mouse Embryonic fibroblast iN Ascl1 Simple neuronal
morphology Neuronal
markers

2010[25]

Mouse Embryonic fibroblast iN (mostly GABAergic
and glutamatergic
neurons)

Brn2, Myt1l, Zic1, Olig2,
and Ascl1

Neuronal morphology
Neuronal markers
Functional
electrophysiology
Synaptic maturation

2010[25]

Mouse Embryonic fibroblast iN (mostly excitatory
neurons)

Brn2, Myt1l, and Ascl1 Neuronal morphology
Neuronal markers
Functional
electrophysiology
Synaptic maturation

2010[25]

Mouse Adult tail tip fibroblast iN (mostly excitatory
neurons)

Brn2, Myt1l, and Ascl1 Neuronal morphology
Neuronal markers
Functional
electrophysiology
Synaptic maturation

2010[25]

Human Fibroblast iN (mostly
dopaminergic neurons)

BRN2, MYT1, ASCL1,
LMX1A and FOXA4

Neuronal markers
Functional
electrophysiology

2011[26]

Mouse Embryonic fibroblast iN (mostly
dopaminergic neurons)

Mash1, Nurr1 and Lmx1a Neuronal markers
Neuronal gene
expression profile
Neuronal epigenetic
reactivation Functional
electrophysiology

2011[33]

Human Adult fibroblast iN (mostly
dopaminergic neurons)

MASH1, NURR1 and
LMX1A

Neuronal morphology
Neuronal markers
Neuronal gene
expression profile
Functional
electrophysiology

2011[33]

Human Fibroblast iN (mostly
dopaminergic neurons)

ASCL1, NGN2, SOX2,
NURR1 and PITX3

Neuronal morphology
Neuronal markers
Neuronal gene
expression profile
Functional
electrophysiology

2012[35]

Mouse Embryonic fibroblast Induced sensory
neurons

Brn3a and Ngn1 or Ngn2 Neuronal gene
expression profile
Functional
electrophysiology
Synaptic maturation

2015[38]

Human Adult fibroblast Induced sensory
neurons

BRN3A and NGN1 or
NGN2

Neuronal morphology
Neuronal markers
Neuronal morphology
Neuronal markers
Functional
electrophysiology

2015[38]
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Mouse Embryonic fibroblast Induced nociceptors Ascl1, Myt1l, Ngn1, Isl2,
and Klf7

Neuronal morphology
Neuronal markers
Neuronal gene
expression profile
Functional
electrophysiology
Synaptic maturation

2014[43]

Human Fibroblast Induced nociceptors ASCL1, MYT1L, NGN1,
ISL2 and KLF7

Neuronal markers
Functional
electrophysiology

2014[43]

Human Iris cells Photoreceptor- like cells Crx, Rx and Neurod1 Neuronal morphology
Neuronal markers
Neuronal gene
expression profile
Functional light
electrophysiology

2012[47]

Human Dermal fibroblast Photoreceptor- like cells CRX, RAX, NEUROD1
and OTX2

Neuronal markers
Neuronal gene
expression profile
Functional light
electrophysiology

2014[48]

Mouse Müller glia iN (mostly retinal glia-
like neurons)

Neurog2 Neuronal morphology
Neuronal markers
Functional
electrophysiology
Neuronal gene
expression profile

2018[56]

Mouse Müller glia iN (mostly retinal
neurons)

Ascl1 Neuronal morphology
Neuronal markers
Functional
electrophysiology
Neuronal gene
expression profile

2018[56]

Mouse Cerebellum astroglia iN (mostly
glutamatergic neurons)

Neurog2 Neuronal morphology
Neuronal markers
Synaptic maturation
Functional
electrophysiology

2017[57]

Mouse Cerebellum astroglia iN (mostly
glutamatergic neurons)

Ascl1 Neuronal morphology
Neuronal markers
Synaptic maturation
Functional
electrophysiology

2017[57]

iN: Induced neurons.

were predominantly excitatory as they expressed vesicular glutamatergic transporter
1 but not GABAergic transporter[12]. Furthermore, the use of Ascl1 in a combinational
approach has shown to increase the directionality of target neuronal subtype and
complexity of the maturation. This will  be discussed further in the review under
specific subtypes of neurons.

Another bHLH specification gene is neurogenin 2 (NGN2), which is found to have a
similar expression pattern to ASCL1  in undifferentiated neural crest cells during
development. In neuronal reprogramming experiments NGN2 and ASCL1 can bind
and interact  when used in  combination[13]  and increase  the  neuronal  conversion
efficiency by up to 13.4%[14]. However, other studies have shown that the expression of
NGN2 returns to basal level after neuronal conversions have occurred, suggesting that
it  is  involved  in  the  initial  neuronal  specification  but  doesn't  have  a  long-term
neuronal survival effect following reprogramming[15].

Unlike the specification factors,  differentiation factors  have a  role  in  the later
maturation  of  neurons.  The  bHLH  differentiation  factor  NeuroD1  is  absent  in
precursors and is found to increase expression by 50-fold once the neuron has reached
terminal differentiation[16]. Its expression is required for both the maturation process
as  well  as  the  survival  of  newly  generated  neurons[17].  NeuroD1  is  found  to  be
upstream  to  Ngn2[18].  These  factors  show  sequential  expression  which  can  be
attributed to their loci placement. This pattern is commonly seen in transcription
factors involved in different stages of the cell cycle. For instance, the specification
factors are found upstream to the differentiation factors[19]. In addition, differentiation
factors  often  play  a  major  role  in  the  neuronal  reprogramming and maturation
processes.
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Figure 1

Figure 1  Transcription factor combination used for in vitro direct reprogramming to specific neuron
subtypes in mouse and human, including sensory neurons, GABAergic neurons, glutamatergic neurons,
dopaminergic neurons, photoreceptors and retinal ganglion cells. A: Mouse; B: Human.

TRANSCRIPTION FACTORS IN SPECIFICATION OF
NEURONAL SUBTYPES

Glutamatergic and GABAergic neurons
The in vitro generation of neuronal subtypes provides an invaluable resource for the
study of  many neuronal  diseases.  Figure  1  summarized the  transcription  factor
combinations  that  were  used  for  in  vitro  direct  reprogramming  into  neuronal
subtypes.  One  such  promising  effort  is  in  the  reprogramming  of  glutamatergic
neurons. Glutamate is the major neurotransmitter of the central nervous system and
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an imbalance in its production can lead to major neuronal defects[20,21]. Degradation of
glutamatergic neurons is linked to disorders such as schizophrenia[22]. On the other
hand, overexpression of glutamate can lead to excitotoxicity and glutamatergic cell
death,  which  are  associated  with  Alzheimer's  disease  and  amyotrophic  lateral
sclerosis[23,24].

As mentioned previously, ASCL1 alone is capable of reprogramming fibroblasts
into  excitatory glutamatergic  neurons.  However,  ASCL1  is  often used in  a  com-
binatorial  transcription  factor  approach  for  direct  reprogramming  to  generate
neurons,  such as the widely used BAM combination (ASCL1, BRN2  and MYT1L)
discovered by Vierbuchen et al[25]. In this study, reprogramming using ASCL1 alone
resulted  in  generation  of  Tuj1-positive  neurons.  However,  the  morphological
complexity, maturity and action potentials of the cells could be further improved by
the addition of  BRN2  and MYT1L.  BAM were able to reprogram fibroblasts  into
predominantly a mix of both glutamatergic and GABAergic neurons; while no other
major neuronal subtypes were detected in significant numbers[26]. Unlike glutamate,
gamma aminobutyric acid (GABA) is the major inhibitory neurotransmitter produced
by GABAergic neurons[27]. A further study has discovered that BAM expression is
only required in the initial stages of the reprogramming process and removing gene
expression 3 days after transduction has no effect on the neuronal reprogramming
process[26].

The incorporation of BRN2  and MYT1L  into neuronal reprogramming is due to
their importance in neural development. BRN2 has a role in the mouse hypothalamus
enhancing neural differentiation during development, as well as promoting activation
of other events which play a role in the maturation and survival of paraventricular
nuclei, as well as supraoptic nuclei[28,29].  MYT1L  is a gene expressing a zinc finger
protein which can be found in early differentiating neurons but is absent from glial
cell populations, suggesting a role in early neuronal differentiation[30]. Although these
factors are important for the reprogramming of neurons, neither BRN2  or MYT1L
alone is sufficient to induce neurons, as they require ASCL1 to initiate the specification
process[25].

Dopaminergic neurons
Dopaminergic (DA) neurons are the main source of dopamine production in the
mammalian  nervous  system  and  its  degeneration  could  lead  to  devastating
neurological disorders, such as Parkinson’s disease. Restoration of DA neurons in
Parkinson's disease could provide a treatment for the disease as demonstrated in rat
models[31]. In order to achieve this level of cell type specification, incorporation of fate
specification factors during the reprogramming process is necessary.

By incorporating the expression of DA specification factors LMX1A and FOXA4
along with BAM factors, approximately 10% of the human iN reprogrammed from
human embryonic fibroblasts were DA neurons. Interestingly, the same study found
that LMX1A and FOXA4 drove more human iN to a DA fate but did not increase the
overall neuronal conversion rate[26]. The differentiation of DA neurons has been shown
to be influenced by a positive feedback system in which FOXA1 and FOXA2 promote
the expression of LMX1A and LMX1B, which subsequently leads to the development
of mesodiencephalic DA neurons[32].

There are also other studies that utilized alternative combination of factors with
similar results. Caiazzo et al[33] were able to induce DA neuron reprogramming using
fibroblasts with a combination of Ascl1, Nurr1 and Lmx1a. This 3-factor cocktail was
able to induce approximately 85% iN that are positive for the DA marker, TH. In this
regard, Nurr1 is a DA specific receptor, essential for the formation and survival of DA
neurons[34]. It is not activated by ligands but rather forms a heterodimer complex with
retinoid X receptor (RXR), and together this complex is able to bind RXR ligands that
produce signalling essential for the survival of DA neurons[34].

A  subsequent  study  identified  another  set  of  5  transcription  factors  which
successfully converted human fibroblasts into human-induced DA neurons: ASCL1,
NGN2, SOX2, NURR1 and PITX3. Importantly, ASCL1, NGN2 and SOX2 are required
for this reprogramming process. On the other hand, exclusion of NURR1 and PITX3
did not  have  an  effect  in  the  early  reprogramming process,  rather  these  factors
increased the dendrite network and facilitated maturation of DA neurons[35].

Sensory neurons
Diverse subtypes of sensory neurons are responsible for pain and itch perception.
Mutations in sensory neuron-specific proteins result in development of a wide range
of sensory disorders, like Friedreich’s ataxia[36]. Due to limited availability of human
sensory  neurons,  research  in  this  field  is  largely  dependent  on  animal  models,
especially rodents. Therefore, many mechanisms involved in human pain and itch
perception remain uncharacterized. Studies from human primary dorsal root ganglion
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(DRG) neurons have identified differences between human and mouse nociceptors in
function of individual channels, receptors and their response to chemical stimuli[37].
Hence, the development of protocols for the generation of bona-fide human sensory
neurons in sufficient numbers is vital for accurate modeling of processes like pain and
itch.

A previous study has demonstrated the feasibility of reprogramming fibroblasts
into sensory neurons using a combination of Brn3a either with Ngn1 or Ngn2[38]. The
cells displayed pseudounipolar morphology, and selectively responded to chemical
mimics of pain, temperature, and itch. Both combinations with Ngn1 or Ngn2 equally
induced  the  differentiation  into  three  functional  classes  of  sensory  neurons,
expressing one of the tropomyosin receptor kinase TrkA, TrkB, or TrkC[38]. Ngn1 and
Ngn2 are alternative neurogenic bHLH factors that are expressed within progenitors
of the developing DRG[39]. Both factors promote cell cycle exit through the induction of
NeuroD1 and NeuroD4, and regulate two waves of neurogenesis[40-42]. Ngn1 and Ngn2
are co-expressed during much part of the early phase of DRG neurogenesis, and are
both required for the generation of TrkB+ and TrkC+ sensory neurons. On the other
hand, in the later phase Ngn1 is exclusively expressed in neural precursors and is
largely responsible for the development of TrkA+ class sensory neurons[39]. At the
time of cell cycle exit, the sensory neurons express the “pan-sensory” factors Brn3a
and Islet1, which terminate the expression of the bHLH neurogenic factors and initiate
the expression of definitive sensory markers to complete neurogenesis[42].

Similarly, functional nociceptor neurons can be generated through the transgenic
expression of Ascl1, Myt1l, Ngn1, Isl2, and Klf7 in mouse and human fibroblasts[43]. The
resultant iN expressed functional  receptors for the noxious compounds menthol
(TrpM8),  mustard  oil  (TrpA1)  and  capsaicin  (TrpV1).  They  also  displayed  the
nociceptor-specific TTX-resistant Nav1.8 sodium channel. Notably, these iN were able
to replicate inflammatory and chemotherapy-induced sensitization, which form the
basis of pathological pain. Furthermore, this reprogramming method was successful
in  the  generation  of  patient-derived  neurons  from familial  dysautonomia,  thus
representing  a  promising  approach for  disease  modeling[43].  For  the  five  factors
employed, Ascl1 and Myt1l are members of the three-factor combination for neuronal
lineage  reprogramming  BAM[25];  Klf7  is  a  factor  involved  in  TrkA  expression
maintenance[44]; and Isl2 was selected based on its expression profile in DRG[45]. The
extent of Isl2  contribution to the lineage reprogramming remained unknown and
further studies are needed to clarify this.

Retinal neurons
Retinal neurons are another promising target for therapeutic in situ reprogramming
strategies. The retina is a highly organized structure bearing several major types of
neurons, including rod and cone photoreceptors, bipolar, amacrine, horizontal and
retinal  ganglion cells  (RGC)[46].  Rod and cone photoreceptors are responsible for
detecting light stimuli and converting it to electrical signals that are later sent to the
brain for visual perception. The loss of photoreceptors is a key hallmark of many
blinding diseases and currently there are no effective treatments to cure blindness
once  photoreceptors  are  lost.  Therefore,  cellular  reprogramming  is  a  powerful
technique for developing novel approaches for photoreceptor regeneration.

Akihiro Umezawa’s group used a promising combination of factors (CRX, RAX
and NEUROD1)  to induce the conversion of both iris cells[47]  and fibroblasts into
photoreceptor-like cells[48]. These factors induced the expression of photoreceptor-
related  genes  and  the  reprogrammed  cells  became  positive  for  the  rod  marker
rhodopsin and the cone marker blue-opsin. Notably, some of the reprogrammed cells
were  photoresponsive.  Interestingly,  the  authors  showed  that  although  OTX2
enhanced  the  upregulation  of  retinal  genes,  it  was  not  essential  for  the  repro-
gramming[48].  The same combination of factors was used to reprogram peripheral
blood  mononuclear  cells [ 4 9 ] ,  which  facilitate  clinical  applications  of  this
reprogramming strategy as blood samples are easier to collect from patients than
fibroblasts.  The generated photoreceptor-like cells expressed blue and red/green
opsin,  and some of  the cells  were able to respond to light stimuli.  However,  the
reprogrammed  cells  expressed  low  levels  of  rod  marker  rhodopsin  and  some
photoreceptor-related genes  were  not  detected,  which  indicated that  additional
factors might be required to produce mature and functional photoreceptors[49].

In the developing retina, OTX2 is expressed in progenitors and early precursors
that become committed to a photoreceptor fate[50,51]. NEUROD and CRX are factors
expressed  in  developing  photoreceptors  and  their  expression  is  maintained  in
photoreceptors of mature retina, therefore they are proposed to participate in cell fate
specification,  as  well  as  in  maturation and survival  processes[41,51].  Additionally,
NEUROD  is  known  to  promote  neuron  specification  in  retinal  progenitors  and
regulates interneuron differentiation to direct the amacrine cells fate[41]. On the other
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hand,  CRX  is  downstream  of  OTX2  activity,  it  enhances  the  expression  of
photoreceptor-specific genes and is important for terminal differentiation into rod and
cone photoreceptors[51,52].  RAX  is  a  factor  expressed in  retinal  and hypothalamic
progenitor cells and is a key transcription factor for eye development in vertebrates.
In  the  developing  retina,  it  is  involved  in  retinal  progenitor  proliferation  and
photoreceptor fate specification[53-55].

RGC are another interesting therapeutic target within the retina. These specialised
retinal neurons convey the visual cues to the brain and form the optic nerve[46,51].
Degeneration of RGC is a major hallmark in glaucoma, a major blinding disease
affecting the aging population[56]. Thus, in vitro generation of RGC offers an exciting
avenue to develop regenerative therapy for this disease.

A study by Guimarães et al[56] demonstrated that RGC can be reprogrammed from
postnatal Müller glia through the overexpression of Ngn2. The forced expression of
Ngn2  produced a pool of iN which express genes associated with photoreceptors,
amacrine cells and RGCs. However, this was only possible with Müller glia from
young mice, as P(21) Müller glia cells failed to reprogram into iN. They also showed
that the presence of mitogenic factors like EGF or FGF2 during the expansion of
Müller glia enhanced the efficiency of the reprogramming. This finding supports the
theory that the starting cell types for reprogramming have a strong influence on the
neuronal  subtypes  in  the  resultant  iN.  For  instance,  ASCL1  or  NGN2  alone  can
reprogram astroglia from the cerebellum and neocortex into neuron subtypes in the
brain[57]. On the other hand, these factors can drive reprogramming of Müller glia into
iN subtypes with retinal neuronal identities[56,58]. Thus, careful consideration should be
taken in choosing the starting cell type in reprogramming to generate specialized
neuronal subtypes.

NEW TECHNOLOGICAL ADVANCES IN CELLULAR
REPROGRAMMING
Recent studies have demonstrated several exciting approaches to further develop the
direct reprogramming processes. Here we will highlight and discuss the use of new
technological advances in overcoming the hurdles of direct reprogramming as well as
the potential of in vivo application of direct reprogramming to promote regeneration.

Computational predictions of transcription factors
Most of  the reprogramming studies mentioned above have taken an elimination
approach to identify the optimal set  of  transcription factor(s)  required for direct
reprogramming, which is a tedious and laborious screening process. Recent advances
in computational biology provide an alternative approach to predict the required
transcription factor for cellular reprogramming in a faster and more efficient manner.
One early example is CellNet, a computational algorithm that analyze, categorize and
predict the function of transcription factors[59]. Subsequently, several other programs
have been described to predict the transcription factors for cellular reprogramming,
including  Mogrify[60],  BART[61],  MAGICACT[62]  and  CellRouter[63].  Most  of  these
programs work by comparing the quantitative amount of transcription factor in one
cell type to another cell type to create a specificity score, which is used to create a
ranking in which transcription factor are sorted and categorized depending on the cell
type  they  are  most  prominent  in[59,64].  Another  exciting  approach  to  predict
transcription factors for cellular reprogramming is by creating computer models of
cells. These programs, such as DeepNEU, can be used to create a simulation model of
the  cell  using  deep  learning  and  provides  a  simulation  of  the  events  after  the
introduction of selected transcription factors[65]. Although these advanced algorithmic
models are still in their infancy, further development will improve our understanding
of the fundamental properties of cells and the molecular interplay of transcription
factors that promote cellular reprogramming.

In vivo application of direct reprogramming
The potential to apply direct reprogramming in vivo represents an exciting direction
for regenerative medicine. Therapeutic approaches using in vivo reprogramming have
the potential to re-purpose local cells into the cells lost following injury or disease,
thus providing an alternative regenerative approach to transplantation[66]. This has
already been demonstrated for many neuronal subtypes, including glutamatergic and
GABAergic neurons[67]. It was shown that overexpression of NeuroD1 is sufficient to
convert astrocytes to glutamatergic neurons in rodents in vivo, as characterized by
vGlut1  expression  and  glutamate-mediated  synapses.  Compared  to  astrocytes,
interestingly the same study found that  the NG2 glial  cells  have a  larger  repro-
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gramming  capacity  into  multiple  neuronal  subtypes,  as  the  presence  of  both
glutamatergic and GABAergic neurons was detected after NeuroD1 overexpression[67].

There  has  also  been  an  extensive  effort  to  re-purpose  local  cells  for  retinal
regeneration.  Many  studies  target  the  Müller  glia  within  the  retina  for  repro-
gramming, which are cells responsible for maintaining the integrity and homeostasis
of the retina[68]. Interestingly, the Müller glia exhibit some progenitor properties. In the
teleost fish and chicken, upon retinal injury the Müller glia can dedifferentiate into
multipotent progenitors and give rise to all retinal neural subtypes[69]. This remarkable
trait makes Müller glia an excellent candidate for reprogramming studies.

In  several  elegant  studies  by  Tom Reh’s  group,  the  author  has  demonstrated
successful reprogramming of mouse Müller glia into a range of retinal neurons both
ex vivo and in vivo, by the forced expression of the pro-neural factor Ascl1[58,70]. When
Ascl1 was overexpressed in retinal explants and in Müller glia dissociated cultures,
the cells re-entered the mitotic cell cycle and expressed neural progenitor genes[58].
This reprogramming was accompanied with chromatin remodeling, acquisition of
neural morphology and the ability to respond to neurotransmitters[58]. In addition to
its  role  as  a  pioneer  proneural  factor  for  direct  reprogramming  and  retinal
development, Ascl1 induction in response to injury is required for retinal regeneration
in the fish[71-73]. Conversely, organisms with limited regenerative capacity in the retina
do not upregulate Ascl1 following retinal damage[58,74]. Subsequently, in a landmark
study the same group extended the application of Ascl1 to reprogram Müller glia into
retinal neurons in vivo following retinal injury[70]. Marker analysis showed that the
reprogrammed retinal neurons were able to functionally integrate with the existing
retinal circuit. Interestingly, this reprogramming approach was less effective in adult
mice compared to young mice[75]. The restrictive regenerative capacity of adult mice
Müller glia is thought to be caused by reduced epigenetic accessibility of progenitor
genes  in  the  cell,  as  the  addition  of  histone  deacetylase  tricostatin  A  is  able  to
overcome this epigenetic hurdle in adult Müller glia[70]. In support of this, epigenetic
profiling  using  ATAC-seq  demonstrated  that  the  treatment  with  trichostatin  A
favored  the  accessibility  of  genes  associated  with  neural  development  and
differentiation,  such  as  Otx2[70].  In  this  case,  Otx2  is  known  to  regulate  genes
associated with bipolar and amacrine cells. However, it should be noted that most of
the reprogrammed retinal neurons are bipolar cells, suggesting that additional factors
are required to induce photoreceptors in vivo.

A subsequent study from Bo Chen’s group demonstrated that adult mice Müller
glia can be reprogrammed to rod photoreceptors without the necessity of retinal
injury[76]. In this study, the authors first stimulated Müller glia proliferation by forced
expression of β-catenin, followed by overexpression of Otx2, Crx and Nrl after two
weeks. This approach allowed successful generation of rod photoreceptors in vivo that
functionally integrate into the retinal  and visual  cortex circuits.  In a  remarkable
experiment, the authors were able to use this in vivo  reprogramming approach to
restore light response in a mouse model of photoreceptor degeneration. Collectively,
these studies demonstrate the potential of in vivo reprogramming as a novel approach
for neural regeneration.

Alternatives to transcription factor-mediated reprogramming
Beside transcription factors, alternative direct reprogramming strategies using small
chemicals and microRNAs are also two exciting research directions to improve the
usability  of  the  technology.  For  instance,  chemical  reprogramming  using  small
chemicals  has  been  shown  to  induce  functional  neurons  without  the  need  for
transcription factor.  A cocktail  of  7  small  molecules  (Valproic  acid,  CHIR99021,
Repsox, Forskolin, SP600125, GO6983 and Y-27632) was successful at reprogramming
human fibroblasts into neurons with functional electrophysiology representative of
glutamatergic  and GABAergic  cells[77].  Furthermore,  the  use  of  a  combinational
approach of small molecules together with transcription factors can improve direct
reprogramming. In a study by Liu et al[15], NGN2 along with small molecules, forskolin
and  dorsomorphin,  directly  reprogrammed  human  fetal  lung  fibroblasts  to
cholinergic neurons with functional electrophysiology. In this regard, forskolin is a
cAMP activator in the PKA signalling pathway and dorsomorphin acts as a BMP
inhibitor  in  the  BMP signalling pathway,  both of  which are  signaling pathways
involved in neurogenesis.

Similarly,  microRNAs have also been used in combinational  approaches with
transcription factors to induce neuronal reprogramming. microRNAs are known to
play  important  roles  in  post  transcriptional  regulation,  neural  differentiation,
morphological and phenotypic development[78-82]. In a study by Yoo et al[83], miR-9/9*
and miR-124 were used in combination with NEUROD1 to convert human fibroblasts
into neurons, however these cells would not always demonstrate repetitive action
potential, signifying immature neurons. In order to tackle this issue the same group
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also introduced two other factors, ASCL1 and MYT1L, and in turn were able to induce
neurons with higher maturity which demonstrated repetitive action potentials and
even the ability to convert adult human fibroblasts into functional neurons. These
studies  highlighted alternative approaches to  transcription factors  that  promote
neuronal reprogramming.

CLINICAL PERSPECTIVES OF IN VITRO NEURONAL
REPROGRAMMING AND CHALLENGES FOR CLINICAL
APPLICATION
Allogeneic transplantation represents a promising cell therapy approach to replace
neurons lost by injury or neurodegenerative disease, such as Parkinson’s disease[84].
However, there are two major challenges related to transplantation: (1) The shortage
of donor tissue for transplantation; and (2) Immuno-rejection issues of the grafted
tissue. Development of stem cell and cell  reprogramming technology to generate
patient-specific  cells  in  vitro  would  be  critical  to  overcome  these  hurdles.  Cell
therapies strategy using pluripotent stem cells have been extensively highlighted
previously[85-87].  In comparison, notably direct reprogramming bypasses the pluri-
potent stem cell state, thus this is potentially a faster and more cost-effective approach
to generate neurons in vitro, with less tumorigenic risks compared to pluripotent stem
cell strategy. Moreover, there is also the exciting opportunity to combine with gene
therapy  to  correct  disease-causing  mutation(s)  in  the  cells  in  vitro,  prior  to
transplantation to patients to treat hereditary neurodegenerative diseases.

To facilitate clinical translation of direct reprogramming technology, it is critical to
develop robust reprogramming protocol to generate target cells with high purity and
efficiency. Optimization of transcription factors for direct reprogramming, as well as
improved method for gene delivery would be key to improving the reprogramming
efficiency. Flow cytometry or magnetic-activated cell sorting can be used to enrich the
purity of the target cell type prior to transplantation. For clinical applications, cells
derived by direct reprogramming should be produced under good manufacturing
practices conditions. To ensure the quality of the reprogrammed cells, it is important
that  the  derived  cells  are  extensively  characterized  for  marker  expression  and
functional studies, and screened to ensure the derived cells have a normal karyotype.
In the latter case, the use of non-integrative methods for direct reprogramming is
desirable, such as Sendai viruses or episomal vectors.

CONCLUSION
In summary, direct reprogramming allows the conversion of one somatic cell type
directly to another cell  type. The in vitro  reprogramming of neurons provides an
exciting avenue to generate patient-specific  neurons for disease modelling,  drug
testing  and  cell  therapy  for  neurodegenerative  diseases.  Transcription  factors
responsible  for  the  specialization  and  differentiation  of  neuronal  cells  during
development are commonly for direct reprogramming to generate multiple neuronal
subtypes.  Future studies that  optimize the precise combinations of  transcription
factors for neuronal reprogramming would improve the reprogramming efficiency,
expand the neuronal subtypes that can be generated and facilitate the translation of
cellular  reprogramming to  the  clinics.  Emerging  computational  algorithms  and
alternative reprogramming approaches will further improve the technique of direct
reprogramming,  and future  application  of  direct  reprogramming in  vivo  would
provide a novel approach to promote regeneration in the nervous system.
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