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Abstract

Currently there are 850,000 people with Alzheimer’s disease in the UK, with an estimated rise to 1.1 million by 2025.
Alzheimer’s disease is characterised by the accumulation of amyloid-beta plaques and hyperphosphorylated tau in the brain
causing a progressive decline in cognitive impairment. Small non-coding microRNA (miRNA) sequences have been found to be
deregulated in the peripheral blood of Alzheimer patients. A systematic review was conducted to extract all miRNA found to be
significantly deregulated in the peripheral blood. These deregulated miRNAs were cross-referenced against the miRNAs
deregulated in the brain at Braak Stage III. This resulted in a panel of 10 miRNAs (hsa-mir-107, hsa-mir-26b, hsa-mir-30e,
hsa-mir-34a, hsa-mir-485, hsa-mir200c, hsa-mir-210, hsa-mir-146a, hsa-mir-34c, and hsa-mir-125b) hypothesised to be
deregulated early in Alzheimer’s disease, nearly 20 years before the onset of clinical symptoms. After network analysis of the
10 miRNAs, they were found to be associated with the immune system, cell cycle, gene expression, cellular response to stress,
neuron growth factor signalling, wnt signalling, cellular senescence, and Rho GTPases.
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Dementia

Dementia is a common syndrome in people over 65 years of age
and is characterised by a progressive decline in memory and
other abilities [1]. In 2014, there were 850,000 people living with
Alzheimer’s disease in the UK, costing the economy £26.3 bil-
lion a year. Due to the ageing population, this is set to rise to over
1.1 million people with Alzheimer’s disease in 2025 [2].

The Prime Ministers Challenge on Dementia 2020,
established by the UK Government, found in 2010/11 that
only 42% of estimated dementia sufferers in England had a
formal diagnosis [3]. In 2016, the diagnosis rate increased to
67% [4]. This has been attributed to an increased public
awareness of dementia, a reduction in the stigma associated
with dementia, and an increase in dementia research. Due to
the nature of dementia, the accuracy of the diagnosis corre-
lates with the severity of the symptoms and varies from 9 to
41% [4]. Onset of dementia can occur 2030 years before the
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first symptoms appear [5]; therefore, the earlier a diagnosis
can be made, the less developed the degeneration will be,
increasing the probability of a successful treatment.

Alzheimer’s Disease

Alzheimer’s disease is the most common form of demen-
tia accounting for 62% of the dementia patients [2] and is
characterised by the presence of amyloid plaques and
hyperphosphorylated tau in the brain. In 1991, Braak
and Braak mapped the movement of both amyloid-f3 and
hyperphosphorylated tau in the brain during the progres-
sion of the disease [6]. The movement of amyloid was
split into three Stages (A—C) and that of tau into six (I-
VI), as shown in Fig. 1.

Amyloid deposits are mainly found in the isocortex of the
cerebral cortex. The plaques are not uniform in shape or size
and early stage accumulation suffers from inter-individual var-
iation. The amyloid deposition develops before the onset of
tau. However, the presence of amyloid does not mean that tau
pathology will develop [6]. During Stage A, amyloid is found
in the base layer of the frontal, temporal, and occipital lobes.
In Stage B, amyloid progresses to almost all isocortex areas
and during Stage C, amyloid becomes densely packed [6].

Tau Braak Stages correlate with the progression of
Alzheimer’s disease. It is estimated that it can take 48 years to
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Fig. 1 Schematic of the Braak and Braak amyloid and tau stages during the progression of Alzheimer’s disease. Mild, moderate, and severe correspond

to the density of amyloid/tau protein

develop from Braak Stage I to Braak Stage V in which
Alzheimer’s disease symptoms are apparent. A large proportion
of that time is when the disease is non-symptomatic as it can
take 30 years to progress from Braak Stage I to Stage III [5].

Braak Stages I and II are centred around the transentorhinal
region with Stage II being more densely packed with tau pa-
thology than Stage 1. At Stage III, the pathology moves into
the entorhinal region with low levels of tau seen in CA1 of the
hippocampus and no or mild changes present in the isocortex
[6]. The hippocampus is responsible for episodic memory,
which is memory of autobiographical events [7]. This corre-
sponds with early symptoms seen in Alzheimer’s disease and
is defined as mild cognitive impairment (MCI). Patients that
fit this definition are 3—5 times more likely to develop demen-
tia within 3-5 years [8].

At Stage 1V, there is increased pathology in the entorhinal
region and CA1 hippocampus. At this stage, there is no de-
tectable brain atrophy, and the pathology does not meet the
criteria for neuropathologic diagnosis of Alzheimer’s disease.
At Stage V, tau is found in almost all areas of the hippocampus
and isocortex, with the areas becoming severely affected by
Stage VI. Involvement of the isocortex corresponds to late
Alzheimer’s disease and clinical diagnosis [6].

Alzheimer disease symptoms have been classified by criteria
published in 1984 by both the National Institute of
Neurological and Communicative Disorders and Stroke
(NINCDS) and the Alzheimer’s Disease and Related
Disorders Group (ADRDG). It concludes that a definitive diag-
nosis can only be given when histological analysis by biopsy or

autopsy has been conducted [1]. If a biopsy cannot be conduct-
ed, then a possible or probable diagnosis is given. A probable
diagnosis has a sensitivity of 81% and specificity of 70%, a
possible diagnosis has a sensitivity of 93% and specificity of
48% [9]. Sensitivity is the ability to distinguish between normal
and Alzheimer’s disease, while specificity is the capability to
differentiate Alzheimer’s disease from other types of dementia.

Diagnostic Techniques for Alzheimer’s Disease

An ideal diagnostic technique for Alzheimer’s disease would
be that which can identify the disease with adequate reliability
considerable time before the onset of symptoms for treatments
to be effective, and which is minimally invasive, low-cost, and
casy to be applied for mass screening. Current diagnostic
techniques for Alzheimer’s disease primarily include cogni-
tive testing [10], neuroimaging [11], and biomarker detection
[12]. Other more recently reported diagnostic tests include
retinal imaging of amyloid beta, structural changes in the ret-
ina [13, 14], and alterations in an Alzheimer patient’s sense of
smell [15]. Cognitive testing, for example questionnaires like
the mini mental state examination (MMSE), is the most com-
monly used tool to asses a patient’s symptoms for Alzheimer’s
disease [16]. Therefore, cognitive testing is unable to diagnose
the disease in the pre-symptomatic stage [17]. Neuroimaging
diagnosis, for example magnetic resonance imaging, looks for
hippocampal atrophy [18]. However, this is an expensive and
specialised technique, which is logistically challenging to be
used for mass screening.
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Detection of biomarkers in patients is heavily reported for
cerebrospinal fluid (CSF) and peripheral blood [references].
Other biological samples, such as urine [19], breath [20], and
saliva [21, 22], have the potential for biomarker detection
although they are less prominent in the literature.

CSF requires an invasive lumbar puncture procedure
under general anaesthetic with common side effects in-
cluding mild to moderate headache in up to 46% of cases
[23-25]. The most commonly reported CSF assay looks
for a decrease in amyloid-beta 42 and increased levels of
total tau and phosphorylated tau. The test’s sensitivity
ranges between 68 and 95% and specificity between 83
and 97% [26-30]. To quantify concentrations of amyloid
beta and tau, studies use enzyme-linked immunosorbent
assays (ELISAs). Multi-centre studies conducted using
ELISAs have demonstrated a large variability in results
[31]. Currently, this variation remains too high to estab-
lish international cut-off values, which differentiate
Alzheimer patients from normal controls [32].

Another approach is to screen for biomarkers in pe-
ripheral blood. Blood collection is significantly less in-
vasive than lumbar puncture and routinely conducted.
Therefore, detecting biomarkers in peripheral blood is
potentially more applicable to mass screening and regu-
lar monitoring of disease progression. Several studies
have found differences in specific protein and
microRNA (miRNA) concentrations between normal
and Alzheimer’s disease blood, highlighting its potential
as a diagnostic procedure [12, 33-36]. This review will
focus on miRNAs only.

miRNAs

miRNA are small non-coding RNA, normally 22-23 nu-
cleotides, that control gene expression by binding to the
3’-untranslated region (UTR) region in messenger RNA
(mRNA). Through this, they suppress translation or in-
duce degradation of the target mRNA [37]. miRNAs are
transcribed by RNA polymerase II/III in the nucleus to
large RNA precursors called pri-miRNA. The pri-
miRNA is processed by the RNase III enzyme Drosha to
be approximately 70 nucleotides in a hairpin structure.
The pri-miRNA is then exported to the cytoplasm by
exportin 5. After subsequent processing by the RNase
III enzyme Dicer, it releases a small RNA duplex which
is then loaded into an Argonaute (Ago) protein. The ma-
ture miRNA then directs the Ago-miRNA complex to the
target mRNA (Fig. 2) [37-39]. The Ago-miRNA complex
is very stable in body fluids, and miRNA can be attributed
to specific organs and pathologies, making miRNA an
ideal biomarker target [40].

miRNA Implicated in Alzheimer’s Disease

The literature includes a number of recent studies reporting
miRNAs in blood, CSF, or brain as candidate biomarkers for
Alzheimer’s disease [references]. Besides variations in the quan-
tification methods and protocols used, the comparability of these
studies is particularly challenged due to discrepancies in the stage
of Alzheimer’s disease for patients included in the studies. In
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Table 1 Summery of articles found after systematic review of miRNA
deregulated in the peripheral blood in Alzheimer patients

Total number of articles 20
2012 to 2016 and 2007
12 articles used MMSE

Year of publication

Most frequent technique
used to diagnose Alzheimer’s disease
Most frequent miRNA detection technique used 15 articles used PCR

view of this challenge, the objective of this review was to identify
the miRNAs that are deregulated in peripheral blood in late
Alzheimer’s and compare them with those found altered in the
brain during an early stage of the disease (Braak Stage III).
Correlation of deregulated blood-based miRNAs in peripheral
blood with those altered in Braak Stage III will allow nearly a
20-year window for screening of patients at risk of Alzheimer’s
before the onset of pathological symptoms (Fig. 1).

To establish the number of miRNA found to be significant-
ly deregulated in Alzheimer’s patients, keywords were placed
in search databases including Web of Science, Google
Scholar, and PubMed. Keywords chosen were “miRNA,”
“Alzheimer,” “diagnosis,” and “biomarker” with either
“blood,” “serum,” “plasma,” “cerebrospinal fluid,” or
“brain.” Both the article title and abstract were assessed for
applicability into the review. Last searches were conducted in
October 2017. The following inclusion and exclusion criteria
were used for the systematic review. The inclusion criteria
were as follows:

All samples tested were human
Aged matched controls were used
Articles were in English

A sample group of three or more.

Ealb el e

Exclusion criteria:

1. Review articles, conference abstracts, and studies without
a complete set of data.

2. Atrticles that do not mention Alzheimer’s or dementia in
the title or abstract.

Table 2 Number of articles and miRNA found to be deregulated
between Alzheimer patients and controls for different blood components
Blood component Number of articles Number of miRNA
Serum 10 56
Plasma 4 10
Whole blood 1 11
BMC 3 10
Exosomes 2 15

BMC, blood mononuclear cells
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Fig. 3 Forest plot showing the distribution of MMSE scores from 10
articles. Study ID: (1) Kiko (2014) [51], (2) Cheng (2014) [42], (3)
Leidinger (2013) [41], (4) Zhu (2014) [59], (5) Kumar (2013) [48], (6)
Geekiyanage (2012) [56], (7) Wang (2015) [61], (8) Tan (2014) [47], (9)
Dong (2015) [57], and (10) Tan (2014) [44]

The following information was then extracted from the
selected articles: Fist named author, year of publication, par-
ticipant country, blood sample type used, number of control
participants, number of Alzheimer patients, any other partici-
pant group used, Alzheimer’s disease diagnostic technique,
and the significantly deregulated miRNA.

miRNA Deregulation in Blood

From the systematic review, 20 articles were found to look at
miRNA blood deregulation in Alzheimer patients. Nineteen
articles were published between 2012 and 2016 and one in
2007 are summarised in Table 1.

From the 20 articles, 102 miRNAs were found to be
deregulated in Alzheimer patient’s blood compared to aged

Table 3 MiRNA found
to be consistent and
contradictory in serum
between different articles 9
125b

181c
135a-5p

miRNA First article Second article

1
!
!
1

—
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Table 4  Sensitivity and specificity values for blood deregulated miRNA

Study ID Author

No. of patients No. of controls Blood component Sensitivity Specificity miRNA profile

1 Wang (2015) 97 81 Plasma
3 Tan (2014) 105 150 Serum
4 Tan (2014) 208 205 Serum
6 Cheng (2014) 39 59 Serum
7 Kumar (2013) 31 37 Plasma
8 Leidinger (2013) 142 43 WB

9 Bhatnagger (2014) 110 123 BMC

0.90 0.78 mir-107

0.87 0.53 mir-9

0.81 0.68 mir-125b

0.75 0.64 mir-181c

0.85 0.71 mir-342-3p

0.81 0.68 mir-342-3p, -98-5p, 885-5p,
-191-5p, 483-3p, -7d-5p.

0.87 0.77 mir-30e-5p, -101-3p, -15a-5p, -20a-5p,
-93-5p, -106b-5p, -18b-5p, -106a-5p,
-1306-5p, - 3065, -582-5p, -143-3p,
-335-5p, -424-5p, -342-3p, -15b-3p

0.20 0.88 mir-545-3p

0.95 0.53 let-7g-5p

0.85 0.88 mir-15b-5p

0.95 0.94 mir-545-3p, -7g-5p, -15b-5p

0.65 1 mir-142-3p

0.95 0.76 mir-191-5p

0.75 0.88 let-7d-5p

0.92 0.95 mir-7-5p, -1285-5p, -107, -103a-3p,
-26b-5p, - 532-5p, -151a-3p, -161,
-7d-3p, -112, -5010.

0.92 0.96 mir-34a

0.84 0.74 mir-34c¢

matched controls [41-57]. Ten articles looked at serum blood
samples [44-47, 50, 55, 57-60], 4 at plasma [48, 50, 51, 61],
3 at blood mononuclear cells (BMC) [43, 52, 62], 2 in
exosomes [42, 49], and 1 in whole blood [41]. This
corresponded to 56 miRNAs found to be deregulated in se-
rum, 10 in plasma, 11 in whole blood, 10 in BMC, and 15 in
exosomes as shown in Table 2. The highest fold changes were
seen in the plasma.

Twelve articles in the systematic review used the MMSE to
diagnose Alzheimer’s disease, 10 gave an MMSE score with
the standard deviation. The numbers were extracted and com-
piled into the plot in Fig. 3, which shows a decreasing pro-
gression of MMSE scores from MCI at 21 to severe cognitive
impairment at 10.

Eight miRNAs have been found to be significantly
deregulated when comparing both control and MCI, and con-
trol and Alzheimer’s disease candidates. Two miRNAs are
significantly different between MCI and Alzheimer’s disease
(193b and 200b) [49, 55]. However, the presence of MCI does
not guarantee an Alzheimer disease diagnosis; therefore, the
miRNA specific to MCI that develops into Alzheimer’s dis-
ease must be extracted.

Four miRNAs were found to be significantly deregulated in
two different articles (Table 3). However, only two were con-
sistent between articles (125b and181c¢) and two were incon-
sistent (9 and 135a-5p). Both mir-9 and mir-181c have MMSE

@ Springer

scores assigned to the two articles, the first article has an
MMSE score of 10.5 and the second 15.

Sensitivity and specificity values were extracted from nine
articles and are shown in Table 4.

A further literature study was conducted to establish the
role of each blood deregulated miRNA. This is to determine
whether the miRNA in the blood are predominately associated
with inflammation, amyloid-beta, or tau signalling pathways.

= Inflamation

= Apoptosis

= Amyloid
Tau

= Other

= Unknown

Fig. 4 miRNA deregulated in peripheral blood experimentally found
targets grouped into inflammation, apoptosis, amyloid, and tau
signalling pathways
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Fig. 5 Schematic showing the number of miRNA deregulated in the different areas of the brain

Results in Fig. 4 show that 44 miRNAs have unknown targets,
14 from amyloid, 10 from inflammation, 7 from apoptosis, 3
from tau, and 13 from other signalling pathways.

MiRNA Deregulated in the CSF

Twelve articles were found to contain data for deregulation of
miRNA in the CSF; this resulted in 153 deregulated miRNAs.
Nineteen miRNAs were found to be deregulated between
more than one article; all but 6 had consistent results.

A recent multi-centre study looking at the deregulation of 4
miRNAs in the CSF of Alzheimer patients and found signif-
icant differences between results from the three centres [63].
All centres used PCR for analysis and the same RNA isolation
procedure. After analysis, the multi-centre study found a sig-
nificant difference between centrifuged and non-centrifuged
samples before freezing and correlations between the PCR
cycle threshold (Ct) values and storage time. This highlights
the need for detailed standardised procedures.

miRNA Deregulation in the Brain

Twenty-seven articles were found looking at deregulated
miRNA in the brain, corresponding to 250 miRNAs. The
search included 13 articles from the temporal cortex
[64-76], 6 from the hippocampus [65, 77-81], 8 from the
frontal cortex [77, 78, 82-87], 1 from the entorhinal region
[81], and 1 the parietal lobe [88].

Articles that define the Braak Stage were extracted and split
into three groups, Braak Stage I-II, Braak Stage III-IV, and
Braak Stage V-VI. Braak Stages I and II are generally used as
control cases, 27 miRNAs were deregulated at Braak IT1I-1V
and 99 at Braak V-VI, as shown in Fig. 5. Five hundred
millilitres of CSF can be absorbed into the blood daily, and
damage to the blood brain barrier during Alzheimer’s disease
enables exchange of miRNA between the brain and peripheral
blood [89]. Therefore, miRNAs deregulated in the blood were
cross-referenced against those deregulated at Braak Stage III.

miRNA Deregulated in the Brain and Blood

All deregulated miRNAs in the peripheral blood were
cross-referenced against the miRNA deregulated in the
brain. Forty-seven miRNAs are deregulated in both the
brain and peripheral blood, 30 of these could be
assigned a Braak Stage. From the 30 miRNAs, 10 were
found to be deregulated at Braak Stage III; these
miRNA are shown in Table 5.

Among these, 10 miRNAs that were deregulated both in
the brain Braak Stage III and in peripheral blood; 4 miRNAs,
namely mir-26b, mir-34a, mir-146a, and mir-125b, were
found to be differently deregulated in the two tissues, i.e.
upregulated in the brain but downregulated in blood.
However, mir-34a was reported to be upregulated in blood
mononuclear cells in a study (current reference [52] i.e.
Schipper et al).

Table 5 MiRNA deregulated at Braak Stage III in the brain and in the
peripheral blood of Alzheimer patients
miRNA Brain Blood
107 l TC [66] ! WB [41, 61]
! P
26b ) TC [69] ! WB [41]
30e i H [78] 1 EXO [42, 47]
1 S
34a 1 H [76, 78] 1 BMC [51, 52]
1 TC ! P
1 FC
485 l FC [77] ! S [47]
200c 1 H [78] 1 P [90]
210 l H [78] ! S [59]
146a 1 H [78, 80] ! P [51,57]
1 FC ! S
34c il H [80] 1 S [43, 46]
1 BMC
125b i H [78] ! S [60]

TC, temporal cortex; H, hippocampus; FC, frontal cortex; WB, whole
blood; P, plasma; S, serum; EXO, exosomes; BMC, blood mononuclear
cells
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Network Analysis of Deregulated miRNA
at Braak Stage lll in the Brain and Peripheral
Blood

The 10 miRNAs found to be deregulated at Braak Stage
IIT and in the blood (Table 5) were imputed into the
mirnet online software [91]. Seven of the 10 miRNAs,
namely mir-107, mir-26b, mir-30e, mir-34a, mir-210,
mir-146a, and mir-125b, resulted in Alzheimer’s disease
as at least one of their target diseases from the software
analysis. Interestingly, out of these 7 miRNAs that
targeted Alzheimer’s disease, 3 miRNAs, namely mir-
107, mir-30e, and mir-210, were found to be similarly
deregulated in the brain and peripheral blood according
to Table 5.

The mirnet online software was also employed to ana-
lyse the target genes for the 10 miRNAs listed in Table 5.
The resulting network diagram, shown in Fig. 6, resulted
in 5173 targets associated with the 10 miRNAs. A
reactome analysis was conducted using the mirnet soft-
ware to determine the roles of the target genes. Only sta-
tistically significant (p <0.05) groups were then extracted
from mirnet. The statistically significant groups with
more than 85 target genes are shown in Fig. 7.

Eight different groups are outlined in Fig. 7: immune
system (716 targets), cell cycle (469 targets), Rho

Fig. 6 Network diagram
extracted from mirnet [91]
miRNA’s (1) targets (@)

mir-210

@ Springer

GTPases (212 targets), gene expression (295 genes), cel-
lular response to stress (130 targets), nerve growth fac-
tors (NGF) signalling (100 targets), Wnt signalling (90
targets), and cellular senescence (87 genes).

Chronic inflammation is well reported in the brain
during Alzheimer’s disease leading to oxidative stress.
Because of this, anti-inflammatory and anti-oxidant
agents are being investigated as a disease-modifying
therapy [92-94]. Both mir-125b and mir-146a have been
connected to neuroinflammation, and they are signifi-
cantly upregulated by NF-kB, a pro-inflammatory tran-
scription factor [95].

Abnormal expression of cell-cycle proteins have been
found in neurons; generally, neurons are post-mitotic
[96]. mir-26b has been implicated in cell-cycle regula-
tion through Rb1/E2F and p27/kipl [69], mir-107 regu-
lates CDK6 [97], and mir-125b can downregulate the
cell-cycle inhibitor CDKN2A [98]. mir-34a has also
been found to be important in the regulation of the neu-
ronal cell cycle and apoptosis [99].

Rho and its effectors have been linked to amyloid-
beta production, as inhibition of Rho-associated kinase
was found to reduce cortical amyloid-beta 42 by 33% in
mice [100]. Amyloid beta has been found to target Rho
GTPases, which may result in changes in the actin cyto-
skeleton [101]. mir-34a can repress expression of RhoA

= mir-30e

ir-200c

: §3\ mir-34c
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Fig. 7 Roles of targets found in
network analysis (Fig. 6)

[102], which is reduced in the post-mortem Alzheimer
disease brain [103].

Altered gene expression in the brain between aged
control and Alzheimer patients has been documented
[104-106].

The increased oxidative stress in the brain during
Alzheimer’s disease induces a stress response in the cells,
for example the release of IL-6, which is altered in the brain
of Alzheimer patients [107]. Cell culture models using
neurones have found an upregulation in mir-210 and mir-
146a in response to increased ROS [108, 109].

There is a moderate increase in NGF in all brain regions
except for the nucleus basalis in Alzheimer’s disease [110].
NGF is a protein, which promotes the growth and survival of
cholinergic neurons, which degenerate in the nucleus basalis
during Alzheimer’s disease [111]. However, this is not an
early pathological event in Alzheimer’s disease as cholinergic
neurons in early Alzheimer’s disease (mild cognitive impair-
ment) show no significant difference to patients with no cog-
nitive impairment [ 112]. Decreased expression of mir-210 has
also been found in response to NGF treatment [113].

Various Wnt signalling components are altered in
Alzheimer’s disease, for example Dkkl is increased in the
Alzheimer disease brain and is implicated in tau phosphory-
lation. Some studies have also shown Wnt signalling to be
neuroprotective [114, 115]. Mir-107 has been shown to regu-
late Dkk1; however, this was in osteosarcoma [116].

The presence of cellular stress can induce senescence. Cell
culture models have shown that amyloid beta can accelerate
cellular senescence [117] and there is an increased number of
senescent astrocytes in the brain [118]. mir-125b is a negative
regulator of p53 in humans [119]. p53 is implicated in cell-
cycle control, apoptosis, DNA, and cellular stress and contrib-
utes to cellular senescence [120].

m Gene Expression

M Cellular responses to stress

m Signalling by NGF

Signaling by Wnt

M Cellular Senescence

m Immune system (Innate, Adaptive

and Cytokine Signalling

m Cell Cycle

W Rho GTPases signalling and
effectors

Conclusion

The review outlines an alternative approach to finding early
miRNA biomarkers for Alzheimer’s disease. It utilises
miRNA deregulated in the blood during late Alzheimer’s dis-
ease and compares to miRNA found to be altered in the brain
during early Alzheimer’s disease. However, the literature is
riddled with inconsistency. This could stem from technical var-
iations or from limitations in comparability due to differences in
a patient’s stage of Alzheimer’s disease (Fig. 3). To improve
comparability, Alzheimer patients could be grouped into Braak
Stages, and direct comparisons could be made between their
pathology and miRNA profile in peripheral blood. Multi-centre
comparisons would also benefit from having a standardised
analytical protocol, storage time, and quantification method.
The review also highlights the possibility of using miRNA
deregulated in post-mortem brain samples to identify potential
biomarker targets, which is possible due to the higher stability
of the miRNAs compared to that of mRNA.
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