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Machine learning classifiers can predict Gleason pattern 4 prostate
cancer with greater accuracy than experienced radiologists
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Abstract
Objective The purpose of this study was: To test whether machine learning classifiers for transition zone (TZ) and peripheral
zone (PZ) can correctly classify prostate tumors into those with/without a Gleason 4 component, and to compare the performance
of the best performing classifiers against the opinion of three board-certified radiologists.
Methods A retrospective analysis of prospectively acquired data was performed at a single center between 2012 and 2015.
Inclusion criteria were (i) 3-T mp-MRI compliant with international guidelines, (ii) Likert ≥ 3/5 lesion, (iii) transperineal template
± targeted index lesion biopsy confirming cancer ≥ Gleason 3 + 3. Index lesions from 164 men were analyzed (119 PZ, 45 TZ).
Quantitative MRI and clinical features were used and zone-specific machine learning classifiers were constructed. Models were
validated using a fivefold cross-validation and a temporally separated patient cohort. Classifier performance was compared
against the opinion of three board-certified radiologists.
Results The best PZ classifier trained with prostate-specific antigen density, apparent diffusion coefficient (ADC), and maximum
enhancement (ME) on DCE-MRI obtained a ROC area under the curve (AUC) of 0.83 following fivefold cross-validation.
Diagnostic sensitivity at 50% threshold of specificity was higher for the best PZ model (0.93) when compared with the mean
sensitivity of the three radiologists (0.72). The best TZ model used ADC and ME to obtain an AUC of 0.75 following fivefold
cross-validation. This achieved higher diagnostic sensitivity at 50% threshold of specificity (0.88) than the mean sensitivity of the
three radiologists (0.82).
Conclusions Machine learning classifiers predict Gleason pattern 4 in prostate tumors better than radiologists.
Key Points
• Predictive models developed from quantitative multiparametric magnetic resonance imaging regarding the characterization of
prostate cancer grade should be zone-specific.

• Classifiers trained differently for peripheral and transition zone can predict a Gleason 4 component with a higher performance
than the subjective opinion of experienced radiologists.

• Classifiers would be particularly useful in the context of active surveillance, whereby decisions regarding whether to biopsy are
necessitated.
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Abbreviations
ADC Apparent diffusion coefficient
AUC Area under the curve
CFS Correlation feature selection
DCE Dynamic contrast-enhanced
DWI Diffusion-weighted imaging
EE Early enhancement
FFNN Feed-forward neural network
LR Logistic regression
ME Maximum enhancement
mp-MRI Multiparametric magnetic resonance imaging
NB Naïve Bayes
PSA Prostate-specific antigen
PSAd Prostate-specific antigen density
PZ Peripheral zone
RF Random forest
ROC Receiver operator characteristic
SI Signal intensity
SMOTE Synthetic minority over-sampling technique
SVM Support vector machine
TPM Transperineal template prostate mapping
TZ Transition zone

Introduction

Prostate cancer is a heterogeneous disease, with a strong relation-
ship between aggressiveness, as characterized by Gleason grade,
and survival [1]. More recently, the concept of Gleason 3 and
Gleason 4 tumors representing distinct disease states has emerged
[2], due to the different signatures at a genomic level [3] and the
distinct survival rates encountered in large long-term follow-up
studies [4, 5]. Indeed, percentage Gleason 4 has been shown to
outperform traditional Gleason grading as a prognostic marker in
a multivariate study of 379 prostatectomy specimens [6].

A reliable, quantitative, and non-invasive test to identify
patients at risk of aggressive disease (those with a potential
Gleason 4 component) would therefore have significant clin-
ical value but does not currently exist.

Clinical parameters such as tumor volume [7] and serum
prostate-specific density (PSAd) have been shown to correlate
with Gleason grade [8].

While there is some evidence that the subjective opinion of
radiologists interpreting multiparametric (mp) MRI can be used
to estimate Gleason grade [9], quantitativemeasurements of sig-
nal intensity including normalized T2 signal intensity and appar-
ent diffusion coefficient (ADC) also moderately correlate with
Gleason grade [10, 11] and have been shown to differ in periph-
eral zone (PZ) vs. transition zone (TZ) tumors [12].

The purpose of this study was (i) to test whether machine
learning classifiers for TZ and PZ (based on clinical and quan-
titativemp-MRI parameters) can correctly classify tumors into
those with/without a Gleason 4 component and (ii) to compare

the performance of the best performing classifiers against the
subjective opinion of three board-certified radiologists.

Materials and methods

Our Institutional Review Board approved the study and waived
the requirement for individual consent for retrospective analysis
of prospectively acquired patient data collected as part of clinical
trials/routine care (R&D No: 12/0195, 16 July 2012).

Patient cohorts

Two temporally separated cohorts were built: one for generat-
ing models (training cohort) and another for temporal valida-
tion (validation cohort).

For the training cohort, a trial dataset of 330 patients was
interrogated. Full details of the trial have been previously re-
ported [13]. In brief, inclusion criteria were (i) men who
underwent previous transrectal ultrasound biopsy whereby
suspicion remained that cancer was either missed or
misclassified and (ii) men suitable for further characterization
using transperineal template prostate mapping (TPM) biopsy.
Exclusion criteria were (i) previous history of prostate cancer
treatment and (ii) lack of complete gland sampling or inade-
quate sampling density at TPM.

Selection criteria for building the training cohort were (i)
3-T mp-MRI, performed between February 2012 and January
2014; (ii) Likert [14] ≥ 3/5 index lesion on mp-MRI, defined
on the trial proforma following multidisciplinary tumor board
discussion, whereby lesions were assigned to be of TZ or PZ
origin; and (iii) TPM and targeted index lesion biopsy
confirming tumor (defined as Gleason score 3 + 3 or greater).
Gleason pattern 5 was not found in any samples. The index
lesion was defined as the most conspicuous lesion with the
highest Likert score (3, 4, or 5). This cohort consisted of 72
Gleason 4 containing lesions (38 Gleason 3 + 4, 34 Gleason
4 + 3), and 27 Gleason 3 + 3 lesions for the PZ whereas the TZ
had 22 Gleason 4 containing lesions (20 Gleason 3 + 4, 2
Gleason 4 + 3), and 27 Gleason 3 + 3 lesions. A flow diagram
for patient selection is shown in Fig. 1.

The validation cohort consisted of 30 consecutivemen: 20 PZ
(6 Gleason 3 + 4, 4 Gleason 4 + 3, and 10 Gleason 3 + 3) and 10
TZ (3 Gleason 3 + 4, 1 Gleason 4 + 3, and 5 Gleason 3 + 3) with
the same selection criteria and scanning protocol as in the training
cohort, performed between June and December 2015.

Table 1 shows the age, the PSA, and the gland and tumor
volume of the patients in the two cohorts.

Multiparametric MRI protocol

Mp-MRI was performed using a 3-T scanner (Achieva,
Philips Healthcare) and a 32-channel phased-array coil. Prior
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to imaging, 0.2 mg/kg (up to 20 mg) of a spasmolytic agent
(Buscopan; Boehringer Ingelheim) was administered intrave-
nously to reduce bowel peristalsis. Mp-MRI was compliant
with the European Society of Uroradiology [14] guidelines.
Full acquisition parameters are shown in Table 2.

Targeted biopsy

Ultrasound-guided TPM ± targeted biopsy acted as the refer-
ence standard for the training cohort using cognitive MR-
guided registration. A systematic biopsy of the whole gland
was performed through a brachytherapy template-grid placed

on the perineum using a 5-mm sampling frame. Focal index
lesions underwent cognitive MRI-targeted biopsies at the time
of TPM. A genitourinary pathologist with 12 years of experi-
ence analyzed biopsy cores blinded to the MRI results. There
were no instances of non-targeted samples yielding higher
Gleason grades than targeted specimens.

TPM and targeted biopsies were chosen as the reference
standard because they are superior to transrectal ultrasound
biopsy, are the sampling method of choice in the active sur-
veillance population, and avoid the spectrum bias associated
with a prostatectomy reference standard [15], which favors
patients with aggressive disease.

Fig. 1 Flow diagram of patient
selection for the training cohort

4756 Eur Radiol (2019) 29:4754–4764



Multiparametric MRI review

Mp-MRI images were qualitatively assessed on an Osirix
workstation by three board-certified radiologists independent-
ly (readers SP, MA, and SP). Radiologists were fellowship-
trained, with 10, 2, and 3 years of experience in the clinical
reporting of mp-prostate MRI, with each year comprising
more than 100 mp-MRIs per year with regular attendance at
weekly multidisciplinary tumor board meetings [16].
Radiologists were informed of the PSA level and subjectively
evaluated whether the index lesion contained a Gleason pat-
tern 4 component or not (i.e., a binary classification), based on
their personal evaluation of imaging characteristics, as devel-
oped from years of prostate MRI reporting and pathological
feedback at multidisciplinary tumor board meetings.

Radiologists were aware that high signal on b = 2000 s/mm2

DWIwith corresponding lowADC value, low T2W signal, and
avid early contrast enhancement compared with normal pros-
tatic tissue suggest higher grade disease [10, 17].

Extraction of mp-MRI-derived quantitative
parameters

MR datasets were analyzed with MIM Symphony Version 6.1
(MIM Software Inc), which carries out rigid translational co-
registration of volumetric and axial T2W, ADC, and DCE
images for semi-automatic registration, after which subse-
quent manual refinement can then be performed.

A fourth board-certified radiologist (EJ) with 3 years of
experience in the quantitative analysis of mp-prostate MRI
was blinded to the histopathology results and the opinion
of the other radiologists manually contoured a volume of
interest for each index lesion and recorded the mean signal
intensity (SI) of each volume on the axial T2W, ADC, and
DCE images at all time points. Contouring was performed
on T2WI and manually adjusted on the DCE images and
ADC maps to account for distortion and registration errors.
A typical contoured lesion is shown in Fig. 2. In order to
standardize signal intensity between subjects, normalized
T2 signal intensity metrics were calculated by dividing the
signal intensity of the lesion by that of the bladder urine
[18].

Early enhancement (EE) and maximum enhancement
(ME) metrics were derived from the DCE-MRI signal en-
hancement time curves. EE was defined as the first strongly
enhancing postcontrast SI divided by the precontrast SI, and
ME as the difference between the peak enhancement SI and
the baseline SI normalized to the baseline SI [19].

Clinical features of the tumor volume, gland volume, and
PSAd were also selected as features to include in the model
development, whereby the first two featuresweremeasured using
tri-planar measurements and the prolate ellipsoid formula [20].

Machine learning models

Five classification models were tested, namely logistic regres-
sion (LR) [21], naïve Bayes (NB) [21], support vector

Table 2 Description of mp-MRI parameters

Sequence Coil TR TE FA
degrees

WFS
(pix)

BW Hz/
Px

FoV
(mm)

SL
(mm)

Gap TSE
factor

PD FS ACQ
matrix

TRs
(s)

Total
scan
duration

T2 TSE coronal Dual 6128 100 90 2.704 160.7 180 3 3 16 R > L No 300 × 290 05:55.4
T2 TSE axial Dual 5407 100 90 2.704 160.7 180 3 0 16 R > L No 300 × 290 05:13.6
T1W TSE Dual 487 8 90 1.997 217.6 240 3 3 4 R > L No 184 × 184 03:06.8
DWI

01505001000
Dual 2753 80 90 40.353 10.8 220 5 0 A > P SPAIR 168 × 169 05:16.5

DWI b2000 Dual 2000 78 90 44.108 9.9 220 5 0 A > P SPIR 168 × 169 03:40.0
DCE Dual 5.8 2.8 10 1.766 246.1 180 3 0 R > L SPAIR 140 × 162 13 04:14.1

TSE, turbo spin echo; TR, time to repetition; TE, time to echo; FA, flip angle;WFS, water-fat shift; BW, bandwidth; FoV, field of view; DWI, diffusion-
weighted imaging; DCE, dynamic contrast-enhanced; TRs, temporal resolution; PD, phasing direction; SL, slice thickness

Table 1 Clinical characteristics

PZ TZ

Parameter Min Max Median Min Max Median

TRC Age (years) 43 79 63.4 48 83.4 65.5

PSA (ng/ml) 2.5 19 6.6 2.7 30.3 9.6

GV (ml) 16 77 35.2 18 65.8 32.1

TV (ml) 0.02 5.1 0.4 0.03 10 1.2

TSC Age (years) 55.7 80.2 69.8 56.8 70 63.3

PSA (ng/ml) 2.7 91 8.1 3.4 18 8.6

GV (ml) 20.8 75.9 43.8 25 100 35

TV (ml) 0.1 15 0.9 0.05 9.4 0.8

PZ, peripheral zone; TZ, transition zone; PSA, prostate-specific antigen;
GV, gland volume; TV, tumor volume; TRC, model derivation cohort;
TSC, temporally separated cohort
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machine [21], random forest (RF) [22], and feed-forward neu-
ral network (FFNN) [21].

To validate each model, a fivefold cross-validation was
applied, whereby data was split into five folds, with four folds
being used for training and one for testing the classifiers. This
was repeated for five trials with each fold used once as a test
set. At each trial, a receiver operator characteristic (ROC)
curve was built for both the training and test set and the cor-
responding AUC calculated. The values of the AUCs for the
five trials were averaged to produce a single estimate, and the
process was repeated for 100 rounds using a different
partitioning of the data for each repetition.

Since the performance of machine learning classifiers
decreases when the data used to train the model is imbal-
anced [23], which applies to the PZ cohort in our study (72
Gleason 4, vs. 27 Gleason 3 + 3), a resampling technique
called Synthetic Minority Over-sampling TEchnique
(SMOTE) [24] was applied to the PZ training cohort.
Here, the minority class is over-sampled by introducing
synthetic examples along the line segments joining any/

all of the k minority class nearest neighbors of each minor-
ity class sample. After applying SMOTE to the PZ training
cohort, 45 synthetic samples belonging to the class of 3 + 3
Gleason cancers were added and this new re-balanced data
was used to generate the classifiers. SMOTE was not ap-
plied to the TZ training cohort as this cohort was sufficient-
ly balanced.

The Statistics andMachine Learning Toolbox ofMATLAB
(version R2017b 9.3.0.713579, MathWorks) was used for all
algorithms, using one hidden layer of 20 neurons for FFNN.

Model feature selection and internal validation

The best combination of features was derived from the train-
ing cohort dataset using the correlation feature selection (CFS)
algorithm [25] for TZ and PZ lesions, denoted as SELTZ and
SELPZ respectively. CFS determines (i) how each feature cor-
relates with the presence of Gleason 4 tumor, and (ii) whether
any of the selected features are redundant due to correlations

(a) (b) 

(c) (d) 

Fig. 2 a Axial T2 TSE of a
64-year-old male showing the
volumetric contour of a TZ
prostate tumor for extraction of
mp-MRI parameters. bAxial post
gadolinium dynamic contrast-
enhanced image. c Axial
(b) = 2000 mm/s2. d ADC Bmap^
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between them. Redundant features were removed from
the SELTZ and SELPZ feature sets.

As Fig. 3 shows, to test whether CFS was effective, we
compared the performance of classifiers trained using all fea-
tures (denoted ALL) with the performance of the classifiers
trained using only SELTZ and SELPZ.

Best model selection and temporal validation

Using SELTZ and SELPZ, we applied a fivefold cross-
validation to compare the classifiers and to select the best
performing zone-specific models, defined by the highest
AUC. A flow diagram of the comparisons is shown in Fig. 4.

Once the best performing models were selected for each
zone, their performance was compared with that of the three
radiologists. Mean values of sensitivity and specificity were
compared with that obtained by the classifiers at three cut-off
points of interest on the ROC curves. In particular, we
considered:

(i) The point characterized by a specificity of 50%
(point_50), which is of interest from a clinical standpoint
as we can tolerate classifying 50% of patients as false-
positives provided a high level of sensitivity (i.e., low
numbers of false-negatives) is maintained.

(ii) The point characterized by a specificity equal to the mean
specificity of the three radiologists who assessed the

Fig. 3 Flow diagram outlining
the feature selection validation
strategy used in the study. CFS,
correlation features selection;
ALL, set containing all the
features; SELTZ, subset of feature
selected for the TZ; SELPZ, subset
of feature selected for PZ;
AUCALLPZ, area under the curve
obtained on PZ using all the
features; AUCALLTZ, area under
the curve obtained on TZ using all
the features; LR, linear
regression; FFNN, feed-forward
neural network; SVM, support
vector machine; NB, naïve Bayes;
RF, random forest, AUCSELPZ,
area under the curve obtained on
PZ obtained using the selected
feature; AUCSELTZ, area under
the curve obtained on TZ
obtained using the selected
feature
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images (point_RAD), we used this point to compare our
models to the performance of an experienced radiologist.

(iii) The point closest to the point with sensitivity and specific-
ity equal to 1 (point_01), we chose this point as it is char-
acterized by the best trade-off between specificity and sen-
sitivity. For all the three points, we derived the correspond-
ing thresholds on the ROC curve obtained on the training
set and then applied these thresholds to compute the
sensitivity/specificity of the classifiers on the test set.

Finally, we applied a temporal-separated validation where-
by the best performing classifier was trained on the training
cohort and tested on the validation cohort. SMOTE was ap-
plied to the training set before using it to train the classifier for
all the analyses performed in the PZ cohort.

Results

Model selection and internal validation

CFS s e l e c t e d SELP Z = {ADC , ME , PSAd} and
SELTZ = {ADC,ME}. Table 3 shows the mean and standard
deviation of the AUCs obtained on the test set by the classi-
fiers using all the parameters (ALL) and the selected features
(SELTZ and SELPZ).

For the PZ, the mean AUC on the test set of the models
trained with SELPZ was greater than that of the models
trained using ALL. However, for the TZ, only LR and
NB benefitted from feature selection, while FFNN, SVM,
and RF obtained slightly better AUC values when trained
with ALL.

To statistically validate the comparison between classi-
fiers trained with and without CFS, we applied the
Wilcoxon signed-rank test for pairwise comparison [26]
between the AUC values obtained on the test set by each
classifier trained with and without feature selection. For
the PZ, all the classifiers except RF obtained statistically
better AUC values when trained with SELPZ than the ones
trained with ALL (p value < 0.05), while for the TZ, only
LR and NB obtained statistically better AUC values when
trained with SELTZ.

Although some TZ classifiers did not statistically improve
their performance when trained with SELTZ, the best
performing models (LR, NB) obtained better results when
CFS was applied. For this reason, we decided to build the
models for both TZ and PZ training the classifiers with
SELTZ and SELPZ, respectively.

For the PZ, LR and NB had higher AUC values followed
very closely by FFNN and RF, with SVM obtaining the worst
results.

The results obtained by the five classifiers on TZ were
similar to the PZ, although the AUC values were generally
lower. NB and LR were the best performing models, and
SVM and RF were the classifiers with the lowest mean
AUC values.

To compare AUC distributions obtained by the different
classifiers for TZ and PZ, the Friedman [26] and Iman and
Davenport tests [26] were applied. If a statistical difference
was detected, the Holm test [26] was performed to compare
the best performing classifier (with the lowest Friedman rank)
and the remaining ones. The results for these tests are shown
in Table 4, whereby the best performing classifiers were NB
and LR for TZ and PZ, respectively. The Iman and Davenport
statistical hypothesis of equivalence was rejected in both
cases.

For the TZ, the Holm post hoc procedure stated that the
AUC distributions on the test set obtained by NB are statisti-
cally better than those of all the other classifiers. For the PZ,
the LR classifier achieved statistically better performance.

Fig. 4 Flow diagram outlining the model validation strategy used in the
study. SELTZ, subset of feature selected for the transition zone; SELPZ,
subset of feature selected for PZ; AUCSELPZ, area under the curve
obtained on PZ obtained using the selected feature; AUCSELTZ, area
under the curve obtained on TZ obtained using the selected feature; LR,
linear regression; FFNN, feed-forward neural network; SVM, support
vector machine; NB, naïve Bayes; RF, random forest; PZ, peripheral
zone; TZ, transition zone
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Radiologist comparison and temporal validation

Figure 5 shows, for the test set, the mean ROC curve along
with the sensitivity and specificity mean values obtained by
the three radiologists and computed at the three cut-off points
over 100 rounds of fivefold cross-validation by NB and LR
classifiers for TZ and PZ.

In Table 5, the mean values of sensitivity and specificity
calculated on the test set at point_50, point_01, and
point_RAD are shown along with those obtained by the three
radiologists.

For the PZ, at all three cut-off points, LR achieved higher
values of sensitivity (0.93, 0.76, and 0.88, respectively) and
specificity (0.53, 0.73, and 0.65, respectively) vs. respective sen-
sitivity and specificity of 0.72 and 0.40 for the three radiologists.

Although the radiologists had a higher specificity in the TZ
than in the PZ, their mean performance (specificity and sensi-
tivity equal 0.82 and 0.44, respectively) was still lower than
that achieved by NB, whereby point_50, point_01, and
point_RAD were equal to 0.88, 0.75, and 0.92 for sensitivity,
and to 0.51, 0.57, and 0.44 for specificity.

Finally, for temporal validation, the best performing classi-
fiers (NB for TZ and LR for PZ) were trained using the train-
ing cohort and tested using the validation cohort. The AUC
values obtained on the validation cohort for TZ and PZ were
0.85 and 1.00, respectively.

Discussion

Our results show that the classifiers designed to predict a
Gleason 4 component in known prostate cancer are zone spe-
cific although use a similar set of features, namely {ADC,
ME, PSAd} for the PZ and {ADC, ME} for the TZ.
Furthermore, the best performing models were superior to
the subjective opinion of radiologists at all probability thresh-
olds and maintained their performance at temporal validation.

Several studies have previously reported logistic regression
and mp-MRI-derived parameters for the prediction of Gleason
grade in prostate cancer [27–30]. While our study is in agree-
ment that ADC is a useful parameter for this purpose, our study
differs from the literature in a number of ways. Firstly, all other

Table 4 Results of the statistical tests on AUC distributions obtained on the test set by the 5 classifiers, trained with SEL following fivefold cross-
validation

TZ PZ

Friedman rank Iman and Davenport, p value Hypothesis Friedman rank Iman and Davenport, p value Hypothesis

LR 1.86 < 0.0001 Rejected 1.49 < 0.0001 Rejected
FFNN 3.43 3.00

SVM 4.95 4.89

NB 1.38 2.62

RF 3.74 3.00

Holm post hoc procedure

i z value p value Alpha/i Hypothesis z value p value Alpha/i Hypothesis

4 SVM 14.40 < 0.0001 0.0125 Rejected SVM 15.20 < 0.0001 0.0125 Rejected

3 TREE 10.59 < 0.0001 0.00167 Rejected FFNN 6.75 < 0.0001 0.00167 Rejected

2 FFNN 9.19 < 0.0001 0.025 Rejected NB 6.75 < 0.0001 0.025 Rejected

1 LR 2.15 0.0318 0.05 Rejected RF 5.05 < 0.0001 0.05 Rejected

TZ, transition zone; PZ, peripheral zone; LR, linear regression; FFNN, feed-forward neural network; SVM, support vector machine;NB, naïve Bayes; RF,
random forest

Table 3 Mean and standard
deviation (in brackets) of the
AUC obtained on the test set by
the five classifiers following the
fivefold cross-validation, when all
the features (ALL) and only the
features selected by CFS (SEL)
are used

TZ PZ

ALL SELTZ p value ALL SELPZ p value

LR 0.65 (0.068) 0.73 (0.004) < 0.0001 0.80 (0.020) 0.83 (0.028) < 0.0001

FFNN 0.62 (0.084) 0.61 (0.081) 0.2713 0.77 (0.033) 0.80 (0.032) < 0.0001

SVM 0.43 (0.064) 0.42 (0.069) 0.2431 0.72 (0.035) 0.73 (0.028) 0.0431

NB 0.73 (0.060) 0.75 (0.047) < 0.0001 0.78 (0.022) 0.81 (0.018) < 0.0001

RF 0.53 (0.061) 0.53 (0.071) 0.32983 0.80 (0.023) 0.80 (0.024) 0.3272

TZ, transition zone; PZ, peripheral zone; ALL, all the features; SELTZ, features selected by CFS for TZ; SELPZ,
features selected by CFS for PZ; LR, linear regression; FFNN, feed-forward neural network; SVM, support vector
machine; NB, naïve Bayes; RF, random forest
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studies excluded tumors < 0.5 ml; meaning, such data is not
generalizable to smaller index lesions, which can be aggressive
[31] and are often followed in active surveillance programs.

Hötker et al [27] studied 195 patients and reported a best
performing univariate parameter (ADC) achieved an AUC of
0.69 for distinguishing 3 + 3 tumors from those containing a
Gleason 4. A possible explanation of their lower reported AUC
could be the multiscanner nature of the study and the combina-
tion of PZ and TZ cancers into a single model. Furthermore, the
authors showed that Ktrans failed to add value for discriminating
such tumors and the models did not undergo external validation.

The other studies in the literature [27–30] derive models
based on less than 60 patients and combine DWI with spectro-
scopic metrics, which necessitates specialist equipment and
knowledge. Indeed, all of our metrics can be extracted from
the minimum protocol requirements as recommended by inter-
national consensus guidelines [14] and thus are more general-
izable to non-specialist centers. Since our model uses PSAd as a
predictor of Gleason 4 tumor, our study affirms that serum and
imaging biomarkers can be synergistic [32]. Our results are also

consistent with another group who found no additive value of
the tumor volume in Gleason grade prediction [27].

In this study, we chose to analyze index lesions only, to
avoid statistical clustering and because index lesions usually
drive management strategy and patient outcome [33], partic-
ularly in the context of focal therapy and active surveillance.
We also chose to exclude patients without evidence of cancer
at biopsy since we wished to build a tool which could be used
in patients who undergo MRI surveillance and would benefit
from quantitative estimates of Gleason grade.

While we did not derive Tofts’model parameters due to our
institutional preference for higher spatial resolution of DCE-
MRI over temporal resolution (which is required for a Tofts’
fitting), we demonstrated that ME which is a robust, semi-
quantitative metric [34] can improve the discriminatory ability
for the prediction of Gleason 4 cancer components above
ADC alone. While enhancement characteristics play a limited
role in PI-RADSv2, the present study suggests these charac-
teristics may be more beneficial in the characterization of
Gleason grade rather than tumor detection.

With further work, machine learning classifiers could be
used in active surveillance programs to non-invasively detect
whether tumors have undergone transformation to a higher
Gleason grade and thereby provoke biopsy or intervention.
This potential application is particularly pertinent in light of
the findings from the ProtecT study [35] which showed no
significant difference in survival outcomes at 10-year fol-
low-up in patients randomized to active surveillance, surgery
or radiotherapy which is likely to impact the uptake of active
surveillance as a management strategy. Indeed, mp-MRI is
already advocated by the NICE in the UK as part of active
surveillance programs [36].

One possible limitation is the unbalanced nature of the PZ
cohort, due to a higher natural incidence of Gleason 4

Fig. 5 Mean ROC curve, along with the sensitivity and specificity mean
values obtained by the three radiologists and computed at the three cut-off
points generated on the test set following the fivefold cross-validation by

the best performing classifiers (NB and LR) on TZ (left) and PZ (right).
PZ, peripheral zone; TZ, transition zone; LR, linear regression; NB, naïve
Bayes; ROC, receiver operator characteristic

Table 5 Mean values of
sensitivity (SN) and
specificity (SP) at the
three cut-off points ob-
tained by the three radi-
ologists and the best
performing classifiers
following fivefold cross-
validation

SN SP

TZ NB point_50 0.88 0.51

NB point_01 0.75 0.57

NB point_RAD 0.92 0.56

Mean Rad 0.82 0.44

PZ LR point_50 0.93 0.53

LR point_01 0.76 0.73

LR point_RD 0.90 0.65

Mean Rad 0.72 0.40

4762 Eur Radiol (2019) 29:4754–4764



containing tumors. However, this was addressed by the use of
SMOTE. Although the TZ cohort was balanced, a larger co-
hort would be required to confirm the performance of classi-
fiers, especially for the validation cohort. While the size of the
two cohorts was limited, overfitting was avoided by feature
selection which reduced the number of input variables, and by
regularization which permitted a small percentage of misclas-
sification in the training dataset to produce a less complex
model. Finally, although TPM biopsy offers several advan-
tages over transrectal ultrasound-guided biopsy, it may not
be as accurate as whole-mount prostatectomy [37].

Further work could therefore consider both prospective
large-scale external validation (e.g., at other centers) and the
impact these predictive models have on patient outcome.

Conclusion

Machine learning classifiers combining PSAd and quantita-
tive multiparametric MRI parameters outperform experienced
radiologist opinion for the prediction of Gleason pattern 4 in
prostate cancer. These classifiers could therefore harbor great
potential when making management decisions in the prostate
cancer pathway and would be particularly useful to inform
decisions regarding patients on active surveillance programs.
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