Skip to main content
. 2019 Jul 30;13:57. doi: 10.3389/fninf.2019.00057

Table 7.

Features of open-source dimensionality reduction toolboxes regarding visualization tools, principal and usage programming language, availability of documentation, number of citations, and support by updates at least once per year.

Toolbox, version Visuali- Language Documen- Cited Support Methods
zation tation
DataHigh v.1.2 + MATLAB + <30 In part FA, GPFA, LDA, PCA
DCA v1.0 MATLAB In part <30 In part DCA
Python
dPCA v0.1 + MATLAB + <300 + dPCA, PCA
Python
GPFA v.2.03 + MATLAB In part >300 In part FA, PCA, pPCA, GPFA
seqNMF + MATLAB + <30 + NMF, PCA
tensor-demo + MATLAB + <30 + TCA
Python
tensortools v0.3.0 + Python + <30 + ccpTD, nnTCA
TD-GPFA v3.0 + MATLAB In part <30 In part FA, GPFA, PCA, pPCA

ccpTD, coupled canonical polyadic Tensor Decomposition; DCA, Distance Covariances Analysis; (GP)FA, (Gaussian Process) Factor Analysis; LDA, Fisher's Linear Discriminant Analysis; NMF, Non-negative Matrix Factorization; (d,p)PCA, (demixed, probabilistic) Principal Component Analysis; (nn)TCA, (non-negative) Tensor Component Analysis. Bold values indicate the number of citations higher than 90.