Skip to main content
. 2019 Jul 30;13:57. doi: 10.3389/fninf.2019.00057

Table 9.

Features of open-source toolboxes for generalized linear modeling of spike data regarding visualization tools, principal and usage programming language, availability of documentation, number of citations (for the paper with the introduced method), support by updates at least once per year and implemented methods.

Toolbox, version Methods Visuali- Language Documen- Cited Support
zation tation
Case-Studies pGLM + MATLAB + <30 +
GLMcode1 pGLM + MATLAB + <30
GLMcode2 pGLM + MATLAB + <30
GLMspiketools v1 cGLM, pGLM, SHF, + MATLAB + >900 +
STB
GLMspike- cGLM, gGLM, + MATLAB + >900 +
traintutorial pGLM, SHF
neuroGLM pGLM, SHF, STB + MATLAB + >90 +
NIMclass v1.0 GLM, GQM, GNM, MATLAB >90 +
NIM
nStat v2 ppGLM + MATLAB In part <30 +
spykesML v0.1.dev pGLM, SHF Python + <30 +

cGLM, GLM with coupling filters; gGLM, linear Gaussian GLM; GNM, Generalized Nonlinear Model (Butts et al., 2011); GQM, Generalized Quadratic Model (Park and Pillow, 2011); pGLM, Poisson GLM (Truccolo et al., 2005); ppGLM, point-process GLM (Paninski et al., 2007); NIM, Nonlinear Input Model (McFarland et al., 2013); SHF, Spikes and covariates History Filters; STB, Smooth Temporal Basis. Bold values indicate the number of citations higher than 90.