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Abstract: Autophagy is a mechanism by which cellular substances are transported to lysosomes for degradation, 
allowing the basic transformation of cellular components, and providing energy and macromolecular precursors. In 
cancer, the contradictory role of autophagy in tumor suppression and promotion has been widely acknowledged. 
Activation and suppression of autophagy have been proposed as cancer therapies, resulting in targeted treatment 
of cancer by autophagy being considered ambiguous. The dynamic effect of autophagy can also be applied to 
hepatocellular carcinoma (HCC), a malignant tumor with high incidence and a low survival rate. In this review, we 
introduce characteristics of different types of autophagy and summarize which genes, non-coding RNAs, and related 
signaling pathways are involved in autophagy and the regulation of the formation and progress of HCC. More im-
portantly, we discuss the role of autophagy in the treatment of HCC, such as in traditional chemotherapy, molecular 
targeted drugs, and natural products.
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Introduction 

Autophagy is an intracellular catabolic pathway. 
By removing misfolded proteins, damaged 
organelles, and lipid droplets, autophagy plays 
a crucial role in energy balance and cytoplas-
mic quality control, and promotes liver homeo-
stasis [1, 2]. Autophagy is active at a basic level 
in cells. It may be further upregulated in 
response to several types of stress that inter-
fere with cell homeostasis, such as low ATP lev-
els, nutrient and growth factor deficiency, 
hypoxic conditions, endoplasmic reticulum (ER) 
stress, pathogen entry, or anticancer drugs [3]. 
The role of autophagy in cancer is important. It 
is believed that autophagy can prevent the 
development of cancer. However, once cancer 
has formed, increased autophagic flux tends to 
enable cancer cells to survive and grow [4, 5]. 
Accordingly, a major challenge in cancer treat-
ment is should we try to enhance or inactivate 
autophagy?

Hepatocellular carcinoma (HCC) is ranked as 
the sixth most common cancer and the third 

leading cause of cancer death [6]. HCC is one of 
the leading causes of cancer-related death 
worldwide and is refractory to nearly all current-
ly available anti-cancer therapies [7, 8]. Despite 
new breakthroughs in treatment and surgery, 
the 5-year survival rate remains unsatisfactory 
[9]. In addition, the use of anticancer drugs to 
treat HCC is limited by the occurrence of prima-
ry and acquired drug resistance [10, 11]. 
Increasing numbers of studies have shown that 
autophagy greatly affects HCC. Autophagy is 
associated with risk factors for HCC, such as 
oxidative stress, persistent inflammation, viral 
infection, metabolic dysfunction, liver alcohol 
disorders, and fatty liver disease [5, 12-14]. 
Therefore, a comprehensive understanding of 
the role of autophagy in HCC may be beneficial 
to develop new diagnostic and therapeutic 
techniques. From a therapeutic point of view, 
understanding whether, when, and how autoph-
agy can be used to cure HCC remains a 
challenge.

In this review, we summarize the characteristics 
of autophagy and focus on some new research 
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hotspots, such as non-traditional autophagy, 
secretory autophagy, and selective autophagy. 
We then summarize which genes, non-coding 
RNAs, and related signaling pathways are 
involved in autophagy, and the regulation of the 
formation and progress of HCC. Finally, we dis-
cuss the role of autophagy in the treatment of 
HCC.

Autophagy

The characteristics of autophagy

Autophagy mainly has three forms: Microau- 
tophagy, macroautophagy (referred to hereaf-
ter as autophagy), and chaperone-mediated 
autophagy. Macroautophagy is an evolutionari-
ly conserved metabolic process, including the 
formation of double membrane vesicles called 
autophagosomes [15]. In the formation of 
autophagosomes, a portion of the cytoplasm, 
which may include organelles, protein aggre-
gates, and lipid droplets, is sequestered in 
large quantities or selectively [16]. Then, the 
outer membrane of the autophagosome fuses 
with a lysosome (forming an autolysosome), 
which leads to degradation of the enclosed 
materials along with the inner membrane of the 
autophagosome. The amino acids and other 
small molecules produced by autophagic deg-
radation are transported back to the cytoplasm 
for recycling or energy production. Autophagy is 
controlled by a series of highly regulated signal-
ing events that occur at a basic level in all cells, 
and may be induced by different signals and 
cellular stresses [17]. Macroautophagy is medi-
ated by a group of evolutionarily conserved 
genes, termed autophagy-related genes (ATGs), 
which were first found via yeast gene screening 
[18]. To date, more than 40 ATGs have been 
identified and their functions have been exten-
sively evaluated. ATGs are involved in the for-
mation, nucleation, expansion, and elongation 
of autophagic membranes, the binding and 
fusion with lysosomes, and the degradation of 
intracapsular products. With a few exceptions, 
all ATG genes are required for efficient fusion of 
autophagosomes and lysosomes [19]. The pro-
cess of autophagy mainly comprises the follow-
ing processes: (a) The activation of the ULK1 
(Unc-51 like autophagy activating kinase 1, 
also known as ATG1) complex [20]; (b) the acti-
vation of the class III PI3K (phosphatidylinosi-
tol-4,5-bisphosphate 3-kinase) complex, ATG- 

14, Beclin 1, p63, and AMBRA1 (autophagy 
and beclin 1 regulator 1) [21]; (c) the ATG5ATG12 
complex then conjugates with ATG16 to expand 
the autophagosome membrane and members 
of the LC3 (microtubule associated protein 1 
light chain 3 alpha) and GABARAP (GABA type  
A receptor-associated protein) families of pro-
teins are conjugated to the lipid phosphatidyl-
ethanolamine (PE) and recruited to the mem-
brane [22, 23]; (d) ATG4B, in conjunction with 
ATG7, conjugates LC3-I and PE to form LC3-II 
[24]; and finally (e) autophagic degradation. 
Microautophagy involves inward invagination of 
the lysosomal membrane, which delivers a 
small portion of the cytoplasm into the lyso-
somal lumen [25]. Chaperone-mediated auto- 
phagy (CMA) is a pathway for protein degrada-
tion in intracellular lysosomes. Chaperone-
mediated autophagy involves the direct trans-
location of cytosolic proteins across the lyso-
somal membrane, which requires protein un- 
folding via chaperone proteins [26]. In addition 
to classical autophagy, there are several non-
traditional types of autophagy that have 
received research attention (Figure 1).

Other kinds of autophagy 

Non-canonical autophagy is a process that 
does not require the entire set of ATG proteins, 
in particular Beclin 1, to form an autophago-
some. Scarlatti et al. found that overexpression 
of BCL2 (BCL2 apoptosis regulator) was unable 
to reverse the non-canonical autophagy trig-
gered by the polyphenol resveratrol in the 
breast cancer cell line MCF-7 [27]. Besides, 
Beclin 1-independent autophagy mediated by 
the neurotoxin 1-methyl-4-phenylpyridinium is 
associated with neuronal cell death [28]. Smith 
et al. found that arsenic trioxide induces a 
Beclin 1-independent autophagic pathway in 
ovarian carcinoma cells and implicates SnoN 
(SKI like proto-oncogene) in promoting arsenic 
trioxide-mediated autophagic cell survival [29]. 
These studies suggested that it is feasible to 
treat cancer by inducing non-canonical autoph-
agy with pro-apoptotic compounds when the 
function of typical autophagic proteins is 
impaired. Some ATG genes are involved in the 
digestion of unwanted extracellular (rather than 
intracellular) material. One such alternative 
function of autophagy proteins is LC3-asso- 
ciated phagocytosis (LAP), which is a macroau-
tophagy-like process [30]. During LAP, the 
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phagosomes phagocytose extracellular con-
tents, such as microorganisms or dying cells, 

which are then transported to lysosomes. 
Cunha et al. revealed that the anti-tumor 

Figure 1. Molecular Mechanisms of different types of autophagy. A. Classic autophagy: Different stimuli cause 
aggregation and activation of multiple ATGs and other regulatory proteins to construct double membrane autopha-
gosomes. Lipidation of LC3 (LC3-II) is essential for capturing autophagy cargo and stabilizing the autophagosome 
inner membrane. Then, autophagosomes fuse to lysosomes in a STX17-dependent manner, resulting in lysosomal 
enzymes degrading the vesicle contents. B. Selective autophagy: Selective autophagy contributes to intracellular 
homeostasis by modulating the degradation of cytoplasmic substances, such as aggregated proteins, damaged or 
excessive organelles, and invading pathogens. Its mechanism must ensure efficient identification and isolation of 
cargo in autophagy. C. Secretory autophagy: ATGs mediate unconventional secretion of multiple proteins lacking 
the N-terminal signal sequence. First, ATGs promote the formation of LC3+ autophagosome-like intermediates, and 
the contents encapsulated in the autophagy inner membrane are released extracellularly rather than degraded in 
lysosomes. Second, the target of secretory autophagy is transferred to the intramembranous space of the LC3+ 
double-membrane vesicle, which is directly fused to the plasma membrane or fused to the secreted MVB interme-
diate. Finally, secretory autophagy may involve extracellular release of MVB/Amphisome intermediates. D. LC3-
associated phagocytosis: The phagocytosis of pathogens recruits UVRAG and Rubicon (RUBCN), thereby activating 
the Beclin-1-VPS34 complex. With the participation of ATG3 and ATG7, lysosome fusion and pathogen degradation 
are accelerated. It is noteworthy that the phagocytic vesicles formed by LAP are single membraned.
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effects of LAP impairment require tumor-infil-
trating T cells, and are dependent upon STING 
(stimulator of interferon genes) and the type I 
interferon response [31]. Muniz-Feliciano et al. 
found that retinal pigment epithelial cells pro-
mote LAP through the expression of RUBCN/
Rubicon (RUN domain and cysteine-rich domain 
containing Beclin 1-interacting protein) and 
suppress autophagy through the activation of 
EGFR (epidermal growth factor receptor) [32]. 
As a pathway related to autophagy, the physio-
logical importance of LAP and its value in tumor 
research deserve further exploration.

Recent findings indicated that ATGs lack 
N-terminal signal sequences and are involved 
in unconventional protein secretion. ATGs may 
be involved in a process that is significantly dif-
ferent from classical autophagy. In addition to 
its role in lysosomal degradation, autophagy 
also controls extracellular secretion. ATGs’ 
involvement in this process was first discov-
ered in yeast secretion of Acb1 (acyl-CoA-bind-
ing protein) [33]. The role of the selective secre-
tion pathway of ATGs regulates the genetic 
requirements of GRASP55 (Golgi reassembly 
stacking protein 55) and GRASP65 for Golgi 
accumulation. This discovery enriched the 
function of autophagy and demonstrated its 
involvement in secretion [34, 35]. Kimura et al. 
found that the prototypical cytosolic secretory 
autophagy cargo, interleukin 1 beta (IL-1β) is 
recognized by specialized secretory autophagy 
cargo receptor TRIM16 (tripartite motif contain-
ing 16) and that this receptor interacts with the 
R-SNARE Sec22b to recruit cargo to the LC3- 
II+ sequestration membranes [36]. Moreover, 
Adam utilized the autophagy-based involve-
ment in cellular secretion to identify shed pro-
teins associated with autophagy levels in mela-
noma [37]. Jacob hypothesized that autopha-
gy-dependent secretion of tumor-promoting 
factors by HNSCC (head and neck squamous 
cell carcinoma)-associated CAFs (cancer-asso-
ciated fibroblasts) may explain their role in 
malignant development [38]. Interestingly, 
autophagy is also associated with the recent 
research hotspot, exosomes. Autophagy prob-
ably contributes to the decreased exosome 
release induced by ISGylation (conjugation of 
proteins to Interferon stimulated gene 15) [39]. 
Dias demonstrated that PRNP (prion protein) 
supports CAV1 (Caveolin 1)-suppressed auto- 
phagy to protect multivesicular bodies (MVBs) 

from sequestration into phagophores, thus 
facilitating exosome secretion. These results 
indicated that secretory autophagy could affect 
the microenvironment of the tumor; therefore, 
further analysis of the cellular mechanisms by 
which autophagy promotes these different 
secretory processes remains an important 
topic for future research.

For a long time, researchers thought that 
autophagy lacked cargo specificity. However, 
we now understand that the control of the 
choice of cargoes is extremely specific. This 
process is called ‘selective autophagy’, which 
plays an important role in preventing most 
mammalian diseases. Liang et al. proposed a 
spatiotemporal model wherein recruitment of 
AMPK (AMP-activated protein kinase) in asso-
ciation with components of the VPS34 (phos-
phatidylinositol 3-kinase catalytic subunit type 
3) and ATG16 complex to damaged mitochon-
dria regulates selective mitophagy to maintain 
cancer cell viability [40]. The selectivity of 
autophagy is achieved by target recognition: 
Kimura demonstrated that a subset of tripartite 
motif (TRIM) proteins mediate selective autoph-
agy of key regulators of inflammatory signaling 
[41]. By removing dangerous cytoplasmic com-
ponents, selective autophagy protects cells 
from oxidative and genotoxic stress, which may 
constitute a tumor suppressor mechanism. In 
addition, all mechanisms for earmarking cargo 
must be tightly coordinated with the formation 
of autophagosomes to ensure final cargo dis-
posal. The mechanisms involved in the recogni-
tion of selective autophagy substrates may play 
an active role in the initiation of autophagy [42, 
43]. Selective autophagy involves a variety of 
mechanisms; the ultimate goal is to ensure 
proper movement of cargo. Substrate phos-
phorylation is also a common mechanism for 
targeting selective autophagy, possibly by acti-
vating specific kinases that enhance selective 
autophagy [44]. A more plausible explanation 
for the tumor-suppressing effect of autophagy 
may be its role as a selective degradation path-
way [45]. Selective autophagy might ensure 
tumor survival by degrading misfolded proteins 
and damaged organelles accumulated in genet-
ically unstable tumor cells. Therefore, targeting 
nonspecific autophagy and its selective forms 
may prove beneficial in the fight against malig-
nant tumors.
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Roles of autophagy in HCC

Autophagy plays a contradictory role in HCC, 
protecting cells from carcinogenesis at the 
early stage and promoting tumor progression at 
the advanced stage [46-49]. This dual role illus-
trates the complexity of targeting autophagy to 
treat HCC. Autophagy-related genes, non-cod-
ing RNAs, and related signaling pathways 
(Figure 2) are involved in autophagy and the 
regulation of the formation and progress of 

and DNA damage, followed by the initiation  
of hepatocarcinogenesis [55]. Another study 
showed that p62 is necessary for HCC induc-
tion in mice and that its high expression level in 
non-tumor human liver predicts rapid HCC 
recurrence after curative ablation [56]. P62 is 
an ubiquitin-binding autophagy receptor and 
signaling protein that accumulates in premalig-
nant liver diseases and most HCCs. Ji et al. 
reported that HuR (human antigen R) functions 
as a pivotal regulator of autophagosome forma-

Figure 2. Autophagy signaling in HCC. A. PI3K/AKT/mTOR: Classic autoph-
agy: Binding of growth factors to receptors triggers PI3K, and then activa-
tion of PI3K catalyzes the production of PIP3, phosphorylation of PIP3, and 
activation of Akt serine/threonine kinase. Subsequently, phosphorylation of 
AKT activates mTORC1, thereby inhibiting autophagy. In addition, activated 
AKT leads to activation of Rheb. Rheb then activates mTORC1. In addi-
tion to direct or indirect activation of mTORC1, active AKT can also directly 
regulate transcription leading to inhibition of autophagy. B. The RAS/RAF/
MEK/ERK pathway: RAS switches from inactive (GDP-bound) to the active 
(GTP-bound) form. Activated RAS binds and recruits RAF kinase to the cell 
membrane for RAF dimerization and activation. Subsequently, activated RAF 
phosphorylates and activates MEK; MEK in turn phosphorylates and acti-
vates ERK/MAPK. Finally, phosphorylated ERK directly activates autophagy, 
or phosphorylates a variety of substrates that trigger autophagy by inhibiting 
mTORC1. C. The Wnt/β-catenin signaling pathway: This pathway can nega-
tively regulate autophagy. β-catenin is a special target for degradation by 
autophagy in starvation stress. D. The AMPK signaling pathway: AMPK is 
an αβγ heterotrimer that is activated by decreasing ATP concentrations and 
increasing AMP concentrations. It induces autophagy via the activation of 
ULK1 or the inactivation of mTOR.

HCC. The exact function of 
autophagy in HCC has not 
been fully determined and is 
controversial. Further in-depth 
research is required to under-
stand the role of autophagy in 
the development of HCC. 

Autophagy-related genes

ATG-mediated autophagy has 
a significant impact on HCC. 
Deletion of the genes encod-
ing Beclin-1, ATG5, or ATG7 in 
mice damaged autophagy and 
promoted the occurrence of 
spontaneous liver tumors in 
aged mice [46, 50, 51]. At the 
same time, the expression 
level of Beclin-1 correlated 
negatively with HCC grading, 
suggesting that to some ex- 
tent, Beclin-1 correlates posi-
tively with HCC, and the low 
expression of Beclin-1 in HCC 
tissues was associated with 
the recurrence and survival 
rates [52, 53]. In addition, 
Takamura reported that mice 
with systemic mosaic deletion 
of Atg5 and liver-specific Atg7-

/- mice develop benign liver 
adenomas [54]. This result 
revealed that autophagy has 
an anti-tumor effect on spe-
cific liver cancers and may 
have a preventative effect on 
the occurrence and develop-
ment of HCC. Tian et al. uti-
lized an ATG5 knockdown 
model to verify that impairing 
autophagy in hepatocytes 
would induce oxidative stress 
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tion by enhancing the translation of ATG5, 
ATG12, and ATG16 mRNAs. Augmented expres-
sion of HuR and ATGs may participate in the 
malfunction of autophagy in HCC cells [57]. In 
addition, UVRAG (UV radiation resistance asso-
ciated) interacts with BECN1 and PIK3C3, and 
is a significant regulator of mammalian autoph-
agy. Feng et al. provided in vitro and in vivo evi-
dence that UVRAG ubiquitination at lysine resi-
dues 517 and 559 promotes autophagosome 
maturation and enhances the lysosomal degra-
dation of EGFR, which significantly inhibits HCC 
cell growth [58]. These reports indicated that 
ATGs are involved in the progress of HCC and 
offer insights into autophagy regulation and 
therapeutic combinations in HCC.

Noncoding RNAs

Noncoding RNAs (ncRNAs), including microR-
NAs (miRNAs) and long noncoding RNAs 
(lncRNAs), are attracting more attention as 
potential new drug targets for human diseases. 
In recent years, the interaction between 
ncRNAs and autophagy has become a hotspot 
in the study of HCC. MiRNAs are a class  
of endogenously expressed, short noncoding 
RNAs, which regulate gene expression post-
transcriptionally [59]. MiRNAs can affect many 
biological processes, such as cell development, 
infection, immunity, and carcinogenesis [60]. 
MiRNAs are involved in various stages of 
autophagy, including phagophore induction, 
nucleation and expansion; the maturation of 
autolysosomes and autophagosomes; and 
have a regulatory role [61]. MiRNAs are increas-
ingly recognized to play an important role in 
physiological and pathological processes, 
including the development and progression of 
tumors. Many microRNAs are involved in 
autophagy regulation of HCC [59]. For example, 
Glycine decarboxylase overexpression inhibited 
migration and invasion via an increase in cellu-
lar autophagy. This effect was reduced by miR-
30d-5p transfection [62]. Furthermore, miR-
NAs regulate autophagy by targeting autopha-
gy-related genes in HCC. Xiu-Tao Fu et al. noted 
downregulated miR-30a in metastatic HCC, 
which mediates Beclin 1 and Atg5-dependent 
autophagy and confers anoikis resistance in 
HCC cells [63]. In addition, the first reported 
miRNA, mir-375, with proapoptotic functions, 
can inhibit autophagy and reduce cell viability 
in HCC cells by binding directly to ATG7 under 

hypoxic conditions [64]. In another study, miR-
26 family members (miR-26a, miR-26b, and 
miR-26a/b) could act as potential autophagy 
inhibitors, making HCC cells sensitive to doxo-
rubicin (Dox) and promoting apoptosis by 
directly inhibiting the expression of serine/thre-
onine protein kinase ULK1, which is a key pro-
moter of autophagy [65]. Interestingly, Lan et 
al. were the first to reveal that autophagy selec-
tively regulates miR224 expression through an 
autophagosome-mediated degradation sys-
tem. They also found that the off-label use of 
amiodarone, an antiarrhythmic agent, effec-
tively suppressed HCC tumorigenesis throu- 
gh autophagy-mediated miR224 degradation, 
both in vitro and in vivo [66]. In general, autoph-
agy and miRNAs are important regulators of 
HCC development. 

Emerging evidence indicates that lncRNAs act 
as competitive platforms for both miRNAs and 
mRNAs [67]. LncRNAs are non-coding RNAs 
longer than 200 nucleotides [68, 69]. LncRNAs 
have a crucial role in various fundamental 
pathophysiological processes, such as carcino-
genesis, that play a regulatory role in the pro-
gression of cancer [70, 71]. The discovery of 
lncRNAs provides a new way to regulate genes 
in almost all essential biological processes, 
including autophagy. A series of studies have 
shown that many lncRNAs are abnormally 
expressed in HCC tissues and participate in 
their biological behaviors, such as proliferation, 
apoptosis, metabolism, migration, and invasion 
[72, 73]. In hepatocellular carcinoma, PTEN 
(phosphatase and tensin homolog) and PLLP 
(Plasmolipin) interact with miRNA17, miRN-
A19B and miRNA20A, inhibiting the PI3K-AKT 
(AKT kinase)-mTOR (mammalian target of 
rapamycin) signaling pathway to inhibite cell 
proliferation, migration/invasion as well as 
induced autophagy and apoptosis [74]. There- 
after, lncRNA HULC was observed to accelerate 
the development of HCC by inhibiting PTEN 
through co-operation with the autophagy of 
miRNA15A, and HULC enhanced the interplay 
between LC3 and ATG3 [75]. Our research 
group confirmed that lncRNA HOTAIR activates 
autophagy by upregulating ATG3 and ATG7 in 
HCC [76]. We also showed that PVT1 (plasma-
cytoma variant translocation 1) could promote 
autophagy as a competing endogenous RNA 
(ceRNA) by targeting miR-365 in HCC [77]. As 
more and more lncRNAs are identified that reg-
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ulate autophagy, it will be interesting to see if 
autophagy also affects the expression of 
lncRNAs. Given the limitations of the studies 
conducted to date, we have limited understand-
ing of the underlying mechanisms of regulation 
between identified lncRNAs and autophagy. Of 
course, lncRNAs have more complex functions 
in autophagy regulation, which requires further 
clarification. Studies also suggest that we may 
need to classify lncRNAs according to their role 
in different types of autophagy, to explore the 
functions of lncRNAs more specifically. Both, 
lncRNAs and miRNAs are often deregulated in 
liver cancer, underlining the importance of 
ncRNAs in hepatocarcinogenic processes [78, 
79]. Therefore, a joint intervention targeting 
ncRNAs and autophagy may be a promising 
therapeutic strategy in HCC.

Signaling pathways of autophagy in HCC

PI3K/AKT/mTOR: The PI3K/Akt/mTOR pathway 
plays an important role in promoting autophagy 
and regulates cell growth, survival, metabo-
lism, and apoptosis under physiological condi-
tions, which has great significance for the 
occurrence and survival of various solid tumors, 
including HCC [80-83]. As a typical survival 
pathway, the PI3K/Akt/mTOR pathway plays an 
increasingly important role in the occurrence of 
HCC. The PI3Ks, which are divided into three 
classes (class I (A and B), class II, and class III), 
are important kinases regulating cell survival, 
proliferation, and differentiation [84, 85]. AKT 
is a key factor in signaling pathways that regu-
late autophagy in a variety of ways [86-88]. AKT 
induces the activation (phosphorylation) of 
mTORC1, a serine/threonine kinase, using the 
phosphatase PTEN, which can decrease the 
level of PI3K and initiate the formation of 
autophagosomes. Evidence indicates that 
abnormal activation of the PI3K/Akt/mTOR sig-
naling pathway frequently occurs in HCC [89, 
90]. Activating or inhibiting this pathway can 
inhibit or activate autophagy, which has differ-
ent effects on HCC. Wang et al. demonstrated 
that overexpressed AFP (alpha-fetoprotein) 
interacts with PTEN in HCC cells, resulting in 
activation of PI3K/Akt/mTOR and a reduction in 
autophagy [91]. Wang applied H2S (hydrogen 
sulfide) to induce cell autophagy by inhibiting 
the PI3K/AKT/mTOR signaling pathway in HCC 
[92]. Moreover, Li et al. verified that IL-37 (anti-
inflammatory cytokine interleukin-37) regulates 

autophagy in HCC via inhibition of the PI3K/
AKT/mTOR signaling pathway. In addition, us- 
ing β-Thujaplicin combined with an autophagy 
blocker or agonist treatment in HepG2 cells, 
Zhang found that β-Thujaplicin induced autoph-
agic cell death (ACD), mediated by reactive oxy-
gen species (ROS), which caused inhibition of 
the Akt-mTOR signaling pathway [93]. In sum-
mary, targeting this pathway might result in 
autophagic cancer cell death, and could be 
used to treat HCC.

The RAS/RAF/MEK/ERK pathway: This path-
way is involved in the induction of apoptosis 
and autophagic cell death in many cancer cell 
lines [94-96]. The RAS/RAF (Raf-1 proto-onco-
gene, serine/threonine kinase)/MEK (MAPK/
ERK kinase 1)/ERK (extracellular signal-regu-
lated kinase) pathway plays multiple roles in 
cell cycle regulation, apoptosis, and differentia-
tion [97]. The mechanism of its involvement in 
autophagy regulation is extremely complex and 
sometimes seems to be contradictory. In par-
ticular, how it fine regulates autophagy in a spe-
cific environment has not yet been clarified. 
Studies have shown that activation of RAF/
MEK/ERK can alter the expression levels of 
autophagy markers LC3 and SQSTM1 (Se- 
questosome 1) [98]. At the same time, there is 
evidence that ERK triggers autophagy by inhib-
iting mTORC1, which can also affect autophagy 
by regulating Beclin-1 [99, 100]. By contrast, 
ERK can cause the downregulation of LAMP1 
(lysosomal-associated membrane protein 1) 
and LAMP2, and prevent the binding of 
autophagosomes to lysosomes, thereby inhibit-
ing the degradation of autophagosomes [101]. 
Frequent mutations in RAS/RAF/MEK/ERK 
pathway members are thought to contribute to 
the development, tumor progression, and 
metastasis of many solid tumors, including 
HCC. RAS was the first human oncogene to be 
identified [102]. To overcome the effects of 
RAS mutations, only EGFR inhibitors and RAF-
MEK-ERK pathway therapies have any effect 
[103]. RASSF1A (Ras association domain fami-
ly 1 isoform A) can inhibit HCC by activating 
autophagy, thus improving the survival rate 
[104]. Wang et al. reported a novel 2-pheny-
loxypyrimidine derivative, E5, which induced 
autophagy via activation of the MAPK (mitogen 
activated protein kinase)/ERK pathway in HCC 
cells [105]. Additionally, cytoplasmic seques-
tration of ERK by binding to PEA-15 (prolifera-
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tion and apoptosis adaptor protein 15) pro-
motes autophagy [106]. These results indicat-
ed that the RAS/RAF/MEK/ERK pathway medi-
ates autophagy and plays a crucial role in HCC.

Wnt/β-catenin signaling pathway: The Wnt sig-
naling pathway is a key signaling pathway that 
directly determines cell proliferation, cell polar-
ity, and cell fate during embryonic development 
and in the regulation of tissue homeostasis 
[107, 108]. Mutations in any molecule in the 
Wnt pathway may cause birth defects, cancer, 
and a range of other diseases [109]. The Wnt/
β-catenin pathway regulates various cell pro-
cesses, such as initiation, growth, survival, 
migration, differentiation, and apoptosis in HCC 
[110-112]. Poor prognosis and disease pro-
gression in liver cancer usually involve upregu-
lation of wnt/β-catenin signaling [113]. In addi-
tion, this pathway can negatively regulate 
autophagy. Inhibition of the Wnt/β-catenin 
pathway leads to the accumulation of autopha-
gy proteins such as LC3-II, ATG7, and Beclin-1 
[114, 115]. Petherick demonstrated that 
β-catenin inhibits autophagy and the expres-
sion of the autophagy adapter p62, whereas 
under conditions of nutrient deficiency, β- 
catenin undergoes proteasome-independent 
degradation through its interaction with autoph-
agy protein LC3 [116]. However, in terms of 
autophagy, the relationship between the Wnt 
pathway and HCC is rarely reported. Lilia’s 
study revealed that the Wnt/β-catenin pathway 
inhibitor fh535 and its derivatives (fh535-N) 
exert anti-tumor effects on hepatoma cells by 
regulating autophagy activity [117]. Unexpe- 
ctedly, Wang et al. used Wnt secretion inhibi-
tion in HCC to show that autophagy was not 
successfully induced [118]. Zhang et al. report-
ed the tetrandrine suppresses HCC cell migra-
tion via suppression of Wnt/β-catenin signal-
ing, which is regulated by tetrandrine-induced 
autophagy [119]. Our previous study verified 
that autophagy could act as an upstream regu-
latory factor to activate Wnt/β-catenin signal-
ing [120]. These results indicated that the Wnt/
β-catenin pathway has a complex relationship 
with the dynamic effects of autophagy and the 
development of HCC, indicating that it could 
represent a new target for liver cancer research.

Other pathways: PERK (pancreatic EIF2-alpha 
kinase) is a common upstream signaling path-
way between autophagy and apoptosis that is 

induced by endoplasmic reticulum (ER) stress. 
Under ER stress, PERK is activated and phos-
phorylates and inactivates EIF2α (eukaryotic 
translation initiation factor 2 subunit alpha). 
This results in the selective induction of ATF4 
(activating transcription factor 4), which induc-
es autophagy and apoptosis [121]. Autophagy 
lies downstream of the PERK signaling axis and 
ultimately leads to tumor cell survival [122]. In 
addition, hepatocyte growth factor (HGF) and 
its receptor tyrosine kinase, MET were first dis-
covered in the 1980s because they are highly 
active in many liver cancers [123, 124]. 
Activated hepatic stellate cells promote the 
progression of HCC cells after sublethal heat 
treatment from autophagic survival to prolifera-
tion via HGF/c-Met signaling [125]. HGF/c-MET 
signaling inhibits autophagy by interacting with 
the PI3K/AKT pathway, while high expression of 
c-MET is observed in HCC samples [126]. When 
treated with HGF-MET kinase activity-targeted 
drugs, tyrosine 1234/1235-dephosphorylated 
MET activated autophagy in HCC [127]. There 
are also many pathways involved in the interac-
tion between autophagy and HCC, such as the 
Hippo pathway [128], EGFR crosstalk [129], 
and the AMPK pathway [130]; however, all 
these pathways require further exploration.

Autophagy and HCC therapy

Currently, liver cancer is the second leading 
cause of cancer-related death worldwide [131, 
132]. Poor prognosis has lead to a 5-year sur-
vival rate of patients with HCC of less than 5% 
[133]. To date, the most effective treatment for 
HCC is surgical resection, interventional radio-
therapy, or liver transplantation [134]. There- 
fore, in this section, we will summarize clinical 
and basic studies that focused on autophagy in 
the context of HCC treatment (Table 1).

Conventional chemotherapeutics

In recent years, more and more chemotherapy 
drugs have been used to treat advanced HCC, 
often involving combined treatment with a vari-
ety of chemotherapy drugs. For example, cispl-
atin combined with doxorubicin, 5-fluorouracil, 
and interferon (INF) can significantly improve 
the survival rate of advanced HCC; however, is 
prone to chemotherapy resistance [135, 136]. 
Therefore, it is essential to study how HCC 
resists chemotherapy and develop new drug 
strategies to overcome chemotherapeutic 
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resistance. Autophagy is a double-edged sword 
for MDR (multidrug resistance), which occurs 
after long-term chemotherapy, leading to 
refractory cancer and recurrence of tumors 
[137]. Autophagy participates in the develop-
ment of MDR and protects cancer cells from 
chemotherapy; however, it also kills MDR can-
cer cells in which apoptosis pathways are  
inactive. Oxaliplatin-based chemotherapy has 

recently been shown to be effective to treat 
advanced HCC [138]. Studies have shown that 
Oxaliplatin can activate autophagy in HCC [139, 
140]. Ren et al. identified EVA1A (transmem-
brane protein 166, an autophagy-related pro-
tein) as a target of miR-125b, and showed that 
it was upregulated in HCC tissues from 
Oxaliplatin-resistant patients, suggesting that 
EVA1A plays a role in resistance to chemother-

Table 1. Autophagy and treatment of hepatocellular carcinoma

Classification Treatment Autophagy status HCC lines Reference

Oxaliplatin ↑ Huh-7 [139, 140]
SMMC-7721

HepG2
Epirubicin ↑ HepG2 [142]

Huh7
Conventional chemotherapeutics Cisplatin ↑ SMMC-7721 [144]

HuH-7
HepG2

5-FU ↑ SMMC-7721 [143]
Hep3B
HepG2

Doxorubicin ↑ HepG2 [145, 184]
Hep3B

Sorafenib ↑ SMMC-7721 [157, 185]
HepG2
Huh7

Hep3B
Panobinostat ↓ Huh7 [186]

Hep3B
HepG2

Molecular Targeting Drugs Egorafenib ↑ HepG2 [159]
Hep3B

Bevacizumab ↑ SMMC-7721 [163]
Hep3B

Salinomycin ↓ HepG2 [166]
Huh7

β-Thujaplicin ↑ HepG2 [93]
SMMC-7721

HCCLM3
P. bistorta aqueous extract ↑ Hep3B [170]

HepG2
Natural Product Arenobufagin ↑ HepG2 [171]

Hep3B
Bel-7402

Baicalin ↑ SMMC-7721 [172]
Oroxylin A ↑ HepG2 [173]

Note: ↑, means that increase of autophagosomes in HCC; ↓, means that decrease of autophagosomes in HCC.
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apy [141]. In general, the response of cancer 
cells to chemotherapy is usually to increase 
autophagy. Meanwhile, restraining autophagy 
makes cancer cells sensitive to anticancer 
drugs. For example, HSF1 (heat shock tran-
scription factor 1) could upregulate ATG4B 
expression and enhance epirubicin-induced 
protective autophagy in HCC [142]. In another 
study, the inhibition of autophagy using 3-meth-
yladenine or siRNA targeting Beclin-1 increased 
chemotherapy (cisplatin or 5FU)-induced apop-
tosis and increased damage to the mitochon-
drial membrane potential in HCC cells [143]. In 
addition, Wu et al. demonstrated that autopha-
gy could cause HCC resistance to cisplatin 
[144]. Moreover, miR-101 inhibited autophagy 
and synergized with either doxorubicin or fluo-
rouracil to induce apoptosis in HCC [145]. In 
summary, targeting autophagy is a promising 
therapeutic strategy to enhance the effects of 
chemotherapy and improve clinical outcomes 
in patients with HCC.

Molecular targeting drugs

Sorafenib, a multitargeted kinase inhibitor, has 
greatly revolutionized the treatment of HCC 
[146]. Currently, representative phase III trials 
have shown that Sorafenib significantly im- 
proves overall survival in patients with 
advanced HCC [147]. The role of Sorafenib 
includes blocking the RAF-MEK-ERK signaling 
pathway to inhibit the proliferation of cancer 
cells, and targeting the vascular endothelial 
growth factor receptor (VEGFR) and platelet-
derived growth factor receptor (PDGFR) to pre-
vent angiogenesis [148]. Although it is now rec-
ognized that Sorafenib can activate autophagy 
and apoptosis, it can also induce autophagy 
through the ERK/MAPK pathway independent-
ly, thus promoting the survival of HCC cells in 
vivo or in vitro [149-151]. Unfortunately, the 
long-term value of Sorafenib is limited because 
of primary and acquired resistance, in which 
autophagy activation is a factor [152-154]. For 
example, Lu et al. found that CD24 (a glycopro-
tein expressed on the surface of most B lym-
phocytes) could regulate Sorafenib resistance 
via activating autophagy in HCC [155]. Wu et al. 
verified that ADRB2 (β-2 adrenergic receptor) 
signaling promotes HCC progression and 
Sorafenib resistance by inhibiting autophagic 
degradation of HIF1α [156]. In another ex- 
periment, targeting ATG5/ATG16L1 inhibited 

autophagy and increased the sensitivity of HCC 
cells to Sorafenib [157]. In addition, Adriamycin, 
a traditional chemotherapeutic drug, can be 
inhibited by Sorafenib, leading to cell progres-
sion, increased survival, and reduced autopha-
gy of HCC [158]. In short, Sorafenib can induce 
autophagy formation and enhance autophagy 
activity, allowing HCC cells to survive. At the 
same time, inhibition of autophagy may be an 
attractive strategy to release the anti-tumor 
potential of Sorafenib in HCC.

Other targeted drugs also have autophagy acti-
vation effects. For instance, Regorafenib may 
act as an adjunctive therapy for patients with 
liver cancer. Regorafenib delays the prolifera-
tion of HCC by inducing autophagy [159]. Tong 
found ANXA3 (Annexin A3) inhibition sensitized 
HCC cells to Regorafenib treatment via sup-
pressing autophagy and activating apoptosis 
[160]. Concomitantly, autophagy can be in- 
duced by EGFR inhibitors [161]. In one study, 
P57-mediated autophagy promoted the effica-
cy of Erlotinib/Cetuximab (EGFR inhibitors) in 
HCC [162]. In addition, Bevacizumab, which tar-
gets VEGF, induces autophagy and combined 
inhibition of autophagy with Bevacizumab can 
significantly inhibit tumor growth in HCC [163]. 
Another inhibitor of VEGF, Linifanib, also induc-
es autophagy in HCC cells. After ATG5 and ATG7 
were inhibited by pharmacological inhibitors or 
short interfering RNAs (siRNAs), cell death 
induced by Linifanib increased significantly 
[164]. In addition, Wu et al. found that the cal-
cium phosphate nanoparticle system could be 
further developed for co-delivery of FTY720 
(Fingolimod) and a Beclin 1 siRNA to treat HCC, 
which enhanced the anticancer efficacy of 
FTY720 [165]. In another study, Klose et al. 
reported that Salinomycin suppresses the late 
stages of HCC autophagy [166]. In conclusion, 
the relationships among small molecule target-
ed drugs, autophagy and HCC need further 
research to provide new strategies to treat 
HCC.

Natural products

Many natural products have been shown to 
have autophagic effects on the growth and sur-
vival of HCC cells. For example, β-Thujaplicin, a 
natural tropolone derivative, exhibits a variety 
of biological properties, including antibacterial, 
antifungal, antiviral, anti-inflammatory, and 
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anticancer potential [167-169]. A study found 
that β-Thujaplicin might inhibit the growth of 
HCC cells by inducing autophagy [93]. In anoth-
er study, P. bistorta (Bistorta officinalis (syn-
onym Persicaria bistorta) aqueous extract (PB) 
induced autophagy, subsequently triggering 
caspase-dependent apoptosis in HCC. P. bis-
torta is used in traditional Chinese medicine 
owing to its anticancer activities [170]. In addi-
tion, Arenobufagin, a natural bufadienolide 
from toad venom, induces apoptosis and 
autophagy in human HCC cells through inhibi-
tion of the PI3K/AKT/mTOR pathway [171]. 
Meanwhile, Baicalin has been demonstrated to 
exert anticancer effects mainly through the 
induction of tumor cell apoptosis and cell cycle 
arrest. Baicalin induces autophagic cell death 
in HCC cells [172]. In addition, Zou et al. report-
ed that Oroxylin A, which is a natural mono-fla-
vonoid extracted from Scutellariae radix, exhib-
its autophagy-mediated antitumor activity in a 
dose and time-dependent manner in human 
HCC cells [173]. Similarly, Berberine, Allicin, 
Matrine, and Glycyrrhetinic acid are plant-
derived molecules that show anti-tumor effects 
by inducing apoptosis and/or autophagy of HCC 
cells [174-176]. Natural products have been 
recognized as a new source of anti-cancer 
drugs and new adjuvant therapy to improve the 
efficacy of chemotherapy and to reduce the 
side effects associated with cancer chemo-
therapy [177].

Other approaches

Increasing evidence suggests that both autoph-
agy inhibitors and inducers contribute to the 
response of HCC therapies. Autophagy inhibi-
tors, such as 3-Methyladenine, chloroquine, or 
knockdown of different ATG genes have been 
reported to enhance the efficacy of Oxaliplatin, 
Cisplatin, 5-Fu and Sorafenib in the treatment 
of HCC [140, 143, 178]. These studies show 
that inhibition of autophagy rendered HCC cells 
susceptibility to chemotherapy-induced apop-
tosis and cell growth inhibition, identifying 
autophagy as a sensitizer that can improve the 
efficacy of conventional chemotherapeutic 
drugs for HCC. Additionally, Rapamycin, an 
inhibitor of mTOR, activates autophagy both in 
vitro and in vivo [179]. Rapamycin showed an 
anti-tumor effects in therapy for HCC [180]. 
Another study showed that mTOR inhibition sig-
nificantly reduced HCC growth and improved 

survival primarily via antiangiogenic effects 
[181]. These results indicated that autophagy 
can be both a promoter and inhibitor of HCC. 
Currently, this mechanism underlying this para-
dox is unknown. In addition, the previously 
mentioned ATGs and non-coding RNAs can also 
participate in autophagy and the treatment of 
HCC. For example, Thomas et al. reported that 
altered expression of autophagy genes was 
associated with poor prognosis [182]. MiR-375 
inhibits autophagy by reducing the expression 
of ATG7 and impairs the viability of HCC cells 
under hypoxic conditions [64]. MiRNAs that 
inhibit autophagy of HCC cells may be devel-
oped as therapeutics. Some inhibitors of 
autophagy-related pathways might also have 
anti-HCC effects. Recent studies have shown 
that at an early time point, Sorafenib increases 
ER stress, which induces the autophagic sur-
vival process in HCC cell lines by regulating the 
JNK/AMPK signaling pathway [183]. Although 
targeting autophagy in the treatment of HCC is 
complex, many basic and clinical studies have 
shown that autophagy can be a potential thera-
peutic target that could enhance the antican-
cer potency of both native tumor suppressor 
mechanisms and chemotherapy.

Conclusion

In general, autophagy plays a double role in 
HCC. Most studies support the view that 
autophagy inhibits tumors. Autophagy plays an 
anti-tumor role in normal hepatocytes by main-
taining cell homeostasis. However, once tumors 
are formed, it will promote the survival of HCC 
cells in the tumor microenvironment. Auto- 
phagy-related genes, non-coding RNAs, and 
related signaling pathways are involved in 
autophagy and the regulation of the formation 
and progress of HCC. In addition, the effects of 
autophagy on traditional chemotherapy, molec-
ular targeted drugs, and natural products can 
also be associated with the treatment of HCC. 
Although it remains a challenge to understand 
the specific molecular mechanisms of autopha-
gy in different stages of HCC, this understand-
ing will help to develop therapeutic targets and 
overcome resistance to current therapies. 
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