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Abstract: Cancer is difficult to cure due to frequent metastasis, and developing effective therapeutic approaches to 
treat cancer is urgently important. Long non-coding RNAs (lncRNAs) have diverse roles in regulating gene expres-
sion at both the transcriptional and translational levels and have been reported to be involved in tumorigenesis and 
tumor metastasis. In this article, we review the emerging roles of lncRNAs in cancer, especially in cancer immunity, 
cancer metabolism and cancer metastasis. We also discuss the use of novel technologies, such as antisense oligo-
nucleotides, CRISPR-Cas9 and nanomedicines, to target lncRNAs and thus control cancers. 
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Introduction 

Cancer is among the most life-threatening dis-
eases, and its morbidity and mortality rank first 
or second among noncommunicable diseases 
[1]. According to global cancer data from 2018, 
cancer morbidity and mortality are increasing 
annually with the rapid growth of the popula-
tion and the problem of the aging population. 
The number of cancer deaths worldwide rea- 
ched 9.55 million, with an incidence rate of 
18.08 million [2]. During the past several 
decades, great success in treating cancer has 
been achieved. However, the survival time of 
most cancer patients is still poor, especially 
that of advanced cancer patients with metasta-
sis. There is an urgent need to understand 
more about the molecular mechanisms govern-
ing tumor progression and to develop more 
effective clinical strategies for cancer 
treatment.

RNA-based therapeutics against cancer has 
gradually changed from concept to reality [3, 
4]. Among these therapeutics, non-coding RNA 
(ncRNA), which refers to a class of RNA that 
does not encode protein, exerts clinical thera-

peutic effects against tumors by inhibiting the 
transcription of mRNA and binding to protein to 
block its function [5]. According to the molecu-
lar size of ncRNA, it can be classified as either 
small non-coding RNA (sncRNA), measuring 
under 200 nucleotides in length, or long non-
coding RNA (lncRNA), measuring over 200 
nucleotides in length [6]. 

An increasing number of studies have docu-
mented that lncRNAs play diverse roles in regu-
lating gene transcription, post-transcription, 
translation, and epigenetic modification. Abe- 
rrant expression or dysfunction of lncRNA is 
closely associated with various diseases [7-10]. 
LncRNAs may regulate cell proliferation, apop-
tosis, migration, invasion and maintenance of 
stemness during cancer development [11, 12]. 
Recent studies have shown that lncRNAs may 
also engage in remodeling the tumor microenvi-
ronment and tumor metastasis. In this review, 
we will discuss the emerging roles of lncRNAs in 
tumorigenesis, tumor immunity, tumor metabo-
lism and tumor metastasis. Considering the  
pivotal roles of lncRNAs in cancer, lncRNA-
based therapeutics may represent promising 
approaches in treating cancer.
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LncRNAs in tumorigenesis and tumor progres-
sion

Tumor formation is not only marked by the 
unrestricted expansion of tumor cells but also 
includes many biological processes, such as 
genomic mutation, DNA damage, immune 
escape, and metabolic disorder. LncRNAs are 
distributed in both the nucleus and cytoplasm 
and serve as important post-transcriptional 
translational regulators in these processes 
(Figure 1).

DNA damage

DNA damage caused by exogenous factors and 
chemicals or its abnormal cellular localization 
could transmit dangerous signals in cells [13] 
(Figure 1). The accumulation of DNA damage is 
one of the symbols of tumor progression. Many 
molecules participate in facilitating or inhibiting 
DNA damage. 

P53, which has been extensively studied as a 
tumor suppressor, plays important roles in DNA 

damage. The lncRNA MEG3 activates p53 to 
exert its anti-cancer effect [14]. Many other 
lncRNAs are associated with the downstream 
activities of p53 [15-17]. When DNA is dam-
aged, the transcription of the lncRNA damage 
induced noncoding (DINO) is activated via p53, 
thereby controlling the stress response after 
DNA damage [18]. Additionally, specific expres-
sion of lncRNA-DINO activates the impaired sig-
naling pathway and cell cycle arrest in the 
absence of DNA damage [18] (Figure 1). In 
addition, lncRNA CCND1-upstream intergenic 
DNA repair 1 and 2 (CUPID1 and CUPID2) 
involves in the progression of breast cancer by 
modulating the stress response to DNA dam-
age [19]. These studies indicate that lncRNAs 
respond to DNA damage and may be involved in 
DNA repair, which is a fundamental issue for 
carcinogenesis.

Immune escape

Immune escape has long been considered as 
one of the hallmarks of cancer. Tumor cells may 
train macrophages and regulatory T cells (Treg), 

Figure 1. LncRNA in tumorigenesis and tumor metastasis. Divided into six subtypes: Immune escape, DNA damage, 
Metabolic disorders, EMT, Cell stemness, Chemical resistance.
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forming an inseparable “fortress”, to escape 
from threats of killer T cells. LncRNAs have 
been documented to involve innate and adap-
tive immune responses by modulating the func-
tional status of immune cells [20-24]. For 
instance, lnc-EGFR promoted immune escape 
of hepatocellular carcinoma cells by stimulat-
ing the differentiation of Treg cells [25]. In  
the tumor microenvironment, tumor-associated 
macrophages display limited phagocytosis 
function and promote the progression of can-
cer. LncRNA lymph node metastasis associat-
ed transcript 1 (LNMAT1) was involved in the 
regulation of CCL2 recruiting macrophages into 
the tumor [26] (Figure 1).

In tumor-specific cytotoxic T lymphocytes (CTLs) 
and type 1 helper T (TH1) cells, an NF-κB-
interacting long noncoding RNA (NKILA) may 
enhance T cell sensitivity to activation-induced 
cell death by mechanically inhibiting the NF-κB 
signaling pathway [27]. In addition, lncRNA 
CamK-A participates in the remodeling of the 
tumor microenvironment via activation of Ca2+-
triggered signaling [28] (Figure 1). 

Taken together, these evidences suggest that 
lncRNAs may be pivotal regulators in remodel-
ing the tumor immune microenvironment. 

Metabolic disorders

Cellular metabolic disorder is one of the most 
prominent characteristics of cancer. Abnormal 
cellular metabolic processes not only provide 
energy for the proliferation of cancer cells, but 
also maintain cellular redox homeostasis by 
inhibiting reactive oxygen species production. 
Notably, the proportion of cellular metabolites 
ATP/AMP is altered by various stimulations. 
Energy stress may increase the ratio of AMP/
ATP which activates AMP-activated protein 
kinase (AMPK) [29] (Figure 1). 

Under energy stress, the lncRNA neighbor of 
BRCA1 gene 2 (NBR2) activated AMPK via 
direct binding. Knockdown of lncRNA-NBR2 
lead to cell metabolism disorders and subse-
quently promoted cell proliferation [30]. Mito- 
chondria are the center of energy metabolism, 
and their homeostasis is also affected by 
lncRNA. The lncRNA-SAMMSON bound to the 
major mitochondrial regulator p32 protein in 
melanoma cells and enhanced its cancer-pro-
moting function [31] (Figure 1).

In addition, glycolysis replacing oxidative phos-
phorylation is the principal mode of energy 
metabolism in cancer cells. Hypoxia-inducible 
factor 1-alpha (HIF-1α) plays an important role 
in this process. Recent studies have reported 
an interaction between HIF-1α and lncRNAs. 
Long intergenic non-coding RNA for kinase acti-
vation (LINK-A) regulated the phosphorylation 
of HIF-1α, maintained its stability, and activat-
ed the transcriptional program of HIF-1α to pro-
mote tumorigenesis of triple-negative breast 
cancer (TNBC) [32]. HIF-1α up-regulated the 
expression of lincRNA-p21 and participated in 
tumor formation by regulating the Warburg 
effect [33]. Long noncoding HIF-1α co-activat-
ing RNA (LncHIFCAR) is a co-activator of HIF-1α 
that drives the progression of oral cancer [34] 
(Figure 1).

The redox reaction is inhibited during the prolif-
eration of tumors, and ATP is mainly formed by 
the decomposition of pyruvate by lactate dehy-
drogenase, creating a hypoxia microenviron-
ment inside of the tumor. In a hypoxic environ-
ment, histone deacetylase 3 inhibits the 
expression of lncRNA low expression in tumor 
(LET) by reducing histone acetylation of the 
lncRNA-LET promoter region, and the low 
expression of lncRNA-LET is a key step in stabi-
lizing the nuclear factor 90 protein, thereby pro-
moting cancer cell invasion [35] (Figure 1). 

In addition, lncRNA HOXB-AS3 participated in 
the metabolism of cancer by affecting the 
expression of a conserved 53-amino acid pep-
tide [36], while lncRNA FoxO-induced long non-
coding RNA 1 (FILNC1) functioned as a tumor 
suppressor. The down-regulation of FILNC1 
enhanced glucose metabolism and lactic acid 
production by increasing the expression of 
c-Myc [37] (Figure 1).

These evidences suggest that lncRNA is 
involved in many aspects of cell metabolism, 
such as ATP production, the hypoxic environ-
ment, and Warburg effect regulation. Therefore, 
these lncRNAs may serve as potential thera-
peutic targets through inhibiting tumor energy 
production and reprogramming its growth 
microenvironment.

LncRNA in tumor metastasis

EMT

Epithelial-mesenchymal transition (EMT) is a 
complex multi-step biological process that is 
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orchestrated by a variety of EMT-inducing tran-
scription factors. Briefly, epithelial-like cells 
transdifferentiate into mesenchymal-like cells, 
facilitating their invasion and migration into 
blood vessels and lymphatic vessels, thereby 
participating in the metastasis of a variety of 
cancers [38-41]. Previous studies have also 
found that lncRNAs are involved in the regula-
tion of EMT in tumors [42] (Figure 1).

Transforming growth factor β (TGF-β) acts as an 
initial agonist in EMT. It promoted cell migration 
and invasion by inducing the occurrence of EMT 
[43]. LncRNA activated by TGF-β (lncRNA-ATB) 
induced distant metastasis of liver cancer by 
up-regulating the levels of zinc finger E-box-
binding homeobox (ZEB1 and ZEB2) to stimu-
late the EMT cascade [12]. In addition, TGF-β 
induced the production of LIN28B, which par-
ticipated in the development of pancreatic duc-
tal adenocarcinoma (PDAC) [44]. LncRNA MEG3 
participated in the TGF-β signaling pathway via 
RNA-DNA triplex structures [45] (Figure 1). 

In addition, lncRNA human ortholog RNA of 
Dreh (hDREH) was down-regulated by hepatitis 
B virus X protein (HBx), which is an inhibitor of 
EMT in hepatocellular carcinoma (HCC) [46]. 
Further studies have revealed that the tran-
scription factor PNUTS has its corresponding 
lncRNA-PNUTS, which is involved in the metas-
tasis of breast cancer by affecting the EMT pro-
cess [47] (Figure 1).

HOTAIR is also known to promote the metasta-
sis of various cancers, such as breast cancer, 
liver cancer, and pancreatic cancer [42, 48-50]. 
TGF-β secreted by carcinoma-associated fibro-
blasts stimulated the expression of HOTAIR in 
cancer cells to activate the SMAD cascade sig-
naling pathway and subsequently induced the 
EMT process and promoted cancer metastasis 
[51] (Figure 1). 

Collectively, many lncRNAs have been docu-
mented to regulate the EMT process during 
tumor metastasis. However, EMT is an intricate 
multi-cascade process. The roles of lncRNAs in 
the trans-vascular migration process and vas-
cular circulation require more in-depth 
research. On the other hand, it is known that 
spread tumor cells may undergo mesenchymal-
epithelial transition (MET) when they arrive at 
the distant organ, which facilitates the growth 
of overt metastasis lesions. Whether lncRNAs 

also participate in the MET process remains an 
intriguing issue. 

Cancer cell stemness

Stemness is an important property of tumor 
metastasis-initiating cells. After colonization of 
spread tumor cells into distant tissues, tumor 
metastasis-initiating cells with high stemness 
can survive and form micrometastases and 
subsequent overt macrometastases. This step 
is critical for tumor cell colonization and metas-
tasis and is coordinated by various signaling 
pathways. 

Various studies have shown that lncRNAs are 
involved in stemness-related signaling path-
ways. For example, lncRNA tumor suppressor 
long noncoding RNA on chromosome 8p12 
(TSLNC8) exerted a tumor suppressor function 
by inhibiting the STAT3 signaling pathway [52], 
and lncRNA MST1/2-antagonizing for YAP acti-
vation (MAYA) participated in the Hippo-YAP sig-
naling pathway [53]. These lncRNAs might be 
directly regulating cell stemness [52, 53] 
(Figure 1). LncBRM stimulated YAP1 to regulate 
the self-renewal of liver cancer stem cells [54]. 
LncSox4 participated in the self-renewal of liver 
cancer-initiating cells through the STAT3 path-
way [55]. The expression of lncTCF7 recruited 
the SWI/SNF complex and further activated the 
Wnt signaling pathway based on the activation 
of the TCF7 transcriptional promoter, thereby 
promoting the stemness of cancer cells [56] 
(Figure 1).

In summary, lncRNA plays a pivotal role in can-
cer metastasis. Emerging findings in this field 
have revealed more previously unknown func-
tions of lncRNA in tumor progression and 
metastasis. Thus, targeting lncRNAs as a prom-
ising approach to treat cancer has attracted 
interest from researchers in recent years.

Therapeutic opportunities of lncRNA in con-
trolling cancer

Non-coding RNAs play a significant role in 
tumorigenesis and tumor progression [57]. 
LncRNAs may be promising targets for control-
ling cancer. Some efforts have been paid to the 
lncRNA therapy in animal models via various 
methods. In this section, we list four types of 
approaches targeting lncRNAs in cancer treat-
ment (Figure 2).
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Antisense oligonucleotides

Antisense oligonucleotides (ASOs), which may 
form a DNA-RNA structure with target RNA 
through base pairing rules, can trigger RNase-
H-mediated RNA degradation. ASOs have been 
clinically tested for targeting mRNA in cancer 
[58]. As we have reviewed above, the aberrant 
expression of lncRNAs regulates tumorigenesis 
and tumor progression [59-63]. Targeting 
lncRNA by ASO may be a promising method for 
treating cancer.

Knocking down metastasis-associated lung 
adenocarcinoma transcript 1 (MALAT1) by 
ASOs significantly inhibited tumor growth and 
metastasis, including breast cancer [64] and 
lung cancer [65]. Prostate cancer is mild in 
most patients, while only a small percentage of 
patients have a definite deterioration in symp-
toms [66, 67]. One study has found that a small 
percentage of patients with high expression of 
the lncRNA second chromosome locus associ-
ated with prostate-1 (SChLAP1) showed signifi-

cantly limited tumor formation and metastasis 
after ASO-mediated down-regulation of lncRNA-
SChLAP1 [57], providing idea for the clinical 
treatment of malignant prostate cancer. In 
addition, targeting lnc-USMycN by LNA-ASO 
markedly inhibited tumor formation in mice 
with neuroblastoma [68].

Due to the poor membrane permeability of 
ASOs, ASOs are mainly constricted within the 
cytoplasm and it is difficult for ASOs to manipu-
late sub-nucleus lncRNAs [69]. Although recent 
studies have claimed the abundance of 
RNase-H inside nucleus, it is still difficult to 
obtain accurate therapeutic effects. Linking 
ASOs with nanotechnology may be a latent 
method and we will discuss them in detail in 
the following sections (Figure 2).

CRISPR/Cas9 genome editing technique

As a technology for specific DNA modification  
of targeted genes, CRISPR/Cas9 has also 
received extensive attention in the treatment of 

Figure 2. Targeting lncRNA to treat cancer. ① ASOs-mediated knock down of cytoplasmic and nuclear lncRNA tran-
scription levels through RNaseH-dependent degradation. ② CRISPR-cas9 based knock-out strategy of lncRNA via 
specific gDNA. ③ Two methods of virus therapy, encapsulated shRNA or lncRNA-mediated knock down or up-regula-
tion of targeted lncRNA, or NATs-mediated down-regulation of lncRNA elevating the expression of neighboring tumor 
suppressor genes. ④ Nano-carrier-absorbed on nanodrugs detached within cytoplasm after specific stimulation.
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cancer. Recent studies have found that 
CRISPR/Cas9 can successfully silence the 
transcription of the lncRNA-expressing loci [70, 
71]. CRISPR/Cas9 targeted the transcriptional 
site of a gene promoter to silence transcription 
[72]. Studies have found that more than 16,000 
lncRNA promoters in the human genome could 
be targeted by guide RNAs [73].

The CRISPR/Cas9 system has been used to tar-
get genomic DNA in cancer cells and animal 
cancer models. For example, knockout of 
lncRNA-NEAT1 and lncRNA-MALAT1 dramati-
cally inhibited the metastasis of cancer cells 
[74, 75]. LncRNA-NEAT1 is involved in the regu-
lation of the replication stress response and 
chemosensitivity of cancer cells. Knockout of 
LncRNA-NEAT1 induced the sensitivity of pre-
cancerous cells towards DNA damage-induced 
cell death and promoted the lethality of chemo-
therapy drugs on cancer cells [74]. Previously, 
we reported that lncRNA-GMAN is a gastric 
cancer metastasis-associated long non-coding 
RNA. GMAN is highly expressed in gastric can-
cer cells and is associated with poor prognosis 
[76]. A well-designed proof-of-concept animal 
experiment found that the delivery of a CRISPR/
Cas9 system targeting GMAN significantly sup-
pressed the metastasis of gastric cancer cells 
and improved overall survival in mice [76]. 

Many lncRNAs are expressed specifically in dif-
ferent tissues and even different people. 
Therefore, it is clinically possible to make per-
sonalized treatment depending on the situation 
of patients. Although CRISPR/Cas9 has broad 
adaptability and target specificity as a genome 
editor theoretically, off-target cleavage events 
can still occur in practical applications [77, 78]. 
Therefore, oncologists should be more cau-
tious in designing gene-editing therapy. Now, 
the clinical application of the CRISPR/Cas9 sys-
tem targeting lncRNA to treat cancer can be 
vague. Moreover, developing more specific 
gene-editing tools is important [79] (Figure 2).

Virus

As a superior RNA interference (RNAi) transfec-
tion method, viral vectors mainly include recom-
binant vectors of adenovirus, lentivirus and ret-
rovirus. RNAi is a biological process of specific 
gene knockdown via neutralizing targeted RNA 
by exogenous double-stranded RNA, first fo- 
und in Caenorhabditis elegans [80-82], which 

includes short interfering RNAs (siRNAs) and 
short hairpin RNAs (shRNAs). Despite its speci-
ficity, siRNA’s efficiency is transient due to its 
instability, while stem-loop shRNA may provide 
a durable and long-lasting effect in vivo 
[83-86]. 

In particular, the application of adenovirus  
vectors is far more extensive, and there have 
been emerging clinical trials [87-89]. Adeno-
associated viruses (AAVs) are structures of 
uncoated, single-stranded DNA [90]. The AAV-
based vector is an efficient gene delivery sys-
tem, mainly due its non-pathogenicity, free 
from immune response and stability within live 
cells [91]. After large-scale screening, more 
ideal AAVs have been developed for human 
cancer cells [92]. AAVs have laid a solid founda-
tion for the clinical treatment of tumors by tar-
geting lncRNA.

There have been many reports on the use of 
shRNAs to target lncRNAs in treating cancer. In 
a recent study, the lncRNA-BCAR4 knockdown 
cell line constructed by lentiviral transfection 
significantly inhibited the formation of metasta-
ses in breast cancer in vivo in mice [93]. In 
addition, transfecting the HOTAIR shRNA with a 
retrovirus in a gastric cancer cell line signifi-
cantly inhibited cells from spreading in the peri-
toneal dissemination [94]. It was also found 
that knockdown of lncRNA-PNUTS by an adeno-
virus system could reduce the formation of pri-
mary breast cancer and metastases via inhibit-
ing the expression of metastatic Ki-67 [47] 
(Figure 2).

On the other hand, some lncRNAs with tumor 
suppressor function are expressed at low levels 
in tumors. It becomes feasible to upregulate 
the expression of these lncRNAs to achieve 
cancer treatment. Virus transfection, as the 
main method for accurately transmitting the 
shRNA plasmid to the target site, can also be 
used to transfect exogenously synthesized 
lncRNA plasmids into cancer cells to upregulate 
corresponding lncRNAs. However, solid experi-
mental data are required to verify the feasibility 
and practicability of this method (Figure 2).

There is also a small class of special non-cod-
ing RNAs in the human genome, natural anti-
sense RNAs (NATs), which belong to non-coding 
RNAs and are antisense to the overlapped pro-
tein-coding gene [95]. Studies have shown that 
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inhibition of NATs expression can upregulate 
the expression of neighbor/overlapping coding 
genes [96, 97]. Therefore, it is possible to apply 
a method such as ASO to knock down NATs that 
are adjacent to or overlap with certain tumor 
suppressor genes, such as CDKN2B (ANRIL) 
and CDKN1A (P21-AS) [98, 99], and then 
upregulate their expression to treat cancer 
(Figure 2).

Although viral transfection has achieved excel-
lent therapeutic results in basic research, the 
complexity of clinical trials is considerable. It is 
noteworthy that the off-target effect has spe-
cies differences [100, 101]. Therefore, dose 
control and improved accuracy of viral infec-
tions should be seriously considered in future 
applications.

Nanomedicine

After being proposed in the 1990s, nanotech-
nology gradually gained prominence due to its 
small size, biodegradability, ability to covalently 
combine with a large variety of small molecule 
drugs, and ability to reach sub-nucleus targets. 
As a consequence, its potential in treating can-
cer and related diseases has gradually 
developed.  

Nanomedicine is usually composed of four 
main structures: drug, targeting agent, imaging 
agent, and linker. In the classification of third-
generation nanomedicines, five types of nano-
medicines have been proposed based on the 
specific resistance of cancer, including the fol-
lowing: (I) Lipid-based nanoparticles (lipo-
somes), which are lipid-based vesicles that are 
capable of carrying payloads in either an aque-
ous compartment or embedded in the lipid 
bilayer and have been previously used in con-
junction with paclitaxel to target human epider-
mal growth factor receptor 2 (HER2) for clinical 
trials [102]. (II) Polymer-based nanoparticles 
and micelles are composed of biodegradable 
or natural multimer covalently cross-linked 
therapeutic particles. Among these nanoparti-
cles and micelles, two multimers, polylactide 
(PLA) and poly (lactide-co-glycolide) (PLGA), 
have been used to synthesize FDA-approved 
nanomedicines [103]. (III) Dendrimers are well-
defined globular structures with a central core 
composed of multiple branched polymers. 
Clinical trials using dendrimer complex struc-
tures to transport paclitaxel for the targeted 
treatment of breast cancer and non-small-cell 

lung cancer have been conducted [104]. (IV) 
Carbon-based nanoparticles mainly release 
drug particles into the cytoplasm through pin-
hole-like penetration. Therefore, the constitu-
ent materials of carbon-based nanoparticles 
must be fine and small in size, as well as biode-
gradable. Previous studies have used this 
material in the treatment of cancer [105]. (V) 
Metallic and magnetic nanoparticles, such as 
gold nanoparticles, can be used to transport 
small molecules, such as proteins, and can 
release covalently bound drugs through photo-
physical properties, such as tumor necrosis 
factor α (TNFα) bound to colloidal gold for the 
treatment of solid tumors [106, 107]. 

Although scientists have developed diverse 
nanomedicines, multi-drug resistance (MDR) in 
cancer cells is still challenging. P-glycoprotein, 
which is highly expressed on the surface of 
cancer cells, can activate the efflux of anti-can-
cer drugs within tumor cells, leading to a signifi-
cant decrease in drug potency. Similarly, 
lncRNAs can also regulate cancer cell sensitiv-
ity towards different types of drugs. LncRNA 
urothelial cancer-associated 1 (UCA1) is in- 
volved in the chemical resistance of bladder 
cancer by regulating Wnt6 [108], and lncRNA 
MACC1-AS1 is involved in the chemical resis-
tance of gastric cancer through fatty acid oxida-
tion [109]. 

Additionally, a system has been established for 
the stable transportation of nanomedicine into 
the nucleus. Mechanically, the nanodrug binds 
to the nanotruck through an aptamer, which 
facilitates its cell membrane permeability and 
then detaches the nanodrug from the nanotruck 
through near-infrared (NIR)-range (700-900 
nm) radiation in the cytoplasm [110, 111], 
eventually entering into the nucleus [111]. 
Since the majority of lncRNAs are located in the 
cell nucleus, via this system, sub-nucleus 
lncRNAs can be accurately and effectively tar-
geted to obtain the desired therapeutic effect 
(Figure 2).

Conclusions 

Numerous studies have documented that 
lncRNA plays a key role in tumorigenesis and 
tumor progression. In particular, abnormal 
lncRNA expression may accompany DNA dam-
age, immune escape as well as cellular meta-
bolic disorders in cancer cells. The diversity 
and heterogeneity of lncRNAs make the compli-
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cated tumorigenesis process even more intrigu-
ing. In addition, lncRNA is also strongly associ-
ated with EMT, as well as the regulation of cell 
stemness. These findings together make 
lncRNA a solid component of tumor metasta-
sis. Therefore, targeting lncRNA could be  
an opportune clinical approach in cancer 
treatment. 

Combination therapy has made great progress 
in the clinical treatment of tumors. Combining 
surgery with chemotherapy, or the emergence 
of specific targeted-drugs, has further improved 
the survival rate of patients. Recently, with the 
significant clinical achievements in immuno-
therapy of PD1/PD-L1, ideas focusing on the 
re-stimulation of the suppressed cellular immu-
nity of patients through immunotherapy have 
been under the limelight of cancer research. As 
a part of the immune escape of cancer cells, 
lncRNAs may provide new insight for future can-
cer treatment combined with immunotherapy.

The rapid development of a new generation of 
gene-editing tools makes it possible to target 
lncRNA inside tumor cells. ASOs or CRISPR/
Cas9-based therapy has already shown the fea-
sibility of gene editing in treating cancer, but 
their off-target event or unstable efficiency due 
to the spatiotemporal specificity of lncRNA 
should also be carefully evaluated before fur-
ther application. Moreover, the combination of 
nanotechnology and bioinformatics acceler-
ates new nanoparticle development as well as 
its optimization under clinical conditions via the 
deep analysis of lncRNA functions and distribu-
tion. The emergence of new cancer therapeutic 
strategies worldwide exhibits promise in the 
treatment of cancer, one of the most serious 
human diseases.
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