
LIM-domain transcription complexes interact with ring-finger
ubiquitin ligases and thereby impact islet �-cell function
Received for publication, December 3, 2018, and in revised form, June 2, 2019 Published, Papers in Press, June 11, 2019, DOI 10.1074/jbc.RA118.006985

Alexa K. Wade‡§1, Yanping Liu‡§1, Maigen M. Bethea‡§, Eliana Toren‡§, Hubert M. Tse§¶, and X Chad S. Hunter‡§2

From the ‡Department of Medicine, Division of Endocrinology Diabetes and Metabolism, §Comprehensive Diabetes Center, and
¶Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Edited by Joel M. Gottesfeld

Diabetes is characterized by a loss of �-cell mass, and a greater
understanding of the transcriptional mechanisms governing
�-cell function is required for future therapies. Previously, we
reported that a complex of the Islet-1 (Isl1) transcription factor
and the co-regulator single-stranded DNA– binding protein 3
(SSBP3) regulates the genes necessary for �-cell function, but
few proteins are known to interact with this complex in �-cells.
To identify additional components, here we performed SSBP3
reverse– cross-linked immunoprecipitation (ReCLIP)- and MS-
based experiments with mouse �-cell extracts and compared the
results with those from our previous Isl1 ReCLIP study. Our
analysis identified the E3 ubiquitin ligases ring finger protein 20
(RNF20) and RNF40, factors that in nonpancreatic cells regulate
transcription through imparting monoubiquitin marks on his-
tone H2B (H2Bub1), a precursor to histone H3 lysine 4 trimeth-
ylation (H3K4me3). We hypothesized that RNF20 and RNF40
regulate similar genes as those regulated by Isl1 and SSBP3 and
are important for �-cell function. We observed that Rnf20 and
Rnf40 depletion reduces �-cell H2Bub1 marks and uncovered
several target genes, including glucose transporter 2 (Glut2),
MAF BZIP transcription factor A (MafA), and uncoupling pro-
tein 2 (Ucp2). Strikingly, we also observed that Isl1 and SSBP3
depletion reduces H2Bub1 and H3K4me3 marks, suggesting
that they have epigenetic roles. We noted that the RNF complex
is required for glucose-stimulated insulin secretion and normal
mitochondrial reactive oxygen species levels. These findings
indicate that RNF20 and RNF40 regulate �-cell gene expression
and insulin secretion and establish a link between Isl1 com-
plexes and global cellular epigenetics.

Pancreatic �-cells are at the epicenter of type 1 (cell death)
and type 2 (cell dysfunction, de-differentiation, and death) dia-
betes pathophysiology. Numerous studies have demonstrated

that transcription factors (TFs)3 are necessary for proper pan-
creatic �-cell development and function (1–7). Studies from
our group and others have highlighted the importance of the
LIM-homeodomain (HD) TF Islet-1 (Isl1), which is expressed
in the embryonic pancreatic epithelium and surrounding mes-
enchyme and is then restricted to adult islets (8 –10). Condi-
tional Isl1 removal specifically in late mouse islet development
(�embryonic day 13.5) revealed Isl1 roles in maturation of nas-
cent pancreatic endocrine cells. These mice develop postnatal
diabetes, attributed to a loss of hormone-positive �-, �-, and
�-cells (11). Tamoxifen-inducible models of adult �-cell Isl1
loss demonstrated that Isl1 is also required for maintaining
mature �-cell function. Adult mice lacking Isl1 had impaired
glucose tolerance and glucose-stimulated insulin secretion, due
in part to dysregulation of Isl1 �-cell targets Pdx1 and Glut2
(12, 13). Transcriptome and lineage-tracing analyses revealed
numerous down-regulated transcripts associated with �-cell
function, including Ins1, Ins2, Slc2a2, Glp1R, MafA, and Pdx1.
Interestingly, Ngn3, an endocrine progenitor TF, was up-regu-
lated in Isl1-depleted �-cells. Although these studies highlight
the crucial role of Isl1 in the developing and adult �-cell, the
transcriptional mechanisms by which Isl1 complexes impart
gene regulation remain unknown.

Despite the powerful impacts of TFs on gene expression, cell
differentiation, and function, TFs often require interacting co-
regulators to exert influence over transcriptional activation or
repression (14, 15). Co-regulators can modulate chromatin
structure through post-translational modifications of histones
and also direct modification of DNA (e.g. methylation), or sim-
ply act as transcriptional scaffolds. For example, the master
regulator of pancreas development and �-cell identity and
function, Pdx1 (3, 16 –18), interacts with the Set7/9 methyl-
transferase co-regulator to mediate histone modifications and
expression of Pdx1 target genes, including Glut2 and insulin
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I/II (19). Pdx1 also recruits components of the Swi/Snf ATP-
dependent chromatin-modifying complex in a glucose-depen-
dent manner to govern �-cell gene expression (20). We hypoth-
esized that, like Pdx1, Isl1 interacts in larger transcriptional
complexes to regulate target genes. Indeed, we reported that
Isl1 interacts with the scaffolding co-regulator, LIM domain–
binding protein 1 (Ldb1), in �-cells (21). Comparison of Isl1 and
Ldb1 loss– of–function models revealed similar embryonic and
adult �-cell phenotypes, including dysregulation of key TF
genes MafA and Arx (13, 21), supporting that these factors
cooperatively function to regulate �-cell development and
function. Recently, we discovered that the ssDNA-binding pro-
tein 3 (SSBP3) co-regulator interacts with Isl1 and Ldb1 and is
important for �-cell function (22). siRNA-mediated knock-
down and ChIP studies revealed that SSBP3 regulates and occu-
pies the Isl1/Ldb1 target genes, MafA and Glp1R. In this study,
our goal was to employ an unbiased reversible cross-link immu-
noprecipitation (ReCLIP) coupled with mass spectrometry
(MS) to compare and characterize the functional protein inter-
actors of the LIM transcriptional complex components Isl1 and
SSBP3. We performed an SSBP3 ReCLIP–MS experiment and
then compared the dataset with our previously reported Isl1
results (22). We found the ring finger ubiquitin ligase complex
components, Rnf20 and Rnf40, in the MS datasets. These fac-
tors (homologous to yeast Bre1) are required to modify histone
H2B with a monoubiquitination mark (H2Bub1) at lysine 120
(Lys-120) to impact the expression of highly-expressed genes
(23, 24), which is also a prerequisite for additional histone mod-
ifications, including H3K4 trimethylation (H3K4me3) and
H3K79 methylation (H3K79me). Additional analyses found
that the expression of �-cell genes, including Glut2, MafA, and
Ucp2, were impacted by Rnf complex depletion in vitro, leading
to reduced glucose-stimulated insulin secretion (GSIS). Over-
all, this study sheds light on mechanisms underlying how Isl1
regulates transcription and revealed for the first time that the
Rnf20/Rnf40 epigenetic complex impacts �-cell gene expres-
sion and function.

Results

ReCLIP reveals �-cell interactions between Rnf20/Rnf40 and
the LIM domain complex components Isl1 and SSBP3

To better understand the underlying mechanisms govern-
ing the transcriptional control exerted by Isl1, we set out to
compare the “interactome” of Isl1 to that of a closely-associated
co-regulator (22), ssDNA-binding protein 3 (SSBP3). To accom-
plish this, we performed an SSBP3 ReCLIP using nuclear
extracts from the �TC3 �-cell line, and we compared the result-
ing MS dataset with that of a species-matched IgG (as negative
control) and our previously-reported Isl1 ReCLIP (22). A direct
comparison of SSBP3 and Isl1 datasets revealed that 23 proteins
were enriched by SSBP3 and Isl1; 121 were SSBP3-specific, and
242 were Isl1-specific (Fig. 1A and Table S1). Among the factors
found in the SSBP3 and/or Isl1 datasets were the ring finger
ubiquitin ligases Rnf20 and the closely-related Rnf40 (Table
S1). These factors form a heterodimeric complex responsible
for histone H2B monoubiquitination (H2Bub1), an epigenetic
mark associated with gene expression in multiple cell types (23,

24). Interestingly, LIM complex components Isl1, SSBP3, and
Ldb1 co-migrated with Rnf20 and Rnf40 in a sucrose gradient
into fractions often containing very large proteins and/or com-
plexes (Fig. 1B) (22). To confirm endogenous protein interac-
tions with Rnf20 and Rnf40, we performed co-immunoprecipi-
tations (co-IP) using independently-prepared noncross-linked
�TC3 and human islet nuclear extracts. In the Isl1 IP samples,
we specifically recovered Rnf20 and Rnf40 (Fig. 1C); however,
we did not observe Rnf20 or Rnf40 enrichment in SSBP3 co-IP
eluates (data not shown), which may suggest a technical issue
with antibody epitope availability or that DSP cross-linking
allowed for interaction in ReCLIP samples, but in the
absence of cross-links, the binding with SSBP3 is labile or
indirect. Nonetheless, we confirmed endogenous Isl1–
Rnf20/40 interactions in mouse �-cell lines and in primary
human islet extracts (Fig. 1C).

To understand the relative spatio-temporal expression of the
Rnf factors in pancreas tissue and �-cell lines, we employed
western blotting and tissue immunofluorescence. We assessed
relative Rnf20 and Rnf40 levels in various cell line extracts, and
as expected, the Rnf factors are abundantly expressed across all
cell lines examined and most notably for this study in �TC3,
Min6, and Ins1 �-cell lines (Fig. 1D). In developing embryonic
day 15.5 pancreas tissue, Rnf40 was co-expressed in Isl1� and
insulin� endocrine cells as well as in Ngn3� (and Isl1� (25))
endocrine progenitors (Fig. 1E and Fig. S1A). This co-staining
of Rnf40 with Isl1 and insulin was maintained in postnatal day
(P)1 and in 3-month-old adult mouse islets (Fig. 1, F and G). We
were unable to perform Rnf20 immunostaining because of a
lack of suitable antibody, and SSBP3–Rnf40 co-staining was not
possible because the antibodies were raised in the same species
(rabbit), thus serial sections were used to suggest similar SSBP3
and Rnf40 expression in P1 �-cells (Fig. S1B). Because the his-
tone H2B monoubiquitination mark imparted by the Rnf com-
plex is largely uncharacterized in islets, we examined the
expression pattern by immunofluorescence. As hypothesized,
we observed broad H2Bub1 signals throughout the entire pan-
creatic field, most notably in adult mouse islet cells (Fig. 1H),
and in human donor islet �-cells (Fig. 1I).

Loss of Rnf20 and/or Rnf40 impacts expression of key �-cell
genes

To begin understanding the functional importance of the Rnf
complex in �-cells, we employed an siRNA knockdown
approach. Min6 �-cells were transfected with siRNAs directed
to Rnf20 or Rnf40 (or a scrambled control), and by western
blotting we found global reductions in histone H2B monoubiq-
uitination (H2Bub1) levels, as compared with nontargeting
scrambled siRNA (Fig. 2A). These data are in accord with the
literature’s description of Rnf complex roles in other cell types.
Interestingly, we also observed an inter-dependence of Rnf pro-
teins, as reduction of Rnf20 appeared to impact protein levels of
Rnf40, and vice versa (Fig. 2A), suggesting a mutual regulation
of the ring finger complex components at the protein level, as
reported previously (26).

To reveal which �-cell genes are dependent on Rnf20 and/or
Rnf40 for expression, we performed the Min6 siRNA-mediated
knockdown and then assessed �-cell candidate mRNAs by
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qPCR. In addition to demonstrating the specificity of the
siRNAs against Rnf20 or Rnf40, we found that the MafA matu-
ration TF mRNA and protein were significantly reduced upon
Rnf40 depletion (Fig. 2, B and D). Interestingly, we did observe
a slight but significant elevation of MafA protein upon Rnf20
depletion. This differential effect on MafA suggested to us that
the Rnf complex components may have unique function alone,
although in light of the observed interdependency of Rnf pro-
tein levels, this Rnf-specific impact deserves further attention,
especially in vivo. Notably, we observed no change in Pdx1, Isl1,
or Ldb1 mRNA levels. Furthermore, glucose-stimulated insulin
secretion factors Ins1, Glut2, and the mild uncoupler Ucp2-
encoding mRNA were significantly reduced by both Rnf siRNA
treatments (Fig. 2C). We also observed a mild reduction of
Ucp2 protein in siRnf20- or siRnf40-treated cells (Fig. 2E), sug-
gesting that the Rnf complex regulates Ucp2 to impact �-cell
metabolism. We confirmed a significant reduction of Glut2
protein upon Rnf20 or Rnf40 knockdown in Min6 cells (Fig. 2F).
The mRNA encoding Glp1R, the insulinotropic incretin recep-
tor on the �-cell, was differentially regulated by Rnf20 and
Rnf40, with Rnf20 deficiency imparting a reduction of Glp1r,
and Rnf40 leading to an increase. Interestingly, MafA and Glut2
are also known targets of Isl1 and SSBP3 (11, 12, 21, 22), sug-
gesting cooperative control of these genes by the Rnf factors
and the LIM-domain transcriptional complex. As a step
toward investigating the Rnf20 and Rnf40 importance in pri-
mary islet cells, we employed dispersed WT mouse islets for
siRNA-mediated knockdown of Rnf20 or Rnf40. Indeed, we
observed many similar effects as first observed in Min6 cells,
namely reductions of Ins1 and Glut2 levels (Fig. 2G).

Rnf20 and Rnf40 occupy regulatory domains at MafA and
Glut2 loci

Next, we wanted to examine whether the Glut2 locus is
directly bound by Rnf factors, given that this gene was impacted
by loss of Rnf20 and Rnf40 (Fig. 2C). Thus, ChIP using �TC3
�-cell line chromatin was performed. We were able to obtain a
ChIP-suitable Rnf20 antibody, but not Rnf40. Because the Rnf
complex is known to enrich for proximal or nearby promot-
ers (as opposed to distal promoters/enhancers (27, 28)), we
focused our efforts on the upstream promoter domain of
Glut2, �500 –700 bp upstream (Fig. 3A) (29), and the MafA
region 6 conserved domain (Fig. 3D, top), which encom-
passes the transcriptional start site (TSS) (30). Indeed, we
observed Rnf20 occupation of MafA region 6 (Fig. 3D, bot-
tom) and the Glut2 promoter, as compared with IgG ChIP
control (Fig. 3, A and B). Furthermore, a scanning ChIP

(31) across Glut2-coding sequences also revealed H2Bub1
enrichment of exons 1, 4, and 10 (approximating the begin-
ning, middle, and end of the Glut2 locus), with a peak occu-
pancy in the middle of the gene (i.e. exon 4, Fig. 3C), as also
noted in the literature for the p21 gene in HCT116 human
colorectal carcinoma cells (32). Overall, these data support
that Rnf-sensitive �-cell genes, like MafA and Glut2, are
occupied by the Rnf complex and that at least the multiexon
Glut2 gene is enriched by H2B monoubiquitination in a pat-
tern similar to other highly-expressed genes.

Isl1 and SSBP3 are required for histone H2B
monoubiquitination and histone H3 lysine 4 tri-methylation
marks

To establish a mechanistic link between the Isl1/SSBP3 com-
plex and the Rnf factors, we set out to define the impacts of Isl1
and SSBP3 on histone ubiquitination and methylation marks.
To do this, we returned to the Min6 cells transfected with var-
ious siRNAs. As expected, cells transfected with siRNAs against
Rnf20 or Rnf40 had reduced H2Bub1 and H3K4me3 marks, as
assessed by western blotting (Fig. 4A–C). Strikingly, Isl1- and
SSBP3-deficient cells also had reduced steady-state levels of
H2Bub1 and H3K4me3 (Fig. 4, A–C), whereas total histone
H2B (and actin) levels were unchanged. This effect on H2Bub1
by Isl1 and SSBP3 appears to be specific, as a similar Min6
knockdown of MafA did not impart a reduction of H2Bub1
levels (Fig. 4D). To confirm our observations, we repeated
siRNA transfection and western blotting experiments in the rat
Ins-1 �-cell line, and observed similar results for H2Bub1
impacts by Isl1 and SSBP3 (Fig. S2).

Rnf factors are required to mitigate mitochondrial ROS

Because of the decrease in Ucp2 mRNA and protein observed
upon Rnf knockdowns (Fig. 2, C and E), we next tested for
alterations in cellular metabolism. Ucp2 is a mild uncoupler
that controls levels of mitochondrial ROS (33–35); thus, we
hypothesized that upon Rnf depletion, the reduction of Ucp2
will impart an increase in Min6 ROS levels. Indeed, as com-
pared with Min6 control knockdown cells (siSCR and Neg CTL)
and antimycin-treated cells to induce ROS production (Pos
CTL), Rnf40 knockdown imparted a significant increase in
fluorescent intensity of a mitochondrial-specific ROS dye,
MitoSox (Fig. 5), suggesting that at least Rnf40 is required for
controlling �-cell ROS levels, a known effector of insulin secre-
tion (36).

Figure 1. Ring finger ubiquitin ligases are expressed throughout the developing and adult islet and interact with Isl1. A, Venn diagram comparing
independent Isl1 and SSBP3 ReCLIP/MS– enriched proteins (over IgG control). Notably, Rnf20/40 were among the 23 factors common to both datasets. B,
sucrose gradient fractionation followed by western blotting of the isolated protein fractions reveals that Isl1, SSBP3, and the Ldb1 co-regulator co-migrate with
Rnf20 and Rnf40 factors in high molecular weight fractions. C, confirmatory co-IPs were performed in the absence of cross-linking. Endogenous Isl1 was pulled
down, and eluates were blotted with Rnf20- or Rnf40-specific antibodies from �TC3 (left) or human islet (right) nuclear extracts, as compared with positive input
control and IgG co-IP as negative control (n � 3). D, western blotting for Rnf20 and Rnf40 in �-cell lines �TC3, Min6, and Ins-1, as compared with NIH3T3 mouse
fibroblast cells. Actin is shown as loading control. E, confocal immunofluorescence imaging for Rnf40 (red), Isl1 (blue), and insulin (green) in WT E15.5 pancreas.
F, postnatal day (P)1 immunofluorescence demonstrates pancreatic Rnf40 (red) co-staining with Isl1 (blue) and insulin (green). G, section of 3-month-old (3 M)
mouse pancreas demonstrating co-expression of Rnf40 (red) and Isl1 (blue) and insulin (green). H, immunofluorescence image of 5-month-old (5M) mouse
pancreas section demonstrating broad expression of the histone H2B monoubiquitination mark (H2Bub1, red) throughout the pancreatic field, especially in
insulin� cells (green). I, immunofluorescence image of agarose-embedded nondiabetic human donor islet stained for insulin (green), H2Bub1 (red), and DAPI
(blue) to mark nuclei. White arrows point to regions where there were insulin/H2Bub1 co-positive cells. Scale bars (white), 50 �m. Approximate kDa protein sizes
are shown to the right of each blot image in B–D.
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Rnf20 and Rnf40 are required for insulin secretion in vitro

As we observed reductions of notable insulin secretion effector
genes MafA, Glut2, and Ucp2 (Fig. 2), we sought to test for insulin
secretory consequences of Rnf20, Rnf40, and SSBP3 factor loss in
�-cells, as compared with Isl1. To do this, we transfected Min6
cells with Rnf20, Rnf40, Isl1, or SSBP3 siRNAs, prior to performing
static insulin secretion experiments. Forty eight hours post-trans-
fection, we observed a reduction of high-glucose–stimulated (i.e.
16.7 mM) insulin secretion in Rnf20, Rnf40, and SSBP3-deficient

cells (Fig. 6). Isl1 is known to impact insulin secretion (12); thus,
there was an expected reduction of GSIS in siIsl1 Min6 cells. Over-
all, these data highlight that the LIM complex factors (comprised
of Isl1 and SSBP3) and Rnf factors are required for GSIS, and it
links histone ubiquitination to �-cell function.

Discussion

Dozens of transcription factors are known to be requisite
activators and/or repressors involved in pancreatic �-cell

Figure 2. Rnf20 and Rnf40 are required for monoubiquitination of histone H2B and the expression of �-cell genes. A, western blotting of nuclear
extracts from siRNA-transfected (control siSCR, siRnf20, and siRnf40) Min6 cells. Results demonstrate an overt reduction of H2Bub1 in Rnf knockdown extracts,
as compared with actin-loading control. B, relative mRNA quantification of various transcriptional effector genes in Min6 cells transfected with control siSCR
(black bars, set to 1-fold), siRnf20 (gray bars), or siRnf40 (white bars). C, relative mRNA quantification of various insulin secretion factors in Min6 cells transfected
with control siSCR (black bars, set to 1-fold), siRnf20 (gray bars), or siRnf40 (white bars). D, western blotting of MafA and actin loading control from Min6 cells
transfected with siSCR, siRnf20, or siRnf40. Interestingly, MafA was marginally elevated upon Rnf20 loss but greatly reduced in the Rnf40 knockdown cell
extracts, as demonstrated by densitometry plots. E, western blotting of Ucp2 and actin loading control from Min6 cells transfected with siSCR, siRnf20, or
siRnf40. Densitometry quantification revealed significant reduction of Ucp2 protein in the Rnf knockdown whole-cell extracts. F, Glut2 western blotting from
Min6 cells transfected with siSCR, siRnf20, or siRnf40, as compared with actin loading control. Densitometry highlights a significant reduction of Glut2 protein
in the Rnf knockdown whole-cell extracts. G, relative mRNA quantification of various insulin secretion factors in dispersed primary mouse islet cells transfected
with control siSCR (black bars, set to 1-fold), siRnf20 (gray bars), or siRnf40 (white bars). *, p � 0.05; **, p � 0.01; ***, p � 0.001; ****, p � 0.0001. n � 3–5.
Approximate kDa protein sizes are shown to the right of each blot image in A and D–F.
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development and function (6, 7), and there is growing appreci-
ation for interacting transcriptional co-regulators in the islet
field (19, 20, 22, 37– 41). Simple TF–DNA interactions (i.e. TF-
binding cognate elements) cannot account for all cellular
responses to extrinsic and intrinsic stimuli. Hence, additional
complexity exists, which is accomplished in part by epigenetic
mechanisms employed to elicit precise temporal and cell type-
specific gene expression (42, 43). These can occur through var-
ious post-translational histone modifications (i.e. methylation
and acetylation), noncoding RNAs, and via methylation of CpG
islands in genomic DNA (42). Epigenetic mechanisms have
become attractive targets for understanding how terminally
differentiated �- or �-cells may be coaxed into trans-differen-
tiating toward another islet cell fate. For example, Bramswig et
al. (44) found that chemically inhibiting histone methyltrans-
ferase levels in human islets, which are required for H3K4me3
(activating) and H3K27me3 (repressive) marks, allowed for an
unusual co-expression of insulin and glucagon, as well as Pdx1
and glucagon, suggestive of �–to–�-cell fate conversion.

Although other Isl1 interactors have been described in
�-cells, including the previously discussed Ldb1 and SSBP3, the
NeuroD1 and Hnf4� TFs (45, 46), and protein inhibitor of acti-
vated STAT Y (PIASy) (47), there remains a lack of mechanistic
knowledge of how Isl1-mediated complexes impart gene regu-
latory activity. In this study, we compared endogenous interac-
tions of the Isl1 TF and the SSBP3 co-regulator using �-cell

extracts without employing epitope-tagged bait proteins to test
the hypothesis that Isl1 and SSBP3 participate in larger tran-
scriptional complex(es) to control gene targets. Of note in the
ReCLIP–MS datasets was the presence of the ring finger
ubiquitin ligase heterodimeric partners, Rnf20 and Rnf40.
Mammalian Rnf20 and Rnf40 act to monoubiquitinate histone
H2B (H2Bub1), an activating mark preceding H3K4me3 and
H3K79me in cells (48). Thus, the H2Bub1 mark modulates gene
expression, rather than histone protein stability, as is the case
for polyubiquitin marks. The Rnf complex and H2Bub1 mark
have been implicated in numerous cellular processes, including
transcriptional initiation and elongation, DNA damage repair,
and RNA processing (23). Rnf20 and Rnf40 are generally asso-
ciated with highly-expressed genes; however, there are exam-
ples of target genes being activated or repressed by Rnf factors
(49), as we observed for Glp1R upon Rnf40 depletion. Rnf occu-
pation of target loci occurs proximal to TSS (27, 28), whereas
H2Bub1 selectively enriches within gene bodies. It is postulated
that gene body enrichment of H2Bub1 allows for ejection of
histone H2A/H2B histone dimers, allowing pol II to pass
through, and may also be required for nucleosome reassembly
after pol II passage (50 –52). Overall, Rnf20 and Rnf40 are
required for monoubiquitination of histone H2B, imparting
other histone modifications such as H3K4 trimethylation and
H3K79 methylation (53–55) and, ultimately, gene expression.

Figure 3. Rnf20 and the resulting H2Bub1 modification enrich at �-cell gene loci. A, schematic of the mouse Slc2a2/Glut2 locus. Of note is the upstream
proximal promoter domain (Prox, gray box), and exonic sequences within the gene body (black boxes), especially the beginning (Exon 1), middle (Exon 4), and
end of the gene (Exon 10). B, relative ChIP enrichment by IgG (black bar, set as 1-fold) or Rnf20 (gray bar) of the Glut2 proximal promoter domain. C, relative ChIP
enrichment of the H2Bub1 modification throughout the Glut2 gene body. The enrichment values are normalized to IgG control (set to 1-fold). Of note, the
enrichment pattern fits a “bell-shaped curve” for H2Bub1, as has been shown in other studies at the p21 locus (32). D, ChIP enrichment of Rnf20 (gray) at the
region 6 domain of MafA, a sequence encompassing the proximal promoter (30), as compared with IgG (black), set at 1-fold. *, p � 0.05; ***, p � 0.001; ****, p �
0.0001. n � 3–5.
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We confirmed endogenous interaction of Rnf20 and Rnf40 and
Isl1 in �-cell lines and human islet extracts, but we were unable to
demonstrate interaction between Rnf and SSBP3 in the absence of
the DSP cross-linker. This may suggest that the interaction
between SSBP3 and Rnf20 observed in the ReCLIP dataset is spu-
rious (Table S1) or that SSBP3 binds only weakly to the Rnf com-
plex, and Isl1 is the major partner. However, we observed novel

SSBP3 impacts on H2B monoubiquitination, H3K4 tri-methyla-
tion, and GSIS, suggesting that SSBP3 indeed participates in Rnf–
Isl1-mediated complexes or at least acts through known effects on
LIM-factor stability (e.g. Isl1) (22, 56). We also observed no inter-
action of the Rnf complex components with the LIM co-regulator,
Ldb1 (13, 21), again suggesting that the Rnf factors may be Isl1-
specific partners in �-cells (data not shown).

Figure 4. Isl1 and SSBP3 are required for H2Bub1 and downstream H3K4me3 modifications in �-cells. A, western blotting of various transcriptional
effectors or histone modifications in Min6 cells treated with control siSCR or siRNAs targeting Rnf20, Rnf40, SSBP3, or Isl1. Of note, there was no observed
change in total H2B but an overt decrease in H2Bub1 and H3K4me3 modifications. These experiments were performed in duplicate on at least three different
occasions. The arrowhead points to the faster-migrating SSBP3-specific band, as opposed to the robust nonspecific band, which we also observed in a prior
study (22). Densitometry quantification of H2Bub1 (B) or H3K4me3 (C) intensity across the various siRNA treatments. D, western blotting of siSCR- or siMafA-
transfected Min6 cell extracts demonstrating protein levels of MafA (top) and H2Bub1 (middle), as compared with actin loading control (bottom). There was no
loss of H2Bub1 levels upon MafA reduction. **, p � 0.01; ****, p � 0.0001. n � 3– 4. Approximate kDa protein sizes are shown to the right of each blot image in
A and D.
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Using immunofluorescence, we found that Rnf40 broadly
decorated the developing and adult pancreas, including Ngn3�

endocrine progenitors and insulin� islet cells. This suggested to
us that the Rnf complex could have developmental roles in islets
as well, with possible implications for Rnf factors in the directed
differentiation of ES cells toward �-like cells in vitro (57). We
found that global H2Bub1 marks were reduced in Min6 cells
deficient in Rnf20 or Rnf40, which is in accord with roles
described in other cell/tissue types (32, 48, 58). Our knockdown
analyses revealed that MafA (an Isl1, Ldb1, and SSBP3 target
gene (11, 21, 22)), Glut2 (also an Isl1 target gene (12)), and Ucp2

mRNA levels were sensitive to Rnf depletion. We employed Glut2
as a model multiexon gene for our ChIP studies and observed
Rnf20 occupation at the immediate upstream domain of Glut2
(29), whereas the H2Bub1 mark was enriched throughout the cod-
ing region, as described for other highly-expressed genes (27).
Similar occupation of MafA region 6 (encompassing the TSS (30))
by Rnf20 was observed, suggesting that MafA is a direct target of
Rnf complexes. However, because MafA is a single-exon gene, we
did not pursue H2Bub1 ChIP studies, similar to Glut2. To date, we
have not linked Ucp2 expression in �-cells to control by any LIM-
domain (i.e. Isl1-containing) complex.

Figure 5. Rnf40-depleted Min6 cells have increased mitochondrial reactive oxygen species. Mitosox staining of Min6 cells to assess mitochondrial ROS is
shown. A, siSCR-transfected cells serving as a negative control (Neg CTL) for ROS production. B, antimycin A-treated cells were included as a positive control (Pos
CTL) for induction of mitochondrial ROS. siRnf20-transfected (C) or siRnf40-transfected Min6 cell imaging (D) is shown. For each panel, a 4	 Mitosox/bright field
overlay was included with a corresponding 4	 bright field– only panel, plus an independent 40	 image of the Mitosox signal merged with DAPI nuclear signal.
E, quantification of corrected fluorescence (with ImageJ from at least three independent 4	 cell fields) for each treatment group reveals that there is
significantly more Mitosox fluorescence in the positive controls and in cells deficient for Rnf40; n � 3. *, p � 0.05; **, p � 0.01; ns, not significant. Scale bars in
4	 images (white, black) � 100 �m; Scale bars (white) in 40	 images � 50 �m.
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A striking mechanistic link between Isl1 and the Rnf complex
was established in our Min6 knockdown model, as H2Bub1 and
H3K4me3 levels were reduced upon Isl1 and SSBP3 loss, leav-
ing us to postulate that Isl1 may traffic the Rnf complex to target
gene loci to establish H2Bub1 marks. Furthermore, it was sur-
prising to observe this reduction in global H2Bub1 (but not
total H2B) and H3K4me3 levels in Isl1- or SSBP3-deficient
cells, and not solely at specific target gene loci (e.g. Glut2 in Fig.
3). This suggested to us that Isl1 is important for establishing
this epigenetic mark throughout the �-cell genome, and it may
be independent of whether any particular gene is a direct Isl1
target. This is supported by the observation that Rnf20 and
Rnf40 mRNA levels were not perturbed in the siIsl1 cells. Alter-
natively, it is possible that Isl1 complexes are also regulating the
expression or activity of histone de-ubiquitinating enzymes, for
example Ubp8 and Ubp10 (59), which could impart similar
changes in H2Bub1.

Our gene expression analyses pointed to the Ucp2 gene,
encoding a mild �-cell uncoupling protein, as a target of Rnf
complexes, specifically sensitive to loss of Rnf40. Ucp2 is
important for mitigating mitochondrial ROS, and thus �-cell
stress (34). We found that reducing Rnf40 levels in Min6 cells
imparted a decrease in Ucp2 mRNA and protein, while increas-
ing mitochondrial ROS, as observed by Mitosox staining. This
led us to conclude that Rnf factors are required to maintain
normal �-cell ROS through regulation of Ucp2. This implies
that Rnf complex activity is linked to �-cell health and may be
involved in cellular stress pathways. Looking toward the future,
it is possible that Rnf complexes are dysregulated and modulate
gene expression in mouse models of metabolic stress, for exam-
ple during high-fat diet, in db/db mice, or in early type 1 diabe-

tes (60). Additional studies will examine Rnf20 and Rnf40
impacts on �-cell stress and dysfunction.

We observed decreased GSIS upon Rnf20/Rnf40 or SSBP3
depletion from Min6 cells, as compared with known Isl1 impacts
(12, 61). This suggested to us that the collective effects on target
genes, including Glut2, MafA, insulin I, and Ucp2 have functional
consequences in �-cells. Notably, we did not observe basal secre-
tory machinery mRNAs altered by (at least) Rnf20 depletion (Fig.
S3), perhaps suggesting that the Rnf or Isl1 complexes impact
another aspect of GSIS, including glucose-sensing, metabolism,
cellular depolarization, or calcium influx.

Taken together, our results on the understudied islet Rnf20/
Rnf40 complex and resulting H2Bub1 modification have sev-
eral implications and unanswered questions. First, we uncov-
ered that Isl1 has novel roles in impacting modified histone
levels in �-cells in vitro. It is unclear whether Isl1 is an exclusive
interactor of the Rnf complex in �-cells, but as Isl1 is broadly
distributed throughout the islet, Isl1 and the Rnf complex may
also function together in �-cells. Second, although we observed
Rnf impacts on �-cell function in vitro (e.g. GSIS), it will be
interesting to explore whether the Rnf complex is also required
for maintaining �-cell identity in vivo, as in the adult Isl1 and
Ldb1 knockout models or in the Bramswig et al. study of his-
tone methylation in human islets (13, 44). Finally, there are
obvious implications for this work on the embryonic develop-
ment of islet cells and on current ES cell-based differentiation.
These approaches likely need consideration of ring-finger ubiq-
uitin ligase action and histone H2B modification status. Future
directions will include examining the roles of Rnf20/Rnf40 in
vivo during pancreas/islet organogenesis and in adult �-cell
function, with the hypothesis that the Rnf ubiquitin ligases and
the resulting H2Bub1 mark are required to establish and main-
tain �-cell identity during islet development and in adult mam-
mals. Although it is tempting to dismiss the Rnf factors and
H2Bub1 modification as likely having pleiotropic impacts on
gene transcription in any Rnf-deficient cell, the literature may
point to a different outcome, as there appears to be selectivity in
Rnf action on gene targets (58). For example, it may be advan-
tageous to increase levels of highly-expressed genes (e.g. insulin
and Glut2) in ES-derived �-cells via selective Rnf agonism.
Upcoming mouse model experiments will examine the neces-
sity of Rnf factors in islet organogenesis to begin answering
these in vivo questions. In total, we found that Isl1 transcrip-
tional complexes are also composed of Rnf20 and Rnf40 ubiq-
uitin ligases, which impact histone modifications, gene expres-
sion, and �-cell function.

Experimental procedures

ReCLIP and mass spectrometry

Cell cross-linking and IP were performed as described (22).
Briefly, for cross-linking, mouse �TC3 cells were incubated
with 0.5 mM DSP (Thermo Fisher Scientific) in 1	 PBS for 30
min at 37 °C. Nuclear extracts were prepared with a modified
nuclear extraction buffer (62, 63), excluding DTT, EDTA, and
EGTA. Cross-linked nuclear extracts were incubated with
�-SSBP3 (ab83815; Abcam) antibody, or species-matched con-
trol IgG cross-linked to protein G Dynabeads (Life Technolo-

Figure 6. Isl1, SSBP3, and the Rnf factors are necessary for normal glu-
cose-stimulated insulin secretion from �-cells. Static glucose-stimulated
secretion assays performed in Min6 cells transfected with a scrambled siRNA
(siScr) or siIsl1 (A), siSSBP3 (B), siRnf20 (C), or siRnf40 (D). Results are presented
as secreted insulin expressed as percent of insulin content, as measured by
ELISA. Data are a mean 
 S.E., of duplicate wells repeated on at least three
separated occasions. ns, not significant; *, p � 0.05; **, p � 0.01; ***, p � 0.001;
****, p � 0.0001.
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gies, Inc.) with dimethyl pimelimidate (Life Technologies, Inc.).
IP was carried out for 3 h at 4 °C before washing with radioim-
munoprecipitation assay (RIPA) buffer (50 mM Tris, pH 7.4,
150 mM NaCl, 1% Nonidet P-40, 0.5% deoxycholic acid, 0.1%
SDS) supplemented with protease inhibitor cocktail (PIC)
(PC198152, Thermo Fisher Scientific), and then eluting with
RIPA buffer supplemented with 150 mM DTT. SSBP3- and IgG-
enriched elutions were sent to University of Alabama at Bir-
mingham Mass Spectrometry/Proteomics Consortium for MS
analysis, as described previously (22).

Mass spectrometry—SSBP3- and Isl-enriched (and IgG con-
trols) protein eluates were diluted in LDS-PAGE buffer (Invit-
rogen) followed by reducing, heat denaturation, and separation
by 4 –12% SDS-PAGE. The gel was stained overnight with col-
loidal blue (Invitrogen). The entire lane was cut into six molec-
ular weight fractions, and each fraction was analyzed separately
by first cutting into small pieces and equilibrated in 100 mM

ammonium bicarbonate. The gel pieces were then reduced, car-
bidomethylated, dehydrated, and digested with Trypsin Gold
(Promega) as per the manufacturer’s instructions. After diges-
tion, peptides were extracted, concentrated, and resolubilized
in 0.1% formic acid before analysis. Peptide digests (8 �l each)
were injected onto a 1260 Infinity nHPLC stack (Agilent Tech-
nologies) and separated using a 75 �m inner diameter 	 15-cm
pulled tip C-18 column (Jupiter C-18 300 Å, 5 �m, Phenome-
nex). This system runs in-line with a Thermo Orbitrap Velos
Pro hybrid mass spectrometer, equipped with a nano-electros-
pray source (Thermo Fisher Scientific), and all data were col-
lected in collision-induced dissociation mode. The nHPLC was
configured with binary mobile phases that included solvent A
(0.1% FA in ddH2O), and solvent B (0.1% FA in 15% ddH2O,
85% acetonitrile) programmed as follows: 10 min at 5% B (2
�l/min, load), 90 min at 5– 40% B (linear, 0.5 nl/min, analyze), 5
min at 70% B (2 �l/min, wash), and 10 min at 0% B (2 �l/min,
equilibrate) (64). Following each parent ion scan (300 –1200
m/z at 60,000 resolution), fragmentation data (MS2) were col-
lected on the top most intense 15 ions. For data-dependent
scans, charge state screening and dynamic exclusion were
enabled with a repeat count of 2, repeat duration of 30 s, and
exclusion duration of 90 s.

MS data conversion and searches—The XCalibur RAW files
were collected in profile mode, centroided, and converted to
MzXML using ReAdW version 3.5.1. The mgf files were then
created using MzXML2Search (included in TPP version 3.5) for
all scans. The data were searched using SEQUEST, which was
set for two maximum missed cleavages, a precursor mass win-
dow of 20 ppm, trypsin digestion, variable modification C at
57.0293 and M at 15.9949. Searches were performed with a
species-specific subset of the UniRef100 database (updated
annually).

Peptide filtering, grouping, and quantification—The list of
peptide IDs generated based on SEQUEST (Thermo Fisher Sci-
entific) search results were filtered using Scaffold (Protein Sci-
ences, Portland, OR). Scaffold filters and groups all peptides to
generate and retain only high-confidence IDs while also gener-
ating normalized spectral counts across all samples for the pur-
pose of relative quantification. The filter cutoff values were set
with minimum peptide length of �5 amino acids, with no

MH � 1 charge states, with peptide probabilities of �80% C.I.,
and with the number of peptides per protein �2. The protein
probabilities were then set to a �99.0% C.I., and a false discov-
ery rate (FDR) of �1.0. Scaffold incorporates the two most
common methods for statistical validation of large proteome
datasets, the FDR, and protein probability (65–67). Relative
quantification across experiments were then performed via
spectral counting (68, 69), and when relevant, spectral count
abundances were then normalized between samples (70).

Sucrose gradient fractionation

Sucrose gradients were prepared as described previously (22,
38). �TC3 nuclear extracts were prepared and fractionated
overnight at 50,000 rpm in a TLS-55 swinging bucket rotor at
4 °C through a 10 –35% sucrose gradient diluted in DNA-bind-
ing buffer (10 mM HEPES, pH 8.0, 100 mM NaCl, 1 mM EDTA,
and 2 mM DTT). Eighteen fractions (�200 �l each) were col-
lected and separated by 10% SDS-PAGE and analyzed by west-
ern blotting using the following antibodies: �-Ldb1 (1:1000,
sc-11198; Santa Cruz Biotechnology); �-Isl1 (1:1000, 39.4D5,
Developmental Studies Hybridoma Bank (DSHB)); �-SSBP3
(1:500, ab83815; Abcam); �-Rnf20 (1:1000, A300-714a Bethyl
Laboratories); �-Rnf40 (1:1000, ab191309, Abcam).

Co-immunoprecipitation and western blotting

�-Isl1 (39.4D5, DSHB) or control IgG antibodies were bound
to protein G Dynabeads and then incubated with �TC3 or
human islet extracts diluted in PBS supplemented with PIC.
Nondiabetic human pancreatic islets were provided by the
NIDDK-funded Integrated Islet Distribution Program. Anti-
body-bound beads were washed with PBS/PIC and eluted with
RIPA buffer at 37 °C. Elutions were separated by 10% SDS-
PAGE (Bio-Rad) then transferred to a polyvinylidene difluoride
(PVDF) membrane. For western blotting (WB), PVDF mem-
branes were blocked in PBS/Tween plus 5% nonfat dry milk
for 1 h, followed by an incubation with �-Rnf20 (1:1000, A300-
714a, Bethyl Laboratories), �-Rnf40 (1:1000, ab191309,
Abcam), �-Isl1 (1:1000, 39.4D5, DSHB), �-SSBP3 (1:1000,
ab83815, Abcam), �-MafA (1:1000, NBP1-00121, Novus),
�-Ucp2 (1:1000, 89326, Cell Signaling Technology), �-Glut2
(Santa Cruz Biotechnology, sc-7580) antibody overnight at
4 °C. The membrane was washed and incubated with species-
matched horseradish peroxidase-conjugated secondary anti-
bodies (Promega or Santa Cruz Biotechnology) followed by
addition of Luminata Forte substrate (Millipore) and visualized
using ChemiDoc XRS � Imager (Bio-Rad). All co-IP and WB
experiments were performed at least three times.

Tissue collection and immunofluorescence

Embryonic and adult mouse pancreata were fixed in 4% para-
formaldehyde in 1	 PBS for 4 and 8 h, respectively, and then
paraffin-embedded. Sections were cut to 6 �m, rehydrated,
antigen-retrieved in 1	 TEG buffer, and blocked with 5% nor-
mal donkey serum in 1% BSA/1	 PBS. Sections were incubated
in primary antibody overnight at 4 °C: rabbit �-SSBP3 (1:500,
ab83815; Abcam); mouse �-Isl1 (1:1000, 39.4D5; DSHB); rabbit
�-Rnf40 (1:1000, ab191309; Abcam); mouse �-neurogenin-3
(Ngn3) (1:1000, F25A1B3; DSHB); rabbit �-ubiquityl-histone
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H2B (1:1000, 5546S, Cell Signaling Technology); guinea pig
�-insulin (1:1000, 0564; Dako). Cy-2-, Cy-3-, and Cy-5–
conjugated donkey �-rabbit, �-mouse, and �-guinea pig IgG
secondary antibodies (1:500; Jackson ImmunoResearch) were
used for detection. Slides were imaged using a Zeiss LSM710
confocal microscope or Olympus IX81 fluorescence micro-
scope, and the images were processed by Zen software (Zeiss)
or CellSens Dimensions version 1.12 (Olympus) software.

Transient transfection

For small interfering RNA (siRNA) transfection experi-
ments, mouse Min6, rat Ins1 cells, and dispersed mouse islet
cells (22, 71) were seeded in 6- or 12-well plates and then trans-
fected with 50 nM On-Target Plus Smart Pool targeting SSBP3
(siSSBP3, L-042856-01-0005), Isl1 (siIsl1, L-059394-01-0005),
MafA (siMafA, L-041353-01-0005), Rnf20 (siRnf20, L-041733-
01-0005) or Rnf40 (siRnf40, L-059014-01-0005), or nontar-
geted scrambled control (siSCR, D-001810-GE Healthcare/
Dharmacon) using RNAiMax (13778030; Life Technologies,
Inc.). WB, mRNA, or insulin secretion analyses were performed
48 h post-transfection.

qPCR

RNA was isolated from Min6 cells using the RNeasy mini
plus kit (74134; Qiagen), and cDNA was made using the iScript
cDNA synthesis kit (170-8840; Bio-Rad). qPCRs were per-
formed using iTaq SYBR Green (172–5124; Bio-Rad) in dupli-
cate using a LightCycler 480 II (Roche Applied Science) and
analyzed using the 2���CT method, with normalization to the
gapdh housekeeping gene. Primer sequences can be found in
Ref. 22 or will be provided upon request.

Chromatin IP (ChIP)

ChIP was performed as described (21, 22, 31). Briefly, �TC3
cells were seeded at 4 	 106 cells per 10-cm dish and cultured
for 72 h. Cells were cross-linked with 1% formaldehyde in Dul-
becco’s modified Eagle’s medium at room temperature. Chro-
matin was fragmented by sonication (Biorupter XL; Diagenode)
and precleared with protein G Dynabeads for 2 h at 4 °C. Pre-
cleared chromatin was incubated overnight with �-Rnf20
(P120-101; Bethyl Laboratories), �-H2Bub1 (catalog no. 5546,
Cell Signaling Technology), or rabbit IgG (Bethyl Laboratories)
antibody. Antibody-bound chromatin was incubated with pro-
tein G Dynabeads at 4 °C for 3 h. Beads were washed, and chro-
matin was eluted, and then cross-links were reversed. qPCR was
performed on immunoprecipitated DNA using iTaq SYBR
Green (Bio-Rad) and a LightCycler 480 II (Roche Applied Sci-
ence), as described above. Fold enrichment of target sequences
in ChIP DNAs were normalized to inactive albumin control
sequences and species-matched IgG enrichment (��CT). Each
ChIP experiment was repeated at least three times using inde-
pendently prepared chromatin. Primer sequences are from
Refs. 22, 29, 30 or can be provided upon request.

GSIS

Forty-eight hours after siRNA knockdown or scramble con-
trol, Min6 or Ins1 cells were stimulated in low (2.8 mM) or
stimulatory (16.7 mM) glucose in Krebs-Ringer bicarbonate/

HEPES buffer (KRBH) for 30 min at 37 °C, similar to that
described in Ref. 72. Supernatant media, with secreted insulin,
were collected. Cells were then lysed using acid/ethanol to
obtain total insulin content. Secreted insulin and total insulin
were measured by ELISA, and analysis was represented by
secreted insulin as % of insulin content. The knockdown-GSIS
experiments were repeated on at least three separate occasions.

Visualization and quantification of mitochondrial ROS

Mitochondrial ROS levels were visualized in siRNA-treated
Min6 cells using MitoSox staining according to the manufactu-
rer’s instructions (Invitrogen, M36008). Fluorescent Mitosox
images were compared with bright field to visualize total cell
numbers. To quantify the Mitosox signal, we employed ImageJ
(National Institutes of Health). Total fluorescence intensity
was quantified in at least three independent cellular fields
within two duplicate wells, with background correction. Imag-
ing shown is representative of three independent Min6
knockdowns.

Animal use

All studies were approved by and performed according to the
guidelines of the University of Alabama at Birmingham Institu-
tional Animal Care and Use Committee.

Statistical analyses

Data are presented as mean 
 S.E. Significance was deter-
mined after performing a Student’s t test, for which p � 0.05.
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