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Human guanylate kinase (hGMPK) is the only known enzyme
responsible for cellular GDP production, making it essential for
cellular viability and proliferation. Moreover, hGMPK has been
assigned a critical role in metabolic activation of antiviral and
antineoplastic nucleoside-analog prodrugs. Given that hGMPK
is indispensable for producing the nucleotide building blocks of
DNA, RNA, and cGMP and that cancer cells possess elevated
GTP levels, it is surprising that a detailed structural and func-
tional characterization of hGMPK is lacking. Here, we present
the first high-resolution structure of hGMPK in the apo form,
determined with NMR spectroscopy. The structure revealed
that hGMPK consists of three distinct regions designated as the
LID, GMP-binding (GMP-BD), and CORE domains and is in an
open configuration that is nucleotide binding– competent. We
also demonstrate that nonsynonymous single-nucleotide vari-
ants (nsSNVs) of the hGMPK CORE domain distant from the
nucleotide-binding site of this domain modulate enzymatic
activity without significantly affecting hGMPK’s structure.
Finally, we show that knocking down the hGMPK gene in lung
adenocarcinoma cell lines decreases cellular viability, prolifera-

tion, and clonogenic potential while not altering the prolifera-
tion of immortalized, noncancerous human peripheral airway
cells. Taken together, our results provide an important step
toward establishing hGMPK as a potential biomolecular target,
from both an orthosteric (ligand-binding sites) and allosteric
(location of CORE domain-located nsSNVs) standpoint.

Metabolism in cancer cells is altered, resulting in tumor pro-
liferation (1). One outcome of this altered metabolism is ele-
vated levels of the nucleotides GTP and dGTP (2) due to the
up-regulation of nucleotide biosynthesis (3). GTP and dGTP
are essential precursors of RNA and DNA, respectively, GTP is
a vital source of energy for protein biosynthesis and a critical
signaling molecule via GTP-binding proteins. An indispensable
enzyme involved in GTP and dGTP metabolism is human gua-
nylate kinase (hGMPK,7 gene name GUK1, ATP:GMP phos-
photransferase, EC 2.7.4.8). Positioned at the junction of the
salvage and the de novo purine nucleotide biosynthesis path-
ways (Fig. 1A), hGMPK catalyzes the reversible phosphoryla-
tion of GMP to GDP by utilizing ATP as a phosphoryl group
donor (4 –8) (Fig. 1B). Thus, all GDP/GTP production must go
through hGMPK, yet chemotherapeutic strategies that focus
on depleting GDP/GTP from cancer cells have targeted two
de novo purine nucleotide biosynthesis pathway enzymes
upstream of hGMPK, IMP dehydrogenase (IMPDH) (9) and
guanosine monophosphate synthase (GMPS) (10) (Fig. 1A).
Interestingly, the depletion of GDP/GTP levels resulting from
the inhibition of IMPDH can be replenished by supplying cells
with either guanosine or guanine (11), because the salvage path-
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way is still operational through the action of hGMPK and
nucleoside diphosphate kinases. This observation shows that to
fully inhibit GDP/GTP production, an enzyme positioned
downstream from the intersection of the salvage and de novo
pathways must be targeted. Thus, inhibition of hGMPK could
be an effective therapeutic target.

Currently, hGMPK’s physiological function is exploited for
the activation of numerous antiviral and antineoplastic nucle-
oside prodrugs (12, 13), most notably 6-thioguanine and its
closely related analogue 6-mercaptopurine (14), 9-�-D-arabi-
nofuranosylguanine (15), ganciclovir (16, 17), and acyclovir
(18). Despite the importance of hGMPK for metabolic prodrug
activation and the documented inefficiency in processing these
prodrugs (18 –23), the structure and functional dynamics of
hGMPK remain virtually unexplored. This scarcity of struc-
tural and functional details pertaining to hGMPK is due to dif-
ficulties in expressing functional recombinant protein (24) and
in producing high-quality crystals for X-ray diffraction (25, 26).

The goal of the current work was to provide a better under-
standing of the structural basis for hGMPK functionality.
Although structural details are essential for understanding how
the catalytic activity of hGMPK is achieved, only structures
from nonhuman organisms have been available for making
deductions concerning the relationship between hGMPK
structure and function (26 –33). Recently, a small-angle X-ray
scattering (SAXS) study on hGMPK presented the first
reported structural data on hGMPK demonstrating that ligand
binding leads to a compaction of hGMPK by about 2 Å (34). To
further investigate the relationship between hGMPK structure
and function with more detail, we solved the first high-resolu-
tion structure of hGMPK with solution NMR spectroscopy,
which is also the first structure with atomic-level resolution of a
nucleotide-free mammalian GMPK. A comparison of our
hGMPK NMR structure with the yeast and mouse GMPK
X-ray structures revealed a conserved structural fold as well as

a large-scale interdomain motion associated with nucleotide
binding. In addition to solving the hGMPK structure, we
explored the impact of active-site distant, nonsynonymous sin-
gle-nucleotide variants (nsSNVs) on hGMPK’s structure and
function. We found that CORE domain nsSNVs of hGMPK
alter catalytic activity without significantly perturbing the aver-
age structure of the apo-enzyme. Finally, we present the first
study demonstrating that intracellular inhibition of hGMPK
may represent a novel approach to chemotherapy.

Results and discussion

Solution structure of hGMPK

We solved the solution structure of hGMPK using our pre-
viously published chemical shift assignment and our measured
15N-resolved 1H,1H NOESY (60-ms mixing time), 13Caliphatic-
resolved 1H,1H NOESY (80 ms mixing time), and 13Caromatic-
resolved 1H,1H NOESY (80-ms mixing time) spectra (35) (Fig.
2; Protein Data Bank (PDB) accession code 6NUI; see “Experi-
mental procedures” for a detailed description of the structure
determination). As a supplement to these data, we measured
backbone 15N heteronuclear NOEs (15N-hetNOEs) and a set of
residual dipolar couplings (RDCs) (Fig. 3 and Table S1). The
15N-hetNOE data enabled us to justify removal of dihedral
angle and RDC constraints for flexible residues with 15N-het-
NOE values lower than 0.70 from the structure calculation.

Totals of 2430 NOE, 281 backbone dihedral, 89 NHN-RDCs,
and 58 hydrogen bond constraints were used as input for the
structure calculation and refinement performed with CYANA
(36, 37) and AMBER (39). Table 1 summarizes the experimental
constraints and the structural statistics for the hGMPK
structure. The RMSD (calculated for residues 7–193) of the
backbone (heavy) atoms was 0.74 � 0.16 Å (0.86 � 0.15 Å).
The z-scores of the hGMPK structure were analyzed by

Figure 1. Summary of hGMPK’s role in the cell. A, hGMPK is positioned at the junction of the de novo nucleotide synthesis and salvage pathways. The
enzymes IMPDH (9) and GMPS (10) are biomolecular targets for inhibition and are part of the de novo nucleotide synthesis pathway. B, schematic of the hGMPK
reaction cycle following a random sequential mechanism (4, 8).
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PROCHECK (40) and were 0.79/0.12 for the backbone and all
atom dihedrals, respectively, signifying a high-quality structure.

We proceeded to ascertain the location of structural domains
within the hGMPK structure. For this purpose, we utilized the
program HingeProt (41), which identified 4 hinge residues
within the hGMPK structure: Ser-35, Ala-87, Pro-124, and Glu-
157. Based on this result, we defined three distinct structural
domains: domain 1, spanning residues 1–34, 88 –123, and 158 –
197; domain 2, spanning residues 36 – 86; and domain 3, span-
ning residues 125–156 (Fig. 2). In support of the HingeProt
results, the measured 15N-hetNOEs preceding and following
the hinge residues show lower than average values that signify
more flexibility in the picosecond to nanosecond time scale
(Fig. 3). These hinge residues are similar to what was previously
inferred from a comparison of the GMP � ADP– bound mouse
GMPK (mGMPK; 1LVG) X-ray structure with the apo- and
GMP-bound yeast GMPK (yGMPK; 1EX6 and 1EX7, respec-
tively) X-ray structures: hinge 1, residues 32–36; hinge 2, resi-
dues 90 –96; hinge 3, residues 124 –125; and hinge 4, residues
157–164 (26). Interestingly, mutating Ser-35 to proline has
been shown to significantly reduce catalytic activity by prevent-
ing closure of the GMP-binding domain (GMP-BD) (42), which
also supports the identification of Ser-35 as a hinge residue. The
three domains described here are very similar to the domains
identified from nonhuman GMPKs. Namely, domains 1, 2, and
3 have been defined previously as the central CORE domain, the
GMP-BD, and the LID domain (this domain’s name refers to
how it closes like a lid onto the CORE domain during catalysis),
respectively, nomenclature that we will utilize for our hGMPK
structure.

The sequence arrangement of the regular secondary struc-
ture elements is �1-�1-�2-�3-�4-�2-�5-�6-�3-�7-�4-�8-�5-
�6-�9-�7-�8 (Fig. 2A; see Fig. S1 for a schematic plot of the
short-range NOE connections). Within the CORE domain, a
four-stranded twisted parallel �-sheet consisting of �9-�8-
�1-�7 is situated in between the helices �1, �7, and �8 on one
side and �4 and a portion of �6 from the LID domain on the
other side. The canonical P-loop motif (11GXXXXGK(T/S)18),
involved in ATP binding, bridges �1 and �1, whereas �2 con-
nects the CORE domain to the GMP-BD and is oriented slightly

perpendicular to the central parallel �-sheet. A dense network
of hydrophobic contacts is present in the region between
�1-�7-�8 and �9-�8-�1-�7-�2 involving residues Val-7 and
Leu-9 from �1; Lys-17, Leu-21, Leu-24, and Leu-25 from �1;
Phe-32 from �2; Ile-97 and Val-99 from �7; Ile-118, Ile-120,
and Val-122 from �8; Val-167 and Ile-169 from �9; Ala-177,
Leu-181, and Ala-184 from �7; Leu-185 in between �7 and �8;
and Glu-188, Ile-189, and Ala-192 from �8 (Fig. S2). The
GMP-BD consists of a twisted antiparallel sheet involving
strands �3-�5-�6 with �4 oriented parallel to �3 and �2 bridg-
ing �4 and �5. A long loop spanning residues 40 –52 connects
�3 and �4. Joining the GMP-BD back to the CORE is �3, which
possesses the hinge residue Ala-87. Finally, the LID domain
consists of two �-helices, �5 and �6, that are connected by a
flexible loop. The higher RMSDs for residues within this LID
domain loop are supported by the corresponding 15N-hetNOE
values, especially for residues 137–142 (Fig. 3 and Table S1),
although it should be noted that dihedral angle and RDC con-
straints were removed from the structure calculation for these
residues due to low 15N-hetNOEs values.

The electrostatic charge distribution of hGMPK indicates
that nucleotide binding is mediated by electrostatic interac-
tions (Fig. 4). A highly positive patch positioned between the
LID domain and the P-loop from the CORE domain includes
residues that have been shown to coordinate ATP in the X-ray
structure of mGMPK (Figs. S3 and S4). As for GMP binding,
both a positive (GMP-BD) and negative patch (GMP-BD and
CORE) encompass residues that interact with the phosphate
group and the guanine base, respectively. In fact, the orienta-
tion of the side chains involved in coordinating both GMP and
ATP are very similar between the human and mouse structures
(Fig. S3), supporting the importance of these electrostatic
patches for hGMPK function.

Comparison of the hGMPK structure with yeast and mouse
GMPK

Next, we then compared the domain orientations from our
hGMPK NMR structure with the yGMPK and mGMPK X-ray
structures (Fig. 5). For the structural comparison, we utilized
multiple sequence alignment to select the same residues from
each species (Fig. S4 and Table S2). It should be noted that
hGMPK and mGMPK share 88% sequence identity, equating to
a total of 24 of 197 different residues; however, the orientations
of the different side chains remain relatively similar (Fig. S5).
The main structural differences related to these residue substi-
tutions, aside from the N and C termini, are primarily located
around the hinge regions, namely G30S, V86E, and Q89R,
where domain movement has been shown to be associated with
function (see below). An interesting exception is L25F within
the center of �1, with the leucine side chain pointing away from
the interior of hGMPK, whereas the phenylalanine side chain of
mGMPK points inward (Fig. S5).

Immediately apparent from the hGMPK, yGMPK, and
mGMPK structural bundle is the orientation of the GMP-BD
(Fig. 5A). With ligands bound, the GMP-BD is positioned closer
to the LID domain, as evident by the distance between Ser-77
and Ser-144 in the GMP-bound yGMPK structure (10.4 Å) and
mGMPK (6.3 Å), in preparation for catalysis. In the absence of
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ligands, the GMP-BD is positioned 19.9 and 22.9 � 1.1 Å away
from the LID domain for apo-yGMPK and hGMPK, respec-
tively. A complete lack of NOEs connecting the GMP-BD and
the LID domain (Table S3) supports the open conformation
present in the hGMPK structure. The open state depicted by
our structure is also reinforced by the recently published

hGMPK SAXS study (34), where the SAXS profile of apo-
hGMPK yielded a radius of gyration (Rg) of 21.1 Å, whereas the
SAXS profile of hGMPK bound to the bisubstrate inhibitor
Ap5G resulted in a more compact Rg of 18.1 Å. Finally, we
superimposed the three GMPK domains using the lowest
energy NMR structure as a reference (Fig. 5, B–D). The rela-
tively similar backbone conformations for each domain across
the three species, whether ligand-free or bound, points to a
rigid-body motion bringing the GMP-BD and the LID domains
together for catalysis.

As is the case for many other enzymes (43), our structure
indicates that large-scale domain motions are required for
hGMPK functionality. It has been shown that preventing clo-
sure of the two nucleotide-binding domains in yGMPK,
whether through mechanical stress (44) or mutation of either
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Table 1
Summary of experimental constraints and structural statistics com-
puted for the 20 lowest-energy hGMPK structures

Parameter Value

NMR-derived constraintsa

Distance constraints
Total NOEs 2430
Intraresidue 722
Interresidue

Sequential (�i � j� � 1) 640
Medium range (�i � j� � 5) 454
Long range (�i � j� � 5) 614

Hydrogen bonds 58
Dihedral constraints 281
No. of constraints per residue 14.0
No. of long-range constraints per residue 3.3

Structure statistics
CYANA target functionb (Å) 0.66 � 0.04
Residual distance violationsb

Number � 0.1 Å 0.7 � 1.1
Maximum (Å) 0.1 � 0.1

Residual dihedral angle violationsb

Number � 2.5° 0
Maximum (degrees) 1.5 � 0.1

Residual dipolar coupling Q-factorb 0.17 � 0.01
RMSD from idealized geometryc

Bond lengths (Å) 0.014
Bond angles (degrees) 1.9

Average pairwise RMSD to the meanb (Å)
Backbone atomsd 0.74 � 0.16
Heavy atomsd 0.86 � 0.15

Procheck Ramachandran statistics
Most favored regions (%) 94.6
Additionally favored regions (%) 5.3
Generously allowed regions (%) 0.0
Disallowed regions (%) 0.1

Procheck quality scorese

Raw score (� and �/all dihedrals) 0.12/0.02
z-score (� and �/all dihedrals) 0.79/0.12

a As reported by CYANA after using the automated NOE assignment and struc-
ture calculation functionalities (36, 37).

b Calculated with CYANA after structural refinement with AMBER.
c Calculated by the Protein Structure Validation Software (PSVS) Suite (38).
d Calculated for residues 7–193.
e Residues 4 –11, 17–115, 117–136,138 –140, and 142–193 were selected by the

PSVS Suite for the calculation.

ATP Binding 

Guanine Binding

GMP 

Phosphate Binding

Figure 4. Electrostatic charge distribution of the hGMPK surface. Resi-
dues identified as interacting with nucleotides from both sequence homo-
logy (Fig. S4) and inspection of the GMP � ADP– bound mouse GMPK X-ray
structure (Fig. S3) are located in hGMPK electropositive and electronegative
regions. The lowest-energy structure of hGMPK is depicted, where positive
and negative charges are colored blue and red, respectively.
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Ser-35 (a hinge residue identified in this study) or Ser-37 to a
proline, considerably reduces catalytic efficiency (42). This
relationship between domain motions and function, specifi-
cally the GMP-BD and LID domains, is a feature that has been
known for GMPKs (26, 27, 42, 45) and other nucleoside mono-
phosphate kinases from various organisms (46 –49).

nsSNVs of hGMPK indicate a regulatory role for the CORE
domain

Whereas the positioning of the GMP-BD and LID domains is
clearly important for functionality, we were curious whether
the CORE domain possesses a regulatory role in hGMPK
catalysis. We focused on a selection of nsSNVs of hGMPK, as
reported in the Catalogue of Somatic Mutations in Cancer
(COSMIC) database (50), particularly nsSNVs not directly
involved in nucleotide binding within the CORE domain.
Because changing one residue within a protein can alter func-
tionality and cellular viability (51, 52), we reasoned that func-
tional site– distant nsSNVs were physiologically viable mutants
of hGMPK and could report on a potential regulatory role for
the CORE. We overexpressed the following nsSNVs in Esche-
richia coli: S2L, G3A, L25P, V91M, R96H, R116Q, S121F, and
S186Y (Fig. 6A, Fig. S6, and Table S4). According to multiple
nsSNV predictors curated by the consensus classifier Pre-
dictSNP (53), contradictory results for the same mutation

arose, where some of the hGMPK nsSNVs are reported to be
both tolerated and damaging to protein function (Table S5). It
should be noted that these nsSNV predictors utilize sequence
conservation, structure, and machine learning to forecast the
impact of nsSNVs on protein functionality (54); however, there
still exists a significant gap between experiment and computa-
tional prediction (55, 56).

To assess the monomeric/oligomeric state and compactness
of the hGMPK variants, we first performed sedimentation
velocity analytical ultracentrifugation (SV-AUC). We hypothe-
sized that the SV-AUC–measured Svedberg coefficient (S)
would be able to detect subtle changes in the open-to-closed
hGMPK transition. We first fit our NMR structure to the pre-
viously published apo-hGMPK and Ap5G-hGMPK SAXS data
and found that our NMR structure fit better to the apo-hGMPK
SAXS profile with a reduced �2 of 1.7 compared with a reduced
�2 of 3.1 for the Ap5G– hGMPK complex SAXS profile (34).
With our hypothesis supported by the better fit to the apo-
hGMPK SAXS data, we carried out an SV-AUC– detected titra-
tion of wt-hGMPK with Ap5G. The S value for apo-hGMPK
was 2.04 � 0.03, which is remarkably close to the theoretical S
value of 2.07 � 0.02 calculated for our solution structure of
hGMPK using the program HydroPro (57). Upon the addition
of Ap5G, an appreciable shift to larger S values (at 2:1 molar
ratio of Ap5G to hGMPK, the S value is 2.40 � 0.03) was
observed as well as a narrowing of the S distribution (Fig. 6B).
HydroPro predicts a 0.05 increase in the S value entirely due to
an increase in molecular weight (Mr � 932 Da for the free acid)
upon Ap5G binding, which suggests that SV-AUC can detect
subtle shifts in conformational equilibria for hGMPK. Because
an increase in the S value designates a more compact structure
for a system with the same Mr, Ap5G-bound wt-hGMPK is
more closed than the apo form, in line with the SAXS data (34).

For the SV-AUC measurements of the hGMPK nsSNVs,
almost all of the hGMPK mutants behaved as monomers in
solution and shifted the conformational equilibrium to a
slightly more closed average macroscopic structure when com-
pared with the WT (ranging from 2.12 to 2.23 S; Table 2). The
only exception was mutant L25P, which led to a significant
amount of aggregation (Fig. S7) and was forecast to have dele-
terious effects on hGMPK functionality (Table S5), probably
due to the helix-disrupting proline substitution in the CORE
domain (Fig. 6A). For the rest of the nsSNVs, the SV-AUC
results indicate a change in the macroscopic structure toward a
more compact state.

To assess the effect of each nsSNV on hGMPK’s catalytic
properties, we evaluated their thermostability with differential
scanning fluorimetry (DSF). DSF demonstrated that the WT is
the most thermostable species, with a Tm of 47.4 °C, whereas
the hGMPK nsSNVs show only a slight decrease in thermosta-
bility (Table 2 and Fig. 6C). Next, we characterized their cata-
lytic activity with a coupled-enzyme kinetic assay (4, 34) (Table
2 and Fig. 6D). Unexpectedly, the hGMPK nsSNVs possess
more catalytic activity, as shown by an increase in kcat, than the
WT. When plotting the two Michaelis–Menten parameters, it
is apparent that kcat–Km compensation (Fig. 6E; � � 0.97, p �
0.001) is occurring, a phenomenon that, to our knowledge, has
only been observed for the enzymes adenylate kinase (58) and
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6 –188 (hGMPK numbering) with a backbone RMSD of 6.2 � 1.0 Å. Distances
between the C� atoms of Ser-77 (from GMP-BD) and Ser-144 (from the LID
domain) in hGMPK and mGMPK, which correspond to Ser-74 and Ser-142 in
yGMPK, respectively, are 22.9 � 1.1 Å for apo-hGMPK, 6.3 Å for mGMPK, 19.9
Å for apo-yGMPK, and 10.4 Å for GMP-bound yGMPK. B, overlay of the LID
domain with a backbone RMSD of 1.09 � 0.18 Å. C, superposition of the
GMP-BD with a backbone RMSD of 1.19 � 0.19 Å. D, superposition of the
CORE domain with a backbone RMSD of 1.45 � 0.18 Å. Highly flexible N- and
C-terminal regions are not shown here. Table S2 indicates the residues used
from each GMPK for structural superposition.
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DNA repair demethylase AlkB (59). This tight regulation of the
specificity constant, kcat/Km, could be a built-in evolutionary
feature of enzymes to accommodate nsSNVs and maintain an
optimal level of performance. Finally, there is a correlation
between the specificity constant (kcat/Km) and the Svedberg
coefficient (Fig. 6F; � � �0.80, p � 0.001, excluding R96H),
suggesting an inverse relationship between hGMPK compact-
ness and enzymatic efficiency. Only R96H is the outlier, which
has a slightly higher kcat/Km than the WT (3.4 versus 2.8 	M�1

s�1), while being the least thermostable hGMPK variant. It is
intriguing to note that the nsSNV predictors imply that S2L

and R96H are detrimental to protein function, yet they are
functional kinases (Table 2), highlighting the difficulties in
predicting functional outcomes for active/binding site–
distant nsSNVs.

To explore whether the enhanced kinetic activity is a result of
perturbations to the average hGMPK structure on the atomic
level, we measured 2D 1H,15N HSQC NMR spectra for the WT
and five of the hGMPK nsSNVs (S2L, G3A, R96H, R116Q, and
S186Y; Fig. S8). An analysis of our NMR structure reveals that
the side chains of Arg-96, Arg-116, and Ser-186 are solvent-
exposed, and S2L and G3A are part of the flexible N terminus
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(Fig. 6A). Fig. 7, A–D, shows plots of combined chemical shift
differences �
diff resulting from the mutations S2L (blue) (A),
G3A (cyan) (B), R96H (magenta) (C), and S186Y (red) (D), as
calculated with Equation 1.

�
diff � �1

2
	�
H

2 � 	0.14  �
N
2
 (Eq. 1)

The spectra show minimal variations in chemical shifts
(R116Q does not possess any significant chemical shift differ-
ences from wt-hGMPK; Fig. S9), and those shifts that do display
a sizable change are primarily located around the site of the
mutation, signifying a shared average structure across the
nsSNV series (Fig. 7). This conclusion is supported by the sim-
ilar melting temperatures measured by DSF for the hGMPK
variants (Fig. 6C and Table 2). Interestingly, G3A is the only
exception. This mutation within the flexible N terminus per-
turbs residues near the Ala-87 hinge residue and the GMP-BD
residues Glu-72 and His-73 (Fig. 7B). Taken together with the
SV-AUC data, the 2D 1H,15N HSQC NMR spectrum for G3A
may be detecting a slight compaction of hGMPK due to a shift
in hGMPK’s conformational landscape, although the structural
changes are probably subtle in nature given that the chemical
shift differences for a majority of the residues are within 2 S.D.
values from the mean. These observations do suggest that this
set of nsSNVs can modulate catalytic activity without causing
substantial structural changes, indicating a previously
unknown regulatory role for residues within the CORE domain.

The NMR data indicate that the solution structure of wt-
hGMPK alone cannot rationalize the observed catalytic
enhancement caused by the nsSNVs. Because the enhance-
ment only spans a range of 1.2–3.2-fold more activity than
wt-hGMPK, we acknowledge that a strictly structural explana-
tion for the observed variations in function would be challeng-
ing at best. That said, single-residue mutations within the
AMP-binding domain of adenylate kinase can lead to subtle
enhancements in the measured kcat, which was attributed to a
modulation of the conformational equilibria between folded
and unfolded conformations for the AMP-binding domain (62).
Although we cannot ascribe the variations in hGMPK activity
caused by the CORE domain mutants to also be associated with
a shift in an unfolding/folding equilibrium, the results do sug-
gest that allosteric networking links the CORE domain to the
nucleotide-binding domains. This conclusion is supported by
work demonstrating that allegedly nonallosteric proteins pos-

sess allosteric sites, well-described by the ensemble view of
allostery (63, 64). It is still quite difficult to forecast the effect of
an active site– distant, nonconserved nsSNV on the processes
of molecular recognition, enzymatic catalysis, and signal trans-
duction (65). This is especially evident in the experimental
LacI/GalR transcription regulation system, where multiple sub-
stitutions at nonconserved positions resulted in “rheostatic”
behavior that defies predictability (52, 65). Thus, a continued
focus on the atomic level features defining the mechanisms of
action for nsSNVs, especially those that may act as proxies for
allosteric processes, are necessary to decipher and predict the
outcome of nsSNVs at nonconserved positions, especially when
they are present in diseases originating from identified gene
alterations.

Exploring the functional role of hGMPK for lung
adenocarcinoma cellular viability

Given our high-resolution NMR structure and our results
indicating a regulatory role for the CORE domain, we were
interested in examining whether hGMPK could be a biomo-
lecular target. Due to the elevation of GTP in cancer cells (2), we
posited that levels of hGMPK might be higher in cancer sam-
ples than in adjacent normal tissue. To investigate this possibil-
ity, we first surveyed a number of publicly available data sets
and found that the genomic locus encoding hGMPK, GUK1, is
gained or amplified in more than half of lung cancers analyzed
(Fig. 8A), suggesting an enhanced role for hGMPK in the pro-
liferation of cancer cells. Next, we then determined whether
expression of hGMPK is required for survival and growth of
human lung adenocarcinoma cell lines using RNAi techniques.
Remarkably, we observed that loss of hGMPK decreases cell
proliferation and clonogenic potential for all of the lung adeno-
carcinoma cells tested but not in immortalized human periph-
eral airway (HPL1D) cells (Fig. 8, B–D), suggesting that hGMPK
may be a potential target for novel target cell type–selective
cancer therapeutics. In the case of A549 cells, cleavage of the
active poly(ADP-ribose) polymerase (PARP) following loss of
hGMPK indicates that the mechanism of cell death is apoptosis
(Fig. 8E) (66, 67).

These results denote a differential effect on normal and can-
cerous cell lines when depleting hGMPK by siRNA, signifying a
potential therapeutic window for targeting hGMPK. This dif-
ferential effect is most likely due to the higher requirement of
GTP in rapidly dividing cancer cells and the absence of the only

Table 2
Sedimentation coefficients, thermal stabilities, and kinetic parameters for WT apo-hGMPK and nsSNVs of hGMPK
All measurements on WT and the mutants were performed in triplicate, and errors were taken from the S.D. of the three measurements. The kinetic data were collected
from a coupled enzymatic assay where the ATP concentration was held constant at 2 mM, and the GMP concentration was varied from 10 to 200 	M (Fig. 6D). The kinetic
parameters were extracted from a fit of the data to the Michaelis–Menten equation, and the error in the fitted parameters was determined from 1000 Monte Carlo
simulations.

hGMPK s20,w Tm kcat K
m

kcat/Km

S oC s�1 	M s�1 	M�1

WT 2.04 � 0.03 47.4 � 0.4 58.5 � 0.3 20.7 � 0.3 2.8 � 0.1
S2L 2.22 � 0.03 45.5 � 0.5 77.7 � 1.1 31.5 � 0.7 2.5 � 0.1
G3A 2.15 � 0.03 46.0 � 0.7 184.4 � 2.8 78.3 � 2.1 2.4 � 0.1
V91M 2.14 � 0.03 44.4 � 0.8 132.2 � 2.2 54.7 � 1.9 2.4 � 0.1
R96H 2.18 � 0.03 42.4 � 0.7 100.6 � 2.4 29.6 � 1.6 3.4 � 0.2
R116Q 2.23 � 0.03 45.6 � 0.4 127.0 � 5.9 54.3 � 4.1 2.3 � 0.2
S121F 2.22 � 0.03 43.8 � 0.2 101.4 � 5.7 48.6 � 3.8 2.1 � 0.2
S186Y 2.14 � 0.03 44.6 � 0.2 96.5 � 0.7 36.8 � 0.7 2.6 � 0.1
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enzyme that converts GMP to GDP. In fact, silencing hGMPK
translation coupled with turnover of the enzyme already pres-
ent in the treated cancer cell lines appears to lead directly to cell
death by apoptosis. To date, only a few competitive inhibitors
have been described for hGMPK (30, 71). Current efforts
toward depleting cells of GTP and GDP have focused primarily
on IMPDH, an enzyme that acts a few steps upstream of
hGMPK in the de novo synthesis of nucleotides (Fig. 1A). This
focus on IMPDH continues, although inhibiting IMPDH can
affect ATP and pyrimidine levels, leading to even more pleio-
tropic outcomes (72). Our results suggest that targeting the
production of GDP/GTP at a more proximal step, such as at
hGMPK-catalyzed phosphorylation, will lower the number of
cellular processes affected while still specifically targeting can-
cer cell growth. Future work in our laboratory will focus on the
cellular processes and signaling pathways that are affected by
inhibition of hGMPK and will attempt to develop small-mole-
cule inhibitors of hGMPK using our NMR structure.

Conclusions

In the current work, we solved the structure of hGMPK with
atomic resolution for the first time by solution NMR spectros-
copy, a structure that we anticipate will provide an important
starting point for the development of therapeutically relevant
hGMPK inhibitors and for improving the efficiency of prodrug
phosphorylation. Furthermore, we offer support for the exist-
ence of allosteric networking linking nonactive site CORE
domain residues to the nucleotide-binding domains via sites
of nsSNV mutations. In addition, our results on depleting
hGMPK in multiple lung adenocarcinoma cell lines targeted by
siRNA strongly suggest that loss of hGMPK is detrimental to
lung cancer cell lines due to adverse effects on cellular viability,
proliferation, and clonogenic potential. Most importantly,
hGMPK inhibition was well-tolerated in the nontransformed
lung epithelial cell line (HPL1D), signifying a potential thera-
peutic window for targeting hGMPK. Taken together, our
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results provide an important step forward in establishing
hGMPK as a potential biomolecular target.

Experimental procedures

Site-directed mutagenesis of hGMPK

The E. coli expression plasmid, pET-14bSUMO�Thr, con-
taining the WT hGMPK (34) insert with N-terminal His6-
SUMO (small ubiquitin-related modifier) tag, was used as a
template for introducing 10 amino acid substitutions, which
include S2L, G3A, L25P, V91M, R96H, R116Q, S121F, and
S186Y. These nsSNVs were generated using the Q5 Site-Di-
rected Mutagenesis kit (New England Biolabs) (73). Twenty
mutagenic oligonucleotides containing the desired point muta-
tions were designed for this purpose and were synthesized by
Integrated DNA Technologies (Table S4). All oligonucleotides
were 18 –34 bases in length, Tm � 76 °C, with GC contents in
the range of 50 –78%. Each 25-	l reaction mixture contained 15
ng of hGMPK pET-14bSUMO�Thr template (�5.5 kb), Q5
Hot Start High-Fidelity 1� Master Mix, 0.5 	M forward and
reverse primers. The cycling parameters used were initial dena-
turation at 98 °C for 30 s, followed by 25 cycles of denaturation
at 98 °C for 10 s, annealing of primers at 57– 61 °C for 25 s, and
extension at 72 °C for 2.5 min. The final extension was at 72 °C
for 2 min. To check for sufficient amplification, 10 	l of the
PCR product was loaded on 1% agarose gel. Once verified, the
amplified product, 1 	l of the PCR product, 1� KLD (kinase,
ligase, and DpnI) Enzyme Mix, and 1� KLD Reaction Buffer
were mixed in a 10-	l final volume and incubated at 25 °C for 5
min. The KLD enzyme mix ensures room temperature circu-

larization of the PCR product and removal of the template
DNA. For transformation of competent E. coli XL1-Blue cells, 5
	l of the KLD mix was used. The mutated plasmids were puri-
fied by Qiagen Plasmid Mini kit according to the manufactu-
rer’s protocol. The desired mutations in the hGMPK inserts
were sequence-verified by the DNA Core Facility (University of
Louisville, Louisville, KY).

Expression and purification of hGMPK

E. coli C41(DE3) cells were transformed with the WT and
mutant hGMPK in the pET-14bSUMO�Thr vector (34). For
the overexpression of 15N,13C-labeled wt-hGMPK in M9 min-
imal medium, the protocol mentioned previously (35) was used,
followed by chromatographic purification that includes affinity
and gel filtration chromatography, as stated in the supplemen-
tal information of Ref. 34. One extra purification step of ion-
exchange chromatography was added using a Mono Q 10/100
GL column (GE Healthcare) according to the manufacturer’s
protocol. The starting buffer was 20 mM Tris, pH 8.0, contain-
ing 2 mM DTT, and the elution buffer was 20 mM Tris, pH 8.0,
containing 2 mM DTT, and 1 M NaCl. The gradient applied was
50% of the target elution buffer in 80 min (160 ml) with the flow
rate of 2 ml/min using the ÅKTAprime Plus system (GE
Healthcare). For the expression of unlabeled WT and nsSNVs
of hGMPK, cells were grown in Terrific Broth at 37 °C until
A600 0.65, and overexpression was induced with 0.5 mM isopro-
pyl �-D-1-thiogalactopyranoside (Gold Biotechnology), incu-
bating for an additional 4 h. Cells were harvested by centrifu-
gation at 5000 � g for 15 min at 4 °C. The purification
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procedure was the same as described above. Purity of the sam-
ples was tested by SDS-PAGE (Fig. S6).

NADH-dependent spectroscopic assay

The activity of wt-hGMPK and its nsSNVs was determined
by the NADH-dependent enzyme-coupled assay using a
JASCO V-550 UV-visible spectrophotometer (4). ADP and
GDP produced by the hGMPK-catalyzed reaction were cou-
pled to two additional reactions catalyzed by the helper
enzymes pyruvate kinase and lactate dehydrogenase, respec-
tively. The absorbance change of the reaction mixture due to
oxidation of NADH (� � 6.22 mM�1 cm�1) to NAD� was mon-
itored at 340 nm. The NADH conversion to NAD� in the third
step of the assay is directly proportional to the phosphorylation
of GMP to GDP in the first step. The assay measurements were
performed in triplicate with 10 nM hGMPK at 25 °C in a buffer
containing 100 mM Tris, pH 7.5, 100 mM KCl, and 10 mM

MgCl2. For each hGMPK variant, the ATP concentration was
held constant at 2 mM, and the GMP concentration was varied
from 10 to 200 	M. Specific activities and turnover rates were
calculated. The kinetic data were fit to the Michaelis–Menten
equation for determining kcat and Km, and the error in the fitted
parameters was determined from 1000 Monte Carlo simula-
tions using Mathematica.

NMR spectroscopy

The NMR measurements (15N-resolved 1H,1H NOESY,
�mix � 60 ms; 13Caliphatic-resolved 1H,1H NOESY, �mix � 80 ms;
13Caromatic-resolved 1H,1H NOESY, �mix � 80 ms) providing the
distance restraints for the structure determination of hGMPK
were previously measured and described (35). The buffer used
for all measurements was 20 mM phosphate, 100 mM sodium
chloride, 1 mM tris(2-carboxyethyl)phosphine, 3 mM sodium
azide, 10% D2O, pH 7.2 (referred to as NMR buffer).

Standard pulse sequences were used to record the steady-
state [1H]-15N NOE data on a sample of 500 	M 15N,13C-labeled
hGMPK in NMR buffer at 25 °C and on a Bruker Avance Neo
600-MHz instrument equipped with a nitrogen-cooled Prodigy
TCI cryoprobe. The steady-state [1H]-15N NOE spectra were
recorded in an interleaved manner with a 10-s 1H saturation
time and a 10-s recovery time for the reference experiment (74).
Both measurements were preceded by an additional 1-s recov-
ery time. The spectral parameters were 512 and 128 complex
points in the direct (t2) and indirect (t1) dimensions, respec-
tively, and 66 scans per t1 increment. The t1,max and t2,max were
62.0 and 62.4 ms, respectively. Steady-state [1H]-15N NOE val-
ues were calculated from the ratio of peak heights in a pair of
NMR spectra acquired with and without proton saturation.
The signal/noise ratio in each spectrum was used to estimate
the experimental uncertainty.

For the RDC sample, Pf1 phage (ASLA Ltd., Riga, Latvia) was
suspended in NMR buffer and pelleted three times at 140,000 g
for 1 h. To the Pf1 phage pellet, a solution of 400 	M 15N-labeled
hGMPK was added, resulting in a final phage concentration of
12 mg/ml (75). Backbone amide RDC data for the anisotropic
sample, as well as the isotropic reference experiment for mea-
suring backbone amide scalar couplings, were measured using
2D-IPAP-15N,1H HSQC experiments (76) at 25 °C and on a

Bruker Avance Neo 600-MHz instrument equipped with a
nitrogen-cooled Prodigy TCI cryoprobe. Both the anisotropic
and isotropic spectra were recorded with 1024 and 50 complex
points in the direct (t2) and indirect (t1) dimensions, respec-
tively, with 352 and 160 scans per t1 increment for the aligned
and unaligned samples, respectively. The t1,max and t2,max were
69.6 and 125 ms, respectively. Measured RDCs and scalar cou-
plings were derived from the difference in coupling between
aligned and isotropic samples. To provide a lower limit for the
accuracy of the measurements, an estimate of the error in the
RDCs was calculated by dividing the average peak line width by
the signal/noise ratio and the measurement error propagated
throughout the calculation of the coupling constants, yielding
an average error of 0.8 Hz for the extracted RDCs (77). This
error represents the lower limit for the uncertainty in the RDC
calculation.

2D 1H,15N HSQC measurements of the hGMPK nsSNV
series (S2L, G3A, R96H, R116Q, and S186Y) were carried out at
800 MHz and 25 °C on a Varian Inova spectrometer equipped
with a 5-mm inverse triple resonance pulsed-field gradient
probe. The concentration of the hGMPK nsSNVs was 100 	M

in 90%/10% H2O/D2O in NMR buffer. The spectra were
recorded with 1024 and 100 complex points in the direct (t2)
and indirect (t1) dimensions, respectively, with 256 scans per
t1 increment. The t1,max and t2,max were 34.3 and 98.5 ms,
respectively.

Frequency discrimination in the indirectly detected dimen-
sion was achieved with the States-TPPI scheme (78). All spectra
were processed using NMRPipe (79) and analyzed with CARA
(80).

Structure calculation and analysis

The chemical shift assignment was determined manually as
described previously (35). Backbone dihedral angle restraints
from 1H, 15N, 13C�, 13C�, 13C� chemical shifts were calculated
by TALOS-N (81) and reported previously (35). It should be
noted that 15N-hetNOE values �0.7 are associated with back-
bone amide vectors that experience rapid picosecond to nano-
second fluctuations and are generally more disordered.
Residues with 15N-hetNOE values 0.7 primarily sense the
molecule’s overall tumbling and are more ordered. Therefore,
we removed dihedral and RDC constraints for those residues
with 15N-hetNOE values �0.7 from the structure calculation.
Automatic NOE assignment and initial structure calculation
were performed with CYANA (version 3.97) (36, 37), generat-
ing the 20 lowest energy conformers of hGMPK from 100 struc-
tures using 2430 NOE distance constraints and 281 dihedral
constraints.

From this initial structure, we identified hydrogen bonds
with an automatic algorithm implemented in CYANA, which
does not make any assumptions about the secondary structure
or the protein topology. This routine identified all potential
backbone acceptor– donor pairs that are less than 3.5 Å apart in
at least 50% of the structures. Hydrogen bond distance con-
straints were then generated for those hydrogen atoms that are
involved in exactly one potential acceptor– donor pair and were
present in all 20 structures. As additional support for the gen-
erated hydrogen bond constraints, we utilized a 2D 1H,15N
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HSQC spectrum of hGMPK in 100% D2O (following 1 day of
immersion in 100% D2O), where the presence of cross-peaks
indicates protection from deuterium for that backbone amide
(Fig. S10). Two upper and two lower distance limits are
imposed for each hydrogen bond to restrict the HN–O distance
to the range 1.8 –2.0 Å and the N–O distance to 2.7–3.0 Å.
Finally, we performed the structure calculation again, this time
including 58 hydrogen bond pairs and 89 RDCs as constraints
in addition to the list of assigned NOEs and dihedral con-
straints. We calculated 2500 structures and selected 100 with
the lowest target functions for further refinement.

NMR-restrained molecular dynamics (RMD) simulations
were performed by the AMBER 16 package using the AMBER
ff14SB force field (39). Distance, dihedral angle, and RDC
restraints were introduced by the respective makeDIST_RST,
makeANG_RST, and makeDIP_RST modules of AmberTools
17. Refinement and RMD were performed under generalized
Born (GB) model for implicit solvation (igb � 1) conditions
with a distance cut-off of 12 Å throughout. NMR distance and
angle constraints were implemented with a force constant of
300 kcal/mol/Å2, and the RDC constraints were weighted by a
factor of 0.05. Calculation of the initial RDC alignment tensor
was first determined by setting freezemol � .true. Initial refine-
ment was carried out for the 100 best structures derived from
the CYANA calculations. The 20 best structures (based on low-
est target function) were subjected to the same alignment/re-
finement procedure followed by 1 ns of RMD at 300 K, followed
by subsequent minimization and analysis. These 20 structures
constituted the final structure.

SAXS data analysis

The previously published hGMPK SAXS data (34) were ana-
lyzed with the ATSAS software package (82). The theoretical
scattering from the individual structures was calculated using
the program CRYSOL.

Analytical ultracentrifugation

Sedimentation velocity experiments were carried out in a
Beckman Coulter ProteomeLab XL-A analytical ultracentri-
fuge (Beckman Coulter Inc., Brea, CA) at 20 °C and 50,000 rpm
in standard two-sector cells. Buffer density was determined on
a Mettler/Paar Calculating Density Meter DMA 55A at 20 °C,
and viscosity was measured using an Anton Parr AMVn Auto-
mated Microviscometer at 20 °C. Data were analyzed with
the program Sedfit (http://www.analyticalultracentrifugation.
com)8 using the continuous c(s) distribution model. The partial
specific volume of hGMPK was calculated from the amino acid
composition (0.734 ml/g) using the Protparam tool in ExPASy
(http://web.expasy.org/protparam). Frictional ratios were cal-
culated by Sedfit assuming no bound water. Experimental
sedimentation coefficients were corrected to s20,w using the
corrections based on the measured density and viscosity. Ana-
lytical runs were performed with at least three independent
samples for each condition studied. Sedimentation coefficients
were calculated from atomic coordinates using the program

winHYDROPRO10 (http://leonardo.inf.um.es/macromol/
programs/hydropro/hydropro.htm)8 (57) with the residue/
shell model.

DSF

DSF experiments were carried out using Applied Biosystems
StepOne Plus real-time PCR system (83, 84). Melting curves
were determined in 96-well plates using a temperature ramp
from 20 °C to 99 °C at a constant increase of 0.2 °C/min. The
assay mixture contained wt-hGMPK or nsSNVs (5 	M), SYPRO
Orange dye (5� final concentration; Thermo Fisher Scientific),
and PBS, pH 7.4, to a final volume of 20 	l. Samples were loaded
in triplicate onto the 96-well plate, sealed, and centrifuged at
1350 rpm for 2 min. Each plate was run in duplicate. The Tm
was determined from the first derivative of the melt curve (fluo-
rescence versus temperature).

Antibodies used in this study

Antibodies used were as follows: GAPDH (catalog no. 2118),
PARP (catalog no. 9532) (Cell Signaling Technologies Inc.,
Danvers, MA), human guanylate kinase (C-terminal peptide)
(catalog no. ab198816, Abcam, Cambridge, MA).

Cell culture, siRNA transfection, and protein analysis

Human lung adenocarcinoma cell lines A549, H3255, H1650,
and HOP62 and HPL1D were purchased from American Type
Culture Collection (ATCC, Manassas, VA) and cultured in
RPMI medium supplemented with 10% fetal bovine serum
(Invitrogen) and 1% antibiotic/antimycotic solution (Sigma).
All cell lines were routinely subcultured every 3–5 days. siRNA
transfections were performed using Dharmafect1 (catalog no.
T-2001-03, Thermo Fisher Scientific) as per the manufacturer’s
protocol. 72 h post-transfection, cells were harvested in cell
extraction buffer (CEB) lysis buffer (catalog no. FNN0011,
Invitrogen, Life Technologies). Protein was quantitated by
using Pierce’s BCA Protein Assay Reagent Kit (catalog no.
23227) as per the manufacturer’s protocol.

siRNA sequences used in this study

siRNAs used in this study were ordered from Thermo Fisher
Scientific and Dharmacon: nontargeting siRNA (si_NT),
UAAGGCUAUGAAGAGAUACAA; Kif11 siRNA (si_Kif11),
ON-TARGET plus SMART pool (catalog no. L-003317-00);
hGMPK siRNA (si_hGMPK), ON-TARGET plus SMART pool
(catalog no. L-006734 – 00).

Western blot analysis

CEB (catalog no. FNN0011, Invitrogen) was used to lyse the
cells, supplemented with Complete Mini Protease Inhibitor
tablets (Roche Applied Science). Protein quantification was
performed, and an equal amount of protein (40 	g) from each
sample was added to SDS loading buffer, boiled, and resolved
on a 4 –12% SDS-polyacrylamide gel and transferred onto a
membrane. Blots were probed with different antibodies, and
immunoreactive proteins were visualized using the SuperSignal
West Femto Maximum Sensitivity Substrate (catalog no.
PI34095) from Fisher, according to the manufacturer’s instruc-
tions. The membrane was stripped by using Western blotting

8 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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stripping reagent (Bio-Rad) and reprobed with GAPDH to nor-
malize the variation in loading of samples.

Cell viability and clonogenic assay

A549, H3255, H1650, HOP62, and HPL1D cells were cul-
tured in 60-mm culture plates. After 24 h of transfection either
with nontargeting siRNA (si_NT), positive control Kif11 siRNA
(si_Kif11), or with siRNA targeting hGMPK (si_hGMPK), cells
were trypsinized and counted, and 1000 cells were reseeded per
well in 96-well plates. Cell viability was analyzed for 4 succes-
sive days using alamarBlue (catalog no. DAL1100, Invitrogen
Detection Technologies, Eugene, OR). Also following transfec-
tion, 1000 cells were reseeded per well in 6-well plates in tripli-
cate for each transfection. Cells were allowed to grow on 6-well
plates for 10 days; they were supplemented with fresh media
after every 2–3 days. After 10 days, colonies formed were
washed once with PBS, fixed with 70% methanol, and stained
with 0.25% Coomassie Brilliant Blue stain R (catalog no. B 7920,
Sigma-Aldrich) and photographed.
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