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In Brief
Phosphorylation of substrate
proteins by kinases regulates
signaling pathways and cellular
mechanisms. Aberrant signaling
is a hallmark of cancer. We in-
vestigated quantitative associa-
tions between kinase-substrate
pairs of more than 30 thousand
phosphorylation sites in breast
tumors and xenografts, finding
auto-phosphorylating kinases
and kinase-substrate pairs asso-
ciated with specific cancer sub-
types, druggable targets, and
ones that show clinically-related
or immune signatures. Our study
connects driver kinases to their
signaling effects toward inform-
ing rational targeted treatments
of individual breast tumors.
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Highlights

• Our search identifies 2,134 kinase-substrate phosphosite pairs in breast cancer.

• CDKs and MAPKs are dominant regulators of trans substrate-phosphorylation.

• Druggability, outcomes, and immune signatures related to kinase-substrates.

• Experimentally validated activated phosphosites of ERBB2, EIF4EBP1, and EGFR.
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Aberrant phospho-signaling is a hallmark of cancer. We
investigated kinase-substrate regulation of 33,239 phos-
phorylation sites (phosphosites) in 77 breast tumors and
24 breast cancer xenografts. Our search discovered 2134
quantitatively correlated kinase-phosphosite pairs, en-
riching for and extending experimental or binding-motif
predictions. Among the 91 kinases with auto-phosphory-
lation, elevated EGFR, ERBB2, PRKG1, and WNK1 phos-
phosignaling were enriched in basal, HER2-E, Luminal A,
and Luminal B breast cancers, respectively, revealing
subtype-specific regulation. CDKs, MAPKs, and ataxia-
telangiectasia proteins were dominant, master regulators
of substrate-phosphorylation, whose activities are not
captured by genomic evidence. We unveiled phospho-
signaling and druggable targets from 113 kinase-sub-
strate pairs and cascades downstream of kinases, in-
cluding AKT1, BRAF and EGFR. We further identified
kinase-substrate-pairs associated with clinical or im-
mune signatures and experimentally validated activated
phosphosites of ERBB2, EIF4EBP1, and EGFR. Overall,
kinase-substrate regulation revealed by the largest un-
biased global phosphorylation data to date connects
driver events to their signaling effects. Molecular &
Cellular Proteomics 18: 1630–1650, 2019. DOI: 10.1074/
mcp.RA118.001243.

Mutations and alterations in cancer dysregulate kinases
and signaling cascades. Large-scale studies of breast cancer
have discovered drivers, with genomic and expression
changes, in kinases of the PI3K/Akt signaling and TP53/RB

signaling/cell-cycle checkpoint pathways (1, 2). However,
genomic findings provide only indirect inference of phosphor-
ylation activity. Further, large-scale proteomic studies using
reverse phase protein array (RPPA)1 are limited to coverages
of �200 proteins and phosphoproteins with available antibod-
ies (3–5). The impact of candidate driver events on direct
signaling has therefore been seldomly explored in the corre-
sponding tumors. Although functional experiments in in vivo
systems or model organisms have enabled controlled assess-
ment of downstream effects, they must be complemented by
in vivo observations that account for the molecular complexity
of each tumor.

Mass spectrometry (MS) is evolving rapidly and has cata-
loged tens of thousands of phosphorylation sites (phospho-
sites). Recent studies by the Clinical Proteomic Tumor Anal-
ysis Consortium (CPTAC) using liquid chromatography (LC)
MS/MS have generated proteomic/phosphoproteomic data
sets that have more deeply profiled the cancer proteome (2, 6,
7), providing an opportunity to evaluate regulation of phos-
pho-signaling in cancer. Other MS-based studies focusing on
the kinome have highlighted kinases that are disrupted in
cancer (8) and identified complementary genomic and pro-
teomic alterations in a handful of signaling pathways (9). How-
ever, characterization of kinase-substrate interaction at a sin-
gle-residue level has been largely limited to in vitro and in
silico predictions using sequence-based analysis of kinase
binding motifs (10–14). Direct observation of kinase-substrate
associations in patient tumors can complement these studies
to help reveal their regulation mechanisms.
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In this study, we characterized phospho-signaling in cancer
by analyzing the phosphoproteomic profiles of 77 human
breast tumors characterized in TCGA and CPTAC projects (1,
2) and validating predictions using an independent cohort of
24 breast cancer patient-derived xenografts (PDXs). Approx-
imately 60% (387/630) of phosphosites are significantly as-
sociated with expression of their respective proteins across
91 unique kinases in EGFR, PKC, STE20, and other families.
MAP kinases and CDKs are involved in wide-spread trans-
correlations with downstream substrates. Only selected sub-
strate phosphosites (�5%, 1747/38,710) are associated by
kinases in this breast cancer cohort, suggesting cancer-spe-
cific usage of signaling modules. Notably, our analysis re-
vealed 806 potentially associated phosphosites by protein
kinases not captured by current experimental or motif-based
predictions, including ERBB2, EGFR, MAPKs, and CDKs.
Landscapes of associations revealed adjacent phosphosites
showing similar or distinct regulations. Finally, druggable ki-
nase-substrate pair analysis validated singleton driver events
of AKT1, ERBB2, and RAF1, while exposing potentially drug-
gable pairs and cascades downstream of several MAP ki-
nases not apparent at the genomic level. Overall, our findings
emphasize that evaluating signaling effects in patients’ tumor
through a systematic, high-throughput manner could ulti-
mately prove clinically useful.

EXPERIMENTAL PROCEDURES

Sample Description

Samples of human breast cancer have been described in CPTAC
marker papers (2, 6). The corpus is comprised of 77 breast cancer
samples showing unimodal distribution in proteomes, their 3 technical
replicates, and 3 normal breast samples. Samples of the 24 PDX
breast cancer were as described previously (15).

Data Generation

TCGA Genomics Data—The TCGA somatic mutation data, level-3
segment-based copy number data, and level-3 normalized RNA ex-
pression data were downloaded from firehose (archive date October
17, 2014). We then converted the segment-based copy number data
to the gene-based copy number data by using the RefSeq database
(version 20130727). The CNV ploidy number is divided by 2 and then
log2-transformed to obtain the final CNV levels for analysis. We also
log2-transformed the RSEM values of RNA expression data.

TCGA RPPA Data—Normalized RPPA data of TCGA tumors were
downloaded from The Cancer Protein Atlas (TCPA, archive date
2015–10�30). The RPPA data were normalized across batches using
replicates-based normalization (RBN) as previously described (16).

Global Proteomics Data—Global proteomics data for the human
samples were downloaded from the Mertins et al. breast cancer study
(2). Global proteomics data for the PDX samples were downloaded
from the Huang et al. breast cancer PDX study (15). As previously
described, 2-component Gaussian mixture model-based normaliza-
tion algorithm was used to normalize the data and accomandate both
consistently and differentially-expressed proteins and phosphosites
within each sample. Further, proteins and phosphosites used in this

study were required to have observed (nonmissing) iTRAQ ratios in at
least 30 samples and an overall standard deviation larger than 0.5
(across all samples where they were observed).

To obtain phosphoprotein level used in our kinase-substrate anal-
ysis, we used the WGCNA package (17) to collapse phosphosite
expression level within each protein. For proteins with three or more
phosphosites, we used connectivity based collapsing using the phos-
phosite with the highest connectivity according to a signed weighted
correlation network adjacency matrix. For proteins with two phospho-
sites, we select the phosphosites with the highest mean value.

Protein and Phosphorylation Databases

UniProt—We applied HotSpot3D (v1.1.1) which accesses crystal
structures from RCSB Protein Data Bank (PDB) and calculates resi-
due distances using the average distance-measure option in prepro-
cessing (structures processed January 2017) (18). We used a custom
Perl script to retrieve phosphosites, active sites, and binding sites (i.e.
features matching MOD_RES, ACT_SITE, BINDING, or SITE) from
UniProt (date accessed 1/30/2017) (19).

PhosphositePlus (20, 21)—For phosphosite comparison, we down-
loaded the data from file Phosphorylation_site_dataset.gz (Down-
loaded: 2/13/2019) to extract phosphosite mapping to human pro-
teins and reverse-translated to their unique genomic positions using
transvar (22). For kinase-substrate pair analysis, we downloaded the
file Kinase_Substrate_Dataset.gz (Downloaded: 2/11/2016) and ex-
tracted the kinase-substrate proteins pairs. To identify phosphosites
known in cancer, we filtered the disease-associated sites database
for cancer terms (ex. cancer, *oma, and leukemia) using the file
Disease-associated_sites.gz (Downloaded: 2/11/2016). The sites that
were not matched to a valid genomic coordinate by TransVar (22)
were excluded and the remainder sites were further reviewed. We
ultimately retained 261 sites, where 84 unique sites were quantified in
our dataset.

Phospho.ELM—We downloaded the phospho.ELM database from
PhosphositePlus (2/11/2016). We then extracted the phosphosites
mapping to human proteins and reverse-translated to their unique
genomic positions using transvar (22).

PhosphoNetwork—We downloaded the Supplementary Tables
from Newman et al. (10) and derived the predicted kinase-substrate
pairs from the file comKSI.csv, this file combined refined kinase-
substrate pairs to 719 kinase-substrate pairs as described. We then
further filtered out the pairs already observed in PhosphositePlus and
combined the remaining pairs with pairs from PhosphositePlus for
analysis.

NetworKIN—We downloaded the NetworKIN output (networkin_
human_predictions_3.1.tsv.gz, download date: 3/20/2018) from Ki-
nomeXplorer (12) (http://networkin.info/). We then standardized the
kinase names to HUGO symbols using mapping from the human
kinome (23) and custom scripts. The processing resulted in 423,574
predicted kinase-substrate phosphosite pairs with mapped gene
names, of which 412,696 pairs were within the kinase/substrate
genes investigated in our quantitative analyses and were thus used
for further analyses.

Bioinformatics Analyses

Cross Data Type and Database Integration

All gene names were converted to HUGO Gene Nomenclature
Committee’s approved gene names for comparison across levels and
datasets. To match the exact phosphosite (ex. PIK3CA:NP_006209.2:
s312) across databases, all phosphosites were reverse-mapped
to their respective genomic positions (ex. chr3:g.178921452_
178921454) using transvar (22).

1 The abbreviations used are: RPPA, reverse-phase protein array;
LC, liquid chromatography; PDX, patient-derived xenograft.
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Kinase-Substrate Pairs Regression Analysis—We obtained 3245
unique kinase-substrate pairs in the PhosphositePlus database (20,
21) and an additional 1752 kinase-substrate pairs from the Phospho-
Network database (24). We then screened all kinase-substrate-phos-
phosite pairs within these known kinase-substrate protein pairs. For
each kinase-substrate-phosphosite pair to be tested, we required
both kinase protein/phosphoprotein expression and phosphosite
phosphorylation to be observed in at least 10 samples in the respec-
tive datasets and the overlapped dataset. We then applied the linear
regression model as implemented in glm function in R to test for the
relation between kinase and substrate phosphosite. The tests are
independently conducted for cis and trans interactions in the cohorts
of 77 human and 24 PDX breast cancer samples using linear regres-
sion models. Linear regression modeling is generally based on esti-
mating coefficients of independent variables that give the best fit to a
dependent variable within the context of a random error. For the ith

trial for kinase phosphosite abundance in the cis associations, kinase
phosphosite abundance, Ai, depends on kinase protein expression,
Si, and error, Ei,

Ai � �0 � �1Si � Ei

For the ith trial for kinase phosphosite abundance in the trans asso-
ciations, substrate phosphosite abundance, Ai, depends on kinase
phosphoprotein expression, Ki, substrate protein expression, Si, and
error, Ei,

Ai � �0 � �1Ki � �2Si � Ei

where the beta coefficients are determined by least-squares calcula-
tion. The resulting p values were adjusted using the Benjamini-Hoch-
berg procedure to FDR.

We determined kinase-phosphosite pairs as validated if they
showed p value under 0.05 and positive regression coefficients in the
PDX cohort. For the kinase-phosphosite pairs showing top significant
associations in the regression analysis, we calculated the average of
phosphorylation level for each of the substrate phosphosite and
protein expression of the kinase within each of 4 breast cancer
subtypes (Basal, Her2, LumA and LumB) for display in Fig. 2 and 3.

Finally, we compared our results of trans association to 10 simu-
lated kinase-substrate datasets by distributing the same kinases in
even proportions to all incidences of current substrate phosphosites
and conducted the kinase-substrate association testing in 574,356
randomized pairs with sufficient quantifications. Only 2.82% (16, 194)
showed positive association using the same criteria (regression co-
efficient � � 0 and FDR � 0.05). We then determined the significance
of our observed proportion to the simulated results using the Fisher’s
exact test.

Kinase-Substrate Pair Validation Using Thresholds Defined in PDX
Data—We used sensitivity/specificity analyses to determine the
thresholds derived from the PDX cohort used for validating kinase-
substrate pairs found in the human cohort. In this analysis, the cor-
related significance (with regression coefficient � � 0 and FDR �
0.05) of tested kinase-substrate pairs with sufficient PDX data (cis n �
396; trans n � 27,585) is considered as the response variable and the
kinase regression coefficients are considered as the predictor vari-
ables (supplemental Fig. S2). For cis analysis, the area under curve
(AUC) for the regression coefficient of the kinase protein in the PDX
cohort is moderate at 0.5464; but at our threshold coefficient of 0.1,
we could achieve sensitivity of 0.98 and specificity of 0.09. For trans
analysis, the AUC for the regression coefficient of the kinase phos-
phoprotein in the PDX cohort is better at 0.612; and at our threshold
coefficient of 0.1, we could achieve sensitivity of 0.46 and specificity
of 0.71.

Kinase Group and Family Enrichment Analysis—To test whether
kinases showing significant cis or trans correlations are enriched in

kinase groups and families, we applied the one tailed Fisher’s exact
test under a null hypothesis that the odds ratio of associated kinases
in the family are not greater. The universe of kinases for each of the cis
and trans tests was defined as the total tested kinase, and the 2-by-2
table was constructed by (1) whether the kinase belonged to the
kinase group/family, and (2) whether the kinase had any significant
correlations.

Structural and Cophosphorylation Analysis

We used HotSpot3D (18) to generate pairwise linear and 3D dis-
tances between residues within 1,288 proteins having available PDB
structures. The active sites were mapped based on data from the
RSCB PDB, as of January 2017 (http://www.rcsb.org/pdb/home/
home.do). Pearson’s correlation coefficients and adjusted p values
were then calculated for each pair of two phosphosites within these
proteins. We limited this correlation analysis to pairs of phosphosites
jointly observed in at least 5 samples in the breast cancer cohort. For
linear examinations of association landscapes, the lolliplots were
generated and modified using the PCGP protein painter (http://
explore.pediatriccancergenomeproject.org/proteinPainter).

Druggable Kinase-Substrate Pairs and Cascades Analysis—We
compiled a list 76 druggable genes along with their respective drugs,
from established public databases as previously described (15). We
then limited the analysis to the 68 genes with per-sample average
RSEM value greater than 100. We searched for significantly associ-
ated kinase-substrate pairs where either the kinase or substrate be-
longed to the set of druggable genes. The score of each pair was
calculated as the sum of standardized kinase and substrate phos-
phosite levels:

Xkinase-substrate �
Xkinase � �kinase

�kinase
�

Xsubstrate � �substrate

�substrate

where � is the mean and � is the standard deviation.
To identify druggable outliers in the conventional method, we

scanned for events at the somatic mutation, CNV, RNA, and protein
expression levels for each gene. CNV, RNA, and protein expression
outliers were identified as the ones greater than 2 interquartile ranges
(IQR) above median, as previously described (2, 15). We then com-
plemented this conventional single-event analysis by identifying out-
liers using the kinase-substrate score.

To define the druggable cascade of each of the druggable kinase,
we extracted all significantly associated cis phosphosites and their
first-degree correlated trans substrate phosphosites. We then ex-
panded one level beyond, extracting additional trans phosphosites
associated with the phosphoprotein level of the first-degree sub-
strates. The resulting cascades were visualized using heatmaps
showing levels of each protein/phosphoprotein/phosphosite and a
network diagram using Cytoscape (25).

Clinical and Immune Correlation Analysis—For each kinase-sub-
strate pair, We conducted association analysis between the kinase-
substrate score (defined above) of this pair for each patient and
pathological stage, survival, radiation therapy, and immune signa-
tures adjusted for their PAM50 subtypes. For continuous variables,
including pathological stage and immune scores, we used a Gaussian
linear regression. For whether the sample has gone through radition
therapy, we used a logistic regression model. We used the Cox
proportional Hazards model for survival analysis. The resulting p val-
ues were adjusted to FDR using the Benjamini-Hochberg procedure.

Western Blotting Validation

Frozen PDX tumor samples from the Washington University Human
in Mouse (WHIM) collection were extracted for soluble proteins using
PULSE Tubes (FT500-ND, Pressure BioSciences) in RIPA lysis buffer
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(20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10% glycerol, 1% NP-40,
0.1% SDS, 0.25% sodium deoxycholate, protease inhibitors (EDTA-
free Complete Mini, Roche), 1 mM EDTA, 1 mM PMSF and phospha-
tase inhibitors (1 mM NaPPi, 1 mM Na3VO4, 10 mM NaF)). Tumor
lysates were clarified by centrifugation for 5 mins at 13,000 rpm,
measured for protein concentration by Bradford assay, and boiled in
SDS sample buffer for immunoblotting. Proteins (20 �g/lane) were
separated on Any kDa Mini-PROTEAN TGX Precast Gels (Bio-Rad),
transferred to Immobilon PVDF membrane (Millipore), blocked with
5% skim milk in TBS/0.1% Tween-20 (TBST) for 30 mins at room
temperature and incubated overnight at 4 °C with primary antibodies.
The following primary antibodies were used: mouse monoclonal
HER2 antibody (MS730-P0, Thermo, 1:1500), rabbit polyclonal phos-
pho-HER2 (S1151) antibody (AP3781c, Abgent, 1:1000), rabbit mono-
clonal 4E-BP1 antibody (#9644, Cell Signaling Technology, 1:2000),
rabbit polyclonal phospho-EIF4EBP1 (S65) antibody (AP0032, Ab-
clonal, 1:1000) and rabbit polyclonal actin (A2066, Sigma, 1:5000).
After washing with TBST, membranes were incubated with appropri-
ate HRP-conjugated secondary antibodies for 1 h at room tempera-
ture, followed by washing, and developed using a chemilumines-
cence substrate (SuperSignal West Dura, Thermo) and visualization
on a ChemiDoc Imaging System (Bio-Rad). Image Lab software ver-
sion 3.0 (Bio-Rad) was used for image acquisition and analysis of the
blots. The software identifies lanes, detects bands, and generates an
analysis table quantifying the volume intensity of each band. Protein
levels were quantitated by densitometry.

Statistical testing of the results was conducted using linear regres-
sion models, where the quantity measured through Western blotting
is the dependent variable and the quantification obtained through
high throughput proteomics is the independent variable, with the
date/replicates of the blotting experiment as the covariate.

SRM Validation

Stable Isotope-Labeled Peptides

Crude stable isotope-labeled peptides (SI peptides) were synthe-
sized with 13C/15N on C-terminal lysine or arginine (New England
Peptide, Gardner, MA). The SI peptides were dissolved individually in
15% acetonitrile (ACN) and 0.1% formic acid (FA) at a concentration
of 1.5 mM (according to the nominal peptide quantity provided by the
vendor) and stored at �80 °C. A mixture of these SI peptides was
made with a final concentration of 10 pmol/�l for each peptide.

SRM Assay Development—To evaluate the peptide quality and
select the best responsive transitions for each peptide, 500 fmol/�l of
heavy peptide mixtures were subjected to high-resolution mass spec-
trometry (MS) analysis using the Orbitrap Fusion Lumos instrument
(Thermo Fisher Scientific, San Jose, CA) running in the HCD mode
(26). The resulting RAW files were processed with DTARefinery (27)
and MS-GF� (28, 29) to match against the RefSeq human protein
sequence database, released on April 18, 2017 (46,174 proteins) for
generating a list of MS/MS fragment ions derived from SI peptides.
The 6 most intensive fragment ions for each peptide were initially
selected based on corresponding MS/MS spectra. The collision en-
ergies for individual transitions were obtained by using empirical
equations from the Skyline software (30). Second, LC-SRM was used
to further evaluate all heavy peptides for the LC performance (e.g. the
stability of peptide retention time), MS response (e.g. reliable heavy
peptides identification and S/N�3), transition interferences, and en-
dogenous peptide detectability by spiking them into water and the
pooled wild type samples. In the end, 3 or more transitions per
peptide were selected for configuration of the final panel of assays for
reproducible targeted quantification. The transitions for each precur-
sor were provided in supplemental Table S23.

The intended use of these assays is the Tier 2 measurements, with
the ability to measure repeatedly sets of analytes of interest within

and across samples by spiked in internal standards for each analyte,
for confident detection and precise quantification (31). Response
curves were generated for the peptides using triplicate measurements
of varying concentrations of heavy peptides and a constant concen-
tration of light peptides spiked into a tryptic digest of a previously
characterized human breast cancer xenograft (32) (supplemental Fig.
S13). For peptide IPLENLQIIR, the concentrations of heavy peptide
were 0, 20, 50, 100, 200, 800, and 1600 amol/�l and the concentra-
tion of light peptide was 125 amol/�l; 5 �l of the sample at each data
point was injected for analysis by LC-SRM. Its limit of detection (LOD)
and lower limit of quantification (LLOQ) were both determined at 20
amol/�l level. For the two phosphopeptides NGLQSCPIKED(pS)-
FLQR and ELVEPL(pT)PSGEAPNQALLR, the concentrations of heavy
peptide were 0, 0.4, 0.8, 1.6, 3.125, 6.25, 12.5, 25, 50, 100, and 200
fmol/�l and the concentration of light peptide was 200 fmol/�l; they
were spiked into the same breast tumor xenograft sample (100 �g
peptide), followed by phosphopeptide enrichement (see below) and
LC-SRM analysis. The LOD and LLOQ for both phosphopeptides
were 0.4 fmol/�l and 1.6 fmol/�l, respectively. The LOD was deter-
mined by S/N�3. The LLOQ was determined by both S/N�10 and
CV�20%. The inter-day CVs were also determined (supplemental
Fig. S14).

Phosphopeptides Enrichment by IMAC—Two hundred micrograms
of tryptic peptides from each sample spiked with 1000 fmol/�l of each
of the crude SIL peptides were subjected to phosphopeptides en-
richment via immobilized metal affinity chromatography (IMAC) (33,
34). The in-house-made IMAC tip was capped in a tip-end with a
20-�m polypropylene frits disk followed by packing with Ni-NTA silica
resin (Qiagen, Hilden, Germany). First, Ni2� ions were removed by
adding 50 mM EDTA in 1 M NaCl. The tip was then activated with 100
mM FeCl3 and equilibrated with 6% (v/v) acetic acid at pH 3.0 before
sample loading. Tryptic peptides were dissolved in 6% (v/v) acetic
acid and loaded onto the IMAC tip. Followed by 1% (v/v) trifluoro-
acetic acid, 80% ACN, and 6% (v/v) acetic acid washing steps, the
bound phosphopeptides were eluted by 200 mM NH4H2PO4 and then
desalted by SDB-XC StageTips (35) and dried under vacuum.

LC-SRM—The enriched phosphopeptides or the unmodified pep-
tide samples with spiked SIL peptides were dissolved in 2% ACN/
0.1% FA and analyzed using a TSQ Vantage triple quadruple mass
spectrometer (Thermo Fisher Scientific) equipped with a nano-
ACQUITY UPLC system (Waters, Milford, MA). Peptide samples were
loaded onto an ACQUITY UPLC BEH 1.7-�m C18 column (100 �m
i.d. � 10 cm). The mobile phases were (A) 0.1% FA in water and (B)
0.1% FA in ACN. Two microliter of the unmodified peptide sample
(0.3 �g) and 5 fmol/�l SIL peptides were loaded onto the column and
separated at a flow rate of 400 nL/min using a 100-min gradient
profile as follows (min:%B): 11:0.5, 13.5:0.5, 17:8, 25:13, 55:20, 80:
38.5, 85:95, 89:50, 90:95, 91:0.5. For enriched phosphopeptide sam-
ples, all of the eluent from IMAC was dissolved in 10 �l and 4.5 �l
were loaded onto the column and separated with the same LC gra-
dient. The LC column is operated at a temperature of 44 °C. The
parameters of the triple quadruple instrument were set as follows: 0.7
fwhm Q1 and Q3 resolution, and 1 s cycle time. Data were acquired
in time-scheduled SRM mode (retention time window: 10 min) without
blinding the samples.

Data Analysis

SRM data were analyzed using Skyline software (version 4.2). The
total peak area ratios of endogenous light peptides and their heavy
isotope-labeled internal standards (i.e. L/H peak area ratios) were
calculated for quantification. Peak detection and integration were
carried out based on two criteria: (1) same retention time and (2)
similar relative SRM peak intensity ratios across multiple transitions
between light (endogenous) peptides and the heavy SIL peptide
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standards. All data were manually inspected to ensure correct peak
detection and accurate integration.

RESULTS

Detect and Characterize Phosphosites in Breast Can-
cer—We analyzed genomics and proteomics data from 77
breast cancer and 3 normal breast samples (supplemental
Table S1) characterized by TCGA(1) and CPTAC(2) (Fig. 1,
Experimental Procedures). Genomic analysis of TCGA DNA-
Seq, SNP-array, and RNA-Seq data provided comprehensive
assessment of somatic mutations, copy number variations
(CNV), and mRNA expression, respectively. The CPTAC
breast cancer project quantified global protein and phospho-
site expression levels using the Isobaric Tag for Relative and
Absolute Quantitation (iTRAQ) technology. We further used
proteogenomic data from 24 independent breast cancer pa-
tient-derived xenografts (PDXs, supplemental Table S1) (15)
generated using the same technologies and bioinformatic
pipeline for validation.

As previously described (2), 33,239 out of the 62,679 con-
fidently identified phosphosites passed additional missing
value and standard deviation filters and were used for down-
stream analyses (Methods). This catalog of breast cancer
phosphosites added 19,521 phosphosites not currently found
in the 12,492 and 24,910 genomically mapped human phos-
phosites from the UniProt (37) and the Phospho.ELM data-
bases (38), respectively (Fig. 1A, 1C; 13,883 sites not found
using protein coordinate matching in the PhosphositePlus
database (20, 21)). These phosphosites covered 315 of the
523 previously described human kinases (23, 39). Kinases
with a significant number of novel phosphosites may have
underappreciated regulatory roles in breast cancer, including
MAST2 (30 novel phosphosites) and MAST4 (26) from the
AGC kinase group, CDK13 (22) and CDK12 (11) from the
CMGC kinase group, SLK (22) and MAP4K4 (18) from the STE
kinase group, and ERBB2 (10) from the TK group (Fig. 1B,
supplemental Table S2). Compared with other quantified
sites, the 84 detected, known cancer-associated phospho-
sites (Experimental Procedures, supplemental Table S3), in-
cluding AKT1 pT308, GSK3B pS9, and MTOR pS2448, exhib-
ited higher standard deviation in both breast cancer and PDX
samples (Wilcoxon rank sum test, p � 2.6e-03 and 2.6e-04,
respectively, supplemental Fig. S1), implicating their differen-
tial regulation across tumors.

In this study, we aim to identify quantitatively correlated
kinase-substrate pairs that are concordant in their relative
abundance across samples (Fig. 1D). We hypothesize these
phosphosites are regulated in a patient-specific manner, con-
tributing to cross-sample variation in wiring of signaling net-
works. We examined two classes of kinase-substrate rela-
tions: (1) cis associations whereby a kinase protein expression
is correlated with its own phosphosites and (2) trans associ-
ations whereby a kinase phosphoprotein expression is corre-
lated with a substrate phosphosite level (Experimental Proce-

dures). We specifically analyzed sites showing substantial
variations (Observed across 30 samples and standard devia-
tion � 0.5) across breast tumors (Experimental Procedures),
noting that there may be other kinase-substrate pairs that
remain in steady states across breast tumors (i.e. consistently
high or low) not addressed by our current approach and
dataset (Fig. 1D).

To achieve this goal, we curated and screened 4997 pairs
of human kinase and substrate proteins based on the Phos-
phositePlus and PhosphoNetwork databases (20, 24). We
then compared the quantitatively correlated pairs we identi-
fied at the phosphosite level with experimentally observed
kinase-substrate phosphosite pairs in PhosphositePlus
(phosphosites observed in vivo or in vitro) and Phospho-
Network (CEASAR: kinase-substrate map generated through
in vivo sites and bioinformatics algorithm), as well as pairs
based on kinase binding-motif prediction using NetworKIN3.0
(11, 12). Our correlation approach overlapped previously iden-
tified pairs and added new observations at the phosphosite
level (Fig. 1E). For cis associations, 40 experimentally ob-
served cis-pairs showed significant correlations. For trans
associations, we observed a notable enrichment of both ex-
perimentally observed pairs (Fisher’s exact test, 2.2-fold en-
richment, p � 5.5e-22) and kinase binding-motif predicted
pairs (Fisher’s exact test, 1.7-fold enrichment, p � 8.3e-07),
suggesting that our quantitative-correlation approach affords
an independent and complementary method that can identify
potential kinase-substrate phosphosite pairs. Notably, our ap-
proach identified a substantial amount of 1440 trans associ-
ated pairs in addition to those found by in vitro experiments or
binding-motif analysis.

Phosphosites in Auto-phosphorylated Kinases Across
Breast Cancer Subtypes—Theoretically, a phosphosite’s
abundance will correlate with its protein level as determined
by stoichiometry. However, among the wide-spread molecu-
lar changes in tumors, many are presumed to be “passen-
gers” without clear functional effects and validated functional
events can often be prioritized by those affecting downstream
changes, such as genomic truncation/CNV/methylation as-
sociated with mRNA gene expression (40–42) or mRNA
changes associated with protein expression (15, 43). Thus,
we hypothesize cis-association will enable us to select for
meaningful protein level changes and their functional phos-
phosites. Further, those phosphosites with increased abun-
dance above expectations might suggest autophosphoryl-
ation, a hallmark functionality of many kinases involved in
oncogenic signaling.

For cis analysis, protein expression of 120 kinases known to
exhibit auto-phosphorylation were evaluated with relation to
peptide abundance of their 630 phosphosites using a linear
regression model (Experimental Procedures). Protein abun-
dance measures do not always guarantee the activation of the
phosphosites of the same protein: 61.4% (387/630) of the
tested kinase-substrate relations showed significant positive
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associations (regression coefficient � � 0 and FDR � 0.05) in
breast cancer (Fig. 2A, supplemental Table S4). Of the iden-
tified cis-associated pairs, 98.4% with sufficient PDX data
(179/182) showed positive correlation (� � 0.1, corresponding
to sensitivity of 0.98 and specificity of 0.09 [Methods], sup-
plemental Fig. S2) in the cohort of 24 breast cancer PDXs (15)
and considered validated (supplemental Table S5).

At the kinase group or family level, enrichments of cis-
associated kinase genes within the group or family imply their
diverse regulation and possible functional quantity changes
across breast tumors. Using the background of all tested
kinases, the AGC kinase group was most significantly en-
riched with cis associations (Fisher’s Exact Test, p � 0.024,
Experimental Procedures), with all 17 tested genes showing
significant cis correlations with their respective phosphosites,
followed by the STE group (14/14 genes, Fisher’s Exact Test,
p � 0.049, supplemental Table S6). Notably, at the kinase
family level, we observed significant cis-association in all 8 of
the STE20 kinases in the analysis, including PAK1/2/4, STK3/
4/24, and MAP4K1/3 (supplemental Table S7).

Top proteins with high percentage of cis-associated phos-
phosites (Fig. 2B) included well-known and novel breast can-
cer proteins, such as ERBB2 (15 significant cis-regulated
phosphosites), RPS6KA4 (15), NEK9 (11), RIPK2 (11),
CDC42BPA (10), and GTF2F1 (10). Further, at least 7 cis-
associated phosphosites in each of ERBB2, PAK4, NEK9, and
RIPK2 were validated in the PDX cohort (� � 0.1, supplemen-
tal Table S5). Various cis-regulations exhibited molecular dis-
tinctions across breast cancer subtypes (Fig. 2C), exemplified
by elevated ERBB2 protein and phosphorylation in HER2-E
breast cancers. Other subtype-specific regulated pairs iden-
tified were WNK1 up-regulated in luminal A, and EGFR and
SRPK1 up-regulated in basal breast cancers. Closer exami-
nation revealed clear correlations between levels of PAK2
protein and its pS2 and pT143 phosphosites, as well as
PRS6KA4 protein and its pS681 and pS682 phosphosites
(Fig. 2D).

We hypothesized that the observed cis associations may
indicate kinase autophosphorylation if each unit change in
kinase protein resulted in an even greater change in phospho-
site level (� � 1). Using this approach, we identified 41 cis-
regulated sites that showed the steep increase, including
CDK9 pT186, RAF1 pS43, BRAF pS151/S729, and PRS6KA4
pS737 (supplemental Fig. S3), and thus potentially were reg-
ulated in part by the autophosphorylation. Among the 41
pairs, only CDK9 pT186, PRKCB pS660, and PRKCD pS645

were validated as auto-phosphorylated in PhosphositePlus
(20, 21), warranting further validation to phosphosites discov-
ered using the quantitative-correlation approach.

Correlated Kinase-Substrate Pairs in Breast Cancer—For
trans analysis, we surveyed 7404 kinase-substrate protein
pairs and a total of 38,710 kinase-substrate phosphosite re-
lations with sufficient observations in our data set (Experimen-
tal Procedures). We applied a linear model using phosphosite
abundance of the substrate as the dependent variable, phos-
phoprotein expression of the kinase as the independent vari-
able. To avoid associations because of co-expression, we
correct for the protein expression of the substrate using it as
a covariate. Although only 4.51% (1,747/38,710) of the tested
relations showed significant positive associations (Fig. 3A,
supplemental Table S8), this correlated proportion is still sig-
nificantly higher than that found using simulated pairs (Exper-
imental Procedures, Fisher’s Exact Test, p � 2.2e-16). Fur-
ther, Only 143 and 81 of the 1,747 trans pairs were identified
when we modeled the kinase-substrate relations using pro-
tein and mRNA levels of the kinase, respectively, suggesting
that a limited fraction of the identified kinase-substrate pairs
are likely because of co-expression of the kinase and sub-
strate (supplemental Fig. S4). Phosphoprotein levels of the
kinase are required to identify 1576 of the trans associa-
tions, consistent with a mathematical model of phosphosig-
naling reactions (44) and suggesting the identification of
signaling pairs.

Of the identified trans-regulatory pairs, 45.5% with suffi-
cient PDX data (407/894) were confirmed (� � 0.1, corre-
sponding to sensitivity of 0.46 and specificity of 0.71 (Exper-
imental Procedures), supplemental Fig. S2) in breast cancer
PDXs (15) (supplemental Table S9). The moderate validation
rate may be because of increased sensitivity to micro-envi-
ronment in trans pairs and larger sample sizes potentially
required to firmly establish trans associations (supplemental
Fig. S3). To reveal global patterns of trans associations less
affected by potential noise and lack of power, we sought to
identify kinase families enriching for trans-associated kinase
genes among the background of all tested kinases. The iden-
tified trans-regulations are congregated in 165 kinases, which
showed the most significant enrichment in MAPK (Fisher’s
Exact Test, p � 0.00045), CDK (Fisher’s Exact Test, p �

0.0026), and PKC (Fisher’s Exact Test, p � 0.0061) families
(supplemental Table S7).

Multiple kinases with the highest number of trans associa-
tions have been previously implicated in breast cancer. Par-

FIG. 1. Landscape of the 33,239 quantified phosphosites in breast cancer. A, Distribution of phosphosites and counts of serine (S),
threonine (T), and tyrosine (Y) residues in the 77 breast cancer (BRCA) and 24 PDX cohorts compared with the UniProt and Phospho.ELM
databases. B, Number of novel and known phosphosites from UniProt and Phospho.ELM detected in kinases of major kinase groups. Only
kinases having more than 10 novel sites are shown (supplemental Table S2). C, Venn diagram showing quantified phosphosites in human
breast tumors compared with phosphosites in the UniProt and Phospho.ELM databases. D, Diagram of correlated, uncorrelated, consistently
high and consistently low kinase-substrate pairs in breast cancer samples. E, Venn diagrams showing the numbers of cis or trans-associated
phospho-pairs identified through quantitative association in this study out of the total numbers of tested pairs, compared with experimental
validated relations in PhosphositePlus and PhosphoNetwork and kinase-motif predicted kinase-phosphosites in NetworKIN.
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ticularly, ATM (33 trans-associated substrate phosphosites)
and ATR (44), proteins known to orchestrate the DNA damage
response (DDR) pathway, were significantly associated with

phosphosites of chromatin-associated SMARCC2, MCM2, hi-
stone-lysine methyltransferase KMT2A, and the DNA damage
checkpoint protein TP53BP1 (supplemental Fig. S5). In the

FIG. 2. Cis kinase-phosphosite pairs. A, Volcano plots highlighting positively cis-associated pairs. Associations that were validated in the
24 PDX models (p � 0.05) are colored in red. B, Counts of cis-associated phosphosites among all corresponding phosphosites for each kinase.
Kinases with more than 7 cis-associated phosphosites are shown individually in a close-up barplot (right). C, Top associated cis pairs and their
average kinase protein and phosphosite levels in each of the breast cancer subtypes. On the left panel, each dot represents a cis association
identified by the regression analysis, where its size represents the significance and color represents the regression coefficient. The middle and
right panels illustrate the average cis-associated phosphosite expression and kinase protein expression, respectively, in each of the breast
cancer subtypes. D, Correlations of kinase protein level of PAK2 and PRS6KA4 and their respective top 3 cis-associated phosphosites. Each
dot represents one tumor sample colored according to its subtype.
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PI3K pathway, kinases associated with trans-associations of
more than 20 phosphosites included GSK3B (35), RPS6KB1
(39), MTOR (29), and RPS6KA1 (21, supplemental Fig. S5). We

also observed specific interactions, such as the inhibitory
phosphorylation of GSK3A by AKT1 (AKT1:GSK3A pS278,
linear regression, FDR � 0.034) (45).

FIG. 3. Trans kinase-substrate phosphosite pairs. A, Volcano plots highlighting positively associated pairs. Associations that were
validated in PDX models (p � 0.05) are colored in red. B, Counts of trans-associated phosphosites among all corresponding phosphosites for
each kinase. Kinases with more than 30 trans-associated phosphosites are shown individually in a close-up barplot (right). C, Top associated
trans pairs and their average kinase phosphoprotein and substrate phosphosite levels in each of the breast cancer subtypes. On the left
panel, each dot represents a trans association identified by the regression analysis, where its size represents the significance and color
represents the regression coefficient. The middle and right panels illustrate the average trans-associated substrate phosphosite expres-
sion and kinase protein expression, respectively, in each of the breast cancer subtypes. D, Correlations of kinase phosphoprotein level of
CDK1 and MAPK3 and their respective top 3 trans-associated phosphosites. Each dot represents one tumor sample colored according
to its subtype.
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FIG. 4. Patterns of associated phos-
phosites on primary sequences and
3D structures. A, Consistent cis-asso-
ciations of phosphosites identified in
ERBB2. B, Discordant cis-associations
of phosphosites identified in AKT1. (C)
Cis and trans-associations by MAPK3
of RAF1 phosphosites. D, Cis-associ-
ated phosphosites p.T202 and p.Y204 in
spatial proximity adjacent to the active
site p.D166 of MAPK3 as in PDB struc-
ture 4QTB (67). E, Trans-associated
phosphosites p.S201 and p.S207 (by
MAP3K5) are found in spatial proximity
to the active sites, including p.D179 and
p.T211, of MAP2K6, which is co-crystal-
ized with an ATP analog as in PDB struc-
ture 3VN9(68).
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CDK1 (178 trans-associated phosphosites), CDK2 (72), and
CDK7 (44) showed a wide-spread effect of trans-associations
on substrates, including NUP98 and FLNA, supporting their
central roles in cell cycle signaling. MAPK1 (148 trans-asso-
ciated phosphosites), MAPK3 (111), MAPK8 (50), MAPK14
(18), and MAPK9 (15) were also associated with up-regulation
of phosphosites of multiple downstream substrates, including
RPS6KA3/5, GAB1/2, MAP2K1, and CIC (Fig. 3C, 3D, Sup-
plementary Information).

We further investigated the kinases with highest fraction of
trans-correlated phosphosites among all tested phospho-
sites. Twenty-six kinases satisfied the criteria of having at
least 2 significant trans correlated phosphosites and fraction
of correlated/tested sites greater than 10%, including some of
the kinases with the highest numbers of correlated phospho-
sites: CDK7 (44 correlated/323 tested), MAPK1 (148/1201),
ATR (44/378), RPS6KB1 (39/338), and MAPK3 (111/1063). Of
note, this analysis also prioritized additional kinases with high
fractions of correlated substrate phosphosites, including
MAP2K5 (3/3), AAK1 (5/12), RIPK1 (3/13), MAP2K6 (9/40), and
STK36 (4/20) whose phosphoprotein level changes likely af-
fect their downstream phosphosignaling.

Sequence and Structural Patterns Correlated with Phos-
phosite Expression—Our cis and trans analyses identified
pairs of phosphosites on the same protein showing concord-
ant regulation patterns, including those in ERBB2, PRKCB,
and WNK1. We hypothesized that phosphosites in spatial
proximity would be affected by the same regulators and
would show similar phosphorylation patterns. For each pair of
phosphosites, we calculated the correlation coefficient of their
levels and compared that to their proximity on PDB struc-
tures, as determined by HotSpot3D (18, 45) (supplemental
Table S10, Methods). We found a significant correlation be-

tween phosphosite levels with both 3D distances (measured
in ångströms) of the phosphosite pairs (Spearman correlation,
p � 3.5e-08, rho � �0.40) and linear distances (measured in
amino acid residue counts, Spearman correlation, p � 7.9e-
04, rho � �0.25, supplemental Fig. S6), confirming co-
regulation yet potentially divergent abundance in adjacent
phosphosites.

Phosphosites with strong cis-associations may help detect
activating events correlated with high kinase expression. We
identified ERBB2 pS1151/S998/T1240 as showing the most
significant cis-associations with particularly high levels in
HER2-E tumors (linear regression, � � 0.65; FDR � 6.2e-16)
and may serve as complementary HER2 biomarkers to the
tyrosine residues targeted by available antibodies, such as
pY1221 and pY1248 (Fig. 4A). Notably, pT1240 has been
shown to drastically reduce in phosphorylation level upon
either trastuzumab and Bis-Fab 1235 (antagonists of HER2)
treatments whereas pY1248 shows an increase (46), demon-
strating their differential regulation upon inhibition. On the
other hand, poorly correlated phosphosites in kinases with
strong cis-effects may suggest additional post-translational
modification mechanisms. For example, we observed strong
association between AKT1 protein and phosphorylation levels
for sites pS122/S126/S129 (linear regression, FDR � 8.2E-08,
notation such as S126129/S124S126S129 in Figs., Supple-
mentary Tables, and texts indicates dual/triple phosphoryla-
tion of the phosphosites in the same detected peptide). How-
ever, the associations for pT308/S475 (linear regression,
FDR � 0.38) are considerably weaker, even with similar ob-
served sample sizes (Fig. 4B). Other discordant sites (supple-
mental Fig. S7) include the strongly associated ABL1 pS637/
S737/T800/T871 versus the nonassociated pS16/S588/S828;
the strongly associated PTK2 pS390/S570/S708/S910 versus

FIG. 4—continued
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the nonassociated pY576/S840; and the associated RIPK1
pS320/S610 versus the nonassociated pS330/S416.

In RAF1, we observed strong cis-associations at pS43/
T260/S233/S220 (FDR � 0.0358), but not pS29 (linear regres-
sion, FDR � 0.84, Fig. 4C). This association pattern is com-
plemented by the trans-regulation of RAF1 by MAPK3; RAF1
pS29/T241 are tightly correlated with MAPK3 phosphoprotein
expression (linear regression, FDR � 0.032) when controlled
for RAF1 protein expression, indicating MAPK3 may specifi-
cally regulate RAF1 phosphorylation at these sites.

Intriguingly, several regulated phosphosites reside in struc-
tural proximity to active sites of kinases (supplemental Table
S11, S12). MAPK3 (ERK1) pT202/Y204, which are known to
be phosphorylated by MAP2K1 and MAP2K2 (MEK1 and
MEK2) to trigger its activation (47, 48), are adjacent to its
active site pD166 (Fig. 4D). These two sites showed signifi-
cant cis-regulation by MAPK3 protein, albeit not trans-asso-
ciation by MAP2K1/2 phosphoprotein. In MAP2K6, MAP3K5-
regulated pS207 and an adjacent site pS201 are in its
catalytic domain near active sites pD179 and pT211 (Fig. 4E).
These phosphosites may alter the biochemical properties of
the active site and affect the activity level of the correspond-
ing kinase.

Kinase-Substrate Pairs Associated with Treatment Op-
tions—To inform targeted treatment, druggability analysis has
traditionally focused on detecting single activating events, for
example EGFR mutation, PIK3CA mutation, and ERBB2 am-
plification (49, 50). Although these events can predict treat-
ment response, we reason that co-occurrence of elevated
kinase-substrate phosphorylation can confirm aberrant acti-
vation and reveal new treatment options. We conducted an in
silico druggability analysis for the significant cis and trans
kinase-substrate pairs by screening 68 druggable genes with
potential inhibitors (15) that are abundantly expressed in our
breast cancer samples (Experimental Procedures). We used
abundance levels of both the kinase and substrate phospho-
site to construct a kinase-substrate pair score and identified
samples showing 2 standard deviations above cohort medi-
ans in their scores (Experimental Procedures).

Among the 286 associated kinase-substrate pairs, we iden-
tified 164 overexpressed events among 113 unique pairs (Fig.
5A, supplemental Table S13). Overexpression of the cis pair
ERBB2:ERBB2 pS1151 were found in 5 HER2-positive sam-
ples. The cis BRAF:BRAF pS364 pair and the trans MAPK14:
FOXO3 pS413 pairs were found exclusively in 4 and 3 luminal
B breast cancers, respectively. SRC and SYK-regulated trans
pairs also showed higher levels in luminal B breast cancers.
Pairs associated with MAP kinases, such as MAPK3:PALLD
pS55, MAPK3:IL16 pS584 and MAPK8:JUN pT62, showed
higher levels and several pair overexpression in luminal A
breast cancers. In samples without prominent ERBB2 signal-
ing, we observed other alternative overexpression pairs trig-
gered by other receptor tyrosine kinases, including EGFR
regulated trans pairs and IGF1R-regulated cis pair IGF1R:

IGF1R pS1365, which is a conserved phosphosite found in 10
species (51). In the 24 breast cancer PDXs, we also discov-
ered overexpression of many regulated pairs, including
ERBB2:ERBB2 pS1151, BRAF:BRAF pS364, and EGFR:
PLCG1 pS1222 (supplemental Table S14, supplemental Fig.
S8), underscoring their prevalence in breast cancer.

We compared the candidate targets identified through
paired druggability analysis and conventional single driver
analysis (Fig. 5B, supplemental Table S15), where we com-
piled mutations, CNV, RNA, and protein levels of the same 68
expressed, potentially druggable genes (Experimental Proce-
dures). We observed concordant single driver events with
overexpression pair events for kinases, including AKT1,
BRAF, ERBB2, IGF1R, and RAF1. Samples with ERBB2,
IGF1R and RAF1 copy number amplified outliers often show
high expression of the respective kinases-substrate pairs (Fig.
5B). However, single driver events do not guarantee activated
signaling of their associated kinase-substrate pairs. For
example, some samples with PIK3CA mutation, ERBB2
mutation, or RAF1 copy number amplification did not show
overexpressed kinase-substrate pairs associated with the re-
spective kinases (Fig. 5B). Observing concurrent activation of
downstream targets using phosphoproteomics data is
needed to further confirm these effects and treatment options
for each patient.

On the other hand, active signaling events may occur in
samples without mutations or expression aberrations of the
kinase. This is particularly evident in both human and PDX
samples with outlier MAPK3 and MAPK14 trans pairs (Fig. 5B,
supplemental Fig. S9, supplemental Table S16). Only 2 out of
7 samples with outlier MAPK3 trans pairs showed MAP3K1
mutations and none of the 5 samples with outlier MAPK14
trans pairs carried MAP3K1 or MAP2K4 mutations (supple-
mental Fig. S10), suggesting MAP kinases may be activated
by other upstream signaling mechanisms rather than directly
being altered at the sequence or expression levels. We also
observed some of these overexpression pair events in ab-
sence of single driver events for AKT1, BRAF, and EGFR (Fig.
5B) that require further investigation.

Activated Phosphosignaling Cascades Derived from Con-
nected Pairs—We further extended the analysis from pairs to
two-level signaling cascades that include the first and second
degree substrates of the druggable kinase (Methods). We
hypothesize in these signaling cascades, the activated ki-
nases could trigger phosphorylation of multiple downstream
targets at multiple steps, thereby presenting heightened op-
portunities for targeted inhibition treatment.

Out of 28 kinases associated with at least one cis or
trans-associated phosphosite, 16 also had second-degree
substrates (Supplemental Table 17). AKT1, BRAF, EGFR,
JAK2, PRKCE, and PLK1 showed cis and trans interactions
that may help confirm activity levels (Fig. 6, supplemental
Fig. S11). In addition to its cis associations, AKT1 also
associated with phosphosites of ILF3, ETS1, and GSK3A. In
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FIG. 5. Druggability analysis of sin-
gle and paired events in 77 breast
cancer samples. A, Heatmap of kinase-
substrate pairs where the kinase or the
substrate is a potential druggable target.
The sample-pair showing outlier pair
event is outlined. Only the top 3 associ-
ated pairs were shown for each kinase
when there were more than 3 pairs
showing kinase-substrate outliers. B,
Druggable events identified in the muta-
tion, CNV, RNA, protein, and phospho-
pair level for breast cancer samples in
the same subtype order.
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turn, GSK3A is associated with 3 phosphosites of NDRG1,
2 sites of RICTOR, and 1 site each in LARP1 and ANKS1A
(Fig. 6A). BRAF also has multiple cis-associated phospho-
sites and is associated with phospho-MAP2K1/2 (MEK1/2),
which are associated with downstream phosphosites at
MTA1, KRT8, and PRKCD (Fig. 6B). Finally, high levels of
EGFR phosphorylation were mostly observed in basal sub-
type breast cancers and these tumors also exhibited high
phosphosite levels in GAB1, PLCG1, FAM129B, and PTK2;
PTK2 phosphoprotein is further associated with phospho-
sites of PPP1R13L and PXN (Fig. 6C). The association of the
primary druggable kinase with its signaling cascade could
strengthen the rationale for targeted inhibition in tumors
showing co-activation.

Kinase-Substrate Pairs Correlated with Clinical and Immune
Features—Last, we sought to identify kinase-substrate pairs
associated with clinical characteristics of breast cancer. For
each kinase-substrate pair, we conducted a regression anal-
ysis using the aforementioned kinase-substrate score as the
independent variable versus pathological stage or immune
scores as the dependent variable, adjusting for their PAM50
subtypes as a covariate (Experimental Procedures). One hun-
dred seventy-five pairs showed potential association (p �

0.05) with pathogical stage (Fig. 7A, supplemental Table S18).
Kinase-substrate pairs stemmed from MAP kinases, includ-
ing MAPK11:PPP1R13L pS113, MAPK9:STAT3 pS727, and
MAPK8:NFATC1 pS359 showed top correlations with earlier
clinical stages whereas MARK3:MARK3 pS377 and
RPS6KB1:PHB2 pS293 are associated with later stages. We
also conducted a survival analysis using the kinase-sub-
strate score as the predictor and the PAM50 subtypes as a
covariate in a Cox proportional hazards model, finding 83
pairs are potentially associated with survival (Fig. 7B, sup-
plemental Table S19). Notably, these pairs are dominated
by 32 CDK1 and 29 CDK2 trans-regulated pairs correlated
with longer overall survival (Hazard Rate Ratio � 1) in the
breast cancer cohort. Signaling pairs associated with poor
survival include MAP3K11:MAP3K11 pS789S793, PRKAA2:
PPP1R13L pS187, and NEK9:NEK9 pS868, supporting pre-
vious results showing the functionality of NEK9 in MAPK/
MEK signaling and resistance to PI3K inhibitor treatment
(52).

We identified 160 pairs potentially associated (linear regres-
sion, p � 0.05, 40 pairs with FDR � 0.05) with transcriptomi-
cally derived immune score calculated using the ESTIMATE
algorithm (53) (Experimental Procedures, Fig. 7C, 7D, supple-
mental Table 20). We then specifically asked whether the
associated pairs overlapped directly with the immune cell
signature genes (53). Our analysis showed that 15 pairs pos-
itively associated with the immune scores have their respec-
tive substrates as immune signature genes with significant
enrichment (15/160 versus 11/918, Fisher’s Exact Test, p �

3.6e-07). Notably, the top pairs among the other associated
145 pairs also involve kinases known to be of critical impor-

tance in immune systems, including PRKCQ (54), MAP4K1
(55), FYN (56), SYK (57), and JAK2 (58) (Fig. 7C, top 6 pairs
shown in Fig. 7D).

Experimental Validation of Regulated Pairs from Global Pro-
teomics—We applied two independent technologies, Western
blotting and selected reaction monitoring (SRM), to validate
multiple kinase-substrate pairs discovered in our global pro-
teomics dataset (Methods). We first conducted Western blot-
ting to validate our observations of up-regulated proteins and
phosphosites found in the high throughput proteomics ap-
proach using PDX tumors from the Washington University
Human in Mouse (WHIM) collection (15, 59). Specifically, we
measured expression of ERBB2, ERBB2 pS1151, EIF4EBP1,
and EIF4EBP1 pS65 in 12 PDX breast tumors where these
markers showed expressed variability in mass spectrometry
data (Fig. 7E). For all 4 markers, we found significant associ-
ations between expression quantified through Western blot-
ting and mass spectrometry (Fig. 7F, linear regression, p �

0.0005).
For ERBB2, the HER2-positive WHIM8 and WHIM35

showed notably high ERBB2 and ERBB2 pS1151 in both
quantifications (Fig. 7E, 7F). For EIF4EBP1, Western blotting
showed substantial increase of EIF4EBP1 and EIF4EBP1
pS65 for WHIM16, the top EIF4EBP1-expresser in MS data.
However, the expression levels in other tumors were lower,
not fully recapitulating the dynamic range in MS quantification
(Fig. 7E, 7F). Of note, the samples were ordered from left to
right (WHIM9 to WHIM2) by their pair scores of MAPK3:
EIF4EBP1 pS65, an experimentally validated regulated pairs
(60) also identified in our study. However, although their phos-
phosite levels do distinctly segregate into the highly ex-
pressed and poorly expressed groups, our results also dem-
onstrate that EIF4EBP1 pS65 is likely regulated by other
contextual factors in vivo.

We then applied a targeted proteomics approach SRM to
validate cis-regulated pairs found in EGFR in 12 independent
primary human breast tumor samples (Methods, Fig. 7G, 7H).
For both phosphosites EGFR pT693 and pS1064, we ob-
served positive associations. EGFR pT693 is significantly as-
sociated with EGFR proteins (p � 5.74E-04); EGFR pS1064
was not associated but we only obtained EGFR pS1064 quan-
tifications in 5 samples. EGFR pT693 maps to the juxtamem-
brane region of the protein (61) and was found to be upregu-
lated in mutant PIK3CA knockin cells (62). Overall, the
validation conducted in separate sample sets using different
technologies validate the association we identified for ERBB2,
EIF4EBP1, and EGFR.

DISCUSSION

We present a systematic discovery of quantitatively corre-
lated kinase-substrate pairs in breast cancer (Fig. 1D). The
high-throughput dataset generated by LC-MS/MS enabled
global assessment of 33,239 phosphosites, 19,521 of which
were not observed in two of the most comprehensive phospho-
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FIG. 6. Druggable kinase-substrate cascades originating from (A) AKT1 (B) BRAF and (C) EGFR in the 77 breast cancer samples. The
samples in the heatmap were ordered by the phosphoprotein level of each of the kinases (derived using phosphosites with the highest
connectivity, Methods). For each node in each network diagram, the color represents the relative level of basal compared with luminal A/B
breast cancers, where blue indicates higher level in luminal and red indicates higher level in basal tumors. For the edges, the darkness of the
color is scaled by the correlation coefficient and the width is scaled by -log(FDR) of the association.
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site databases, UniProt and Phospho.ELM (Fig. 1A, 1B). Our
analysis allowed us to identify 2134 (387 cis and 1,747 trans)
kinase/substrate correlation relationships; using the same bioin-
formatics pipeline, analysis based on RPPA-detected phospho-
sites only found 4 (supplemental Table S21) and seldom inter-
rogated more than one phosphosite on a protein, further
stressing the need of evaluating interactions through global
phosphoproteomics in patient samples. This result clearly sug-
gests that more regulated phosphosites in cancer will emerge
with additional, even larger mass spectrometry-based pro-
teome studies. Although our analyses have enlarged the cata-
logue of phospho-regulations, larger sample sizes will be re-
quired to fully establish findings and to discover weaker
associations. Specifically, we identified many of cis/trans cor-
relations in larger sets above 70 samples with concurrently
observed kinase-substrate data (supplemental Fig. S2). Further,
our current datasets have limited observations in multiple ki-
nases and substrates and even more sensitive approaches will
be required to assess their phosphorylation states. For example,
this serine-rich dataset may also be complemented by observa-
tions using other techniques enriching for tyrosine residues (63–
65), which may enhance findings of auto-phosphorylated ty-
rosines in receptor tyrosine kinases, including EGFR and HER2.
Increased sample sizes will also enable more complex modeling
of the multi-to-multi kinase/substrate relationships not fully ac-
counted for in our current work.

We identified 61.4% (387/630) phosphosites of kinases
showing significant cis-association, many of which were con-
centrated in known or in nominated breast cancer proteins,
such as ERBB2, RRPS6KA4, NEK9, RIPK2, and PAK1 (Fig. 2).
In contrast, only 4.51% (1747/38,710) trans kinase-substrate
pairs showed significant association (Fig. 3). For example,
PRKACA has only 23 out of 1,652 corresponding substrate sites
being regulated and PRKCZ only has 1 out of 542. It is possible
that trans substrate usage may be highly tissue-specific and
that some of the previously curated pairs do not interact in
breast cancer. Another possibility is that some kinase-substrate
pairs established through in vitro evidence are not relevant in
physiological environments, although the validation rate for in
vivo and in vitro pairs do not differ significantly (supplemental
Table S22). Future investigation using data across tissue and
cancer types would be pivotal in addressing whether we ob-

serve tissue-specific usage of kinase-substrate pairs. Such
studies could also reveal the consistently high/low pairs (Fig.
1D) in each cancer type and highlight cancer-specific signaling.
In addition to analyses of kinase-substrate pairs activated in
specific breast cancer subtypes (Fig. 2, 3,6), expanded cohorts
should also enable discovery of pairs associated with specific
drivers or histological features.

Our approach validates and complements experimentally
or binding motif-predicted phosphosites regulated by kinase
(Fig. 1E). Although the regulated sites we discovered are
based on observation using primary tumors, their casual re-
lationships can be further validated by experimental pertur-
bation or time-series analyses. Methodologies unifying di-
verse predictions and observations will be required to
understand how each phosphosite is regulated.

The kinase-substrate pairs we discovered also complement
previous studies focusing on singleton drivers of cancer. Con-
ventionally, pathways were mostly constructed by linking single
candidate driver genes (such as significantly mutated genes or
focally amplified genes) through known interactions. Our ap-
proach detects the association of the signaling pairs in vivo, and
thus directly validates the signaling impact of driver events. This
approach also enabled us to build relevant subcascades stem-
ming from potentially druggable kinases AKT1, BRAF, and
EGFR (Fig. 6). To compare with other network-generating stud-
ies, we also constructed a network of all observed regulations
(supplemental Fig. S12). However, such approaches may ob-
fuscate activated subnetworks, as downstream phosphoryla-
tion targets could be mediated by multiple kinases.

This first large-scale examination of over 33,000 phospho-
sites in breast cancers creates a foundation for druggable
analysis of kinase-substrate pairs beyond singleton druggable
events (Fig. 5). Predictive value of response to targeted treat-
ment has been limited in samples for some clearly-defined
driver events in cancer. For example, PIK3CA mutation status
cannot conclusively predict treatment response to PI3K inhib-
itor in clinical studies (66). Co-occurrence of downstream
activating events, as we have observed for AKT1, BRAF,
ERBB2, IGF1R, and RAF1 (Fig. 5B), may further support tar-
geted inhibition. In both breast cancer PDXs showing ERBB2:
ERBB2 pS1151 cis outlier pairs identified using both global
proteomics and Western blotting (supplemental Fig. S9), lapa-

FIG. 7. Clinical association of kinase-substrate pairs. A, Volcano plot showing association of kinase-substrate pairs with pathological stage.
Positive coefficient denotes higher kinase-substrate scores associating with more advanced pathological stage. B, Volcano plot showing
association of kinase-substrate pairs with survival. Hazard rate ratios greater than 1 denote higher kinase-substrate scores associating with poor
survival. C, Volcano plot showing association of kinase-substrate pairs with transcriptome-based immune signature score, as calculated by the
ESTIMATE algorithm. Positive coefficients denote higher kinase-substrate scores associating with higher immune scores. The color of each pair
indicates whether its kinase or substrate belongs to the immune gene list used by ESTIMATE. D, Top kinase-substrate pairs (p � 1e-6) associated
with immune scores where each dot indicates one breast cancer sample. E, Western blotting of ERBB2 (HER2), ERBB2 s1151 (p.HER2 S1151),
EIF4EBP1 (4E-BP1), and EIF4EBP1 s65 (pEIF4E-BP1 s65) and actin control in 12 breast cancer PDX samples. F, Correlation between protein/
phosphoprotein expression measured through Western blotting versus high-throughput proteomics. Each dot indicates one sample in one
experimental replicate. The dots are colored by the samples listed in (E). Four replicates were quantified through Western blotting for statistical
analyses. G, Correlation between EGFR protein levels and p.T693 phosphosite level as measured through selected reaction monitoring (SRM). H,
Correlation between EGFR protein levels and p.S1064 phosphosite level as measured through SRM. For (G) and (H), each data point represent
samples with quantifications in a cohort of 12 independent human breast cancer samples.
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tinib treatment significantly reduced tumor growth (15). Fur-
ther, we previously observed varied response to PI3K inhibi-
tion therapy in 3 of the breast cancer PDX models, where both
WHIM18 and WHIM20 responded to PI3K/mTOR inhibitors
and WHIM16 was resistant (15). WHIM18 and WHIM20 also
showed notably high pair scores of the cis pair AKT1:AKT1
pS126S129 than WHIM16 (supplemental Fig. S9). Larger data
sets using tumors undergoing treatments, such as the ongo-
ing PDXNet projects establishing and investigating thousands
of PDXs, will be instrumental for identifying treatment re-
sponses and formally testing the hypothesis that activated
signaling pairs can accurately predict response to inhibition.

Further, we identified outlier kinase-substrate pairs in sam-
ples without singleton events for kinases including EGFR,
MAPK3, and MAPK14 (Fig. 5B). Inhibition of the MAP2K1/2
(MEK1/2) upstream of MAP kinases surpressed the MAPK
signaling pathway and its combinatory treatment with RTK
inhibitors have resulted in tumor regression of triple-negative
breast tumors (8). Our discovery of MAPK mediated pairs
reveals therapeutic opportunities. Finally, resistance mecha-
nisms often consist of rewiring of signaling pathways and
could be further explored through high-throughput proteom-
ics and approaches developed in this study.

Signaling networks are crucially important in cancer. How-
ever, large-scale omic studies to date have mainly focused on
singling-out individual driver events and rarely investigated
their signaling impact. Studying kinase-substrate relations in
vivo, and most particularly in tumor samples from patients
undergoing therapy, will uncover the wiring of signaling net-
works in each tumor and likely improve treatment design.
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