
nutrients

Article

Effects of Gelidium elegans on Weight and Fat Mass
Reduction and Obesity Biomarkers in Overweight or
Obese Adults: A Randomized Double-Blinded Study

Choon Ok Kim 1 , Youn Nam Kim 2 and Duk-Chul Lee 3,*
1 Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University

Health System, Seoul 03722, Korea
2 Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul 03722, Korea
3 Department of Family Medicine, Yonsei University, College of Medicine, Seoul 03722, Korea
* Correspondence: faith@yuhs.ac; Tel.: +82-2-2228-2330

Received: 29 May 2019; Accepted: 2 July 2019; Published: 3 July 2019
����������
�������

Abstract: The edible seaweed Gelidium elegans (GEE) is known to inhibit adipocyte differentiation.
However, there has been no report on its effects in humans. In this study, we investigated whether GEE
reduces body weight or fat mass in obese or overweight individuals. A total of 78 participants were
randomly assigned to the test (GEE extract 1000 mg/day) and placebo groups at a 1:1 ratio, and treated
for 12 weeks. At six or 12 weeks after randomization, they were evaluated for anthropometric
parameters, biomarkers, and body composition. Changes in body weight and fat mass between
the two groups was significantly different, as determined using ANCOVA adjusted for baseline,
calorie intake, and physical activity. Body weight and fat mass were significantly decreased by GEE
after 12 weeks but increased in the placebo group. Moreover, although not significant, triglyceride
levels tended to decrease after GEE intake. There was no significant difference in other laboratory
biomarkers between the two groups. Taken together, these results suggested that GEE significantly
reduced body weight, especially fat mass, in overweight or obese individuals.
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1. Introduction

The population of obese individuals has been rapidly growing worldwide. Approximately 38%
of the adult population in the world is estimated to be overweight and another 20% will be obese by
2030 [1]. Obesity is quite simply defined as excessive fat accumulation; however, it is the most important
risk factor for major chronic diseases, including hypertension, diabetes mellitus, cardiovascular disease,
musculoskeletal disease, depression, and cancer [2,3]. Since the annual healthcare burden attributable
to obesity and obesity-related disease has increased [3], there have been increased efforts to decrease the
prevalence of obesity and to treat or prevent it to reduce the burden of obesity-related co-morbidities
and improve the overall health-related quality of life [4,5].

A few FDA-approved drugs are currently available for long-term management of obesity, namely
phentermine-topiramate extended release, lorcaserin, bupropion-naltrexone, orlistat, and liraglutide [5].
These medications are approved only for patients with a body mass index (BMI) of ≥30 kg/m2 or
≥27 kg/m2, with at least one obesity-related co-morbidity [6,7]. Despite pharmacotherapy having an
effect on weight loss in the range of 5%–15%, 63.4% of patients fail to sustain a 5% weight loss in
the long term [8,9]. Weight is typically regained when medication is stopped [5]. Therefore, lifestyle
modifications, including adequate diet and physical activity, must accompany therapy to maintain
desirable weight loss and prevent excessive weight gain.
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In general, low-calorie diets with low glycemic index are recommended, and intake of high
quality foods, such as fruits and vegetables, is vital [6,10]. In addition, extensive research has been
ongoing to identify healthy foods that can prevent excessive weight gain [11–13]. Some studies have
shown that the edible seaweed Gelidium elegans (GEE), red alga, has nutraceutical activities, such
as anti-adipogenesis and anti-obesity effects in vivo [11,14,15]. High-fat diet-fed mice administered
GEE exhibited less weight gain and lower amounts of subcutaneous and abdominal fat than high-fat
diet-fed mice not treated with GEE [11,14,15]. However, to date, no study has been conducted on
humans to explore any possibility of a preventive effect of GEE on weight gain, as in the mouse model
of obesity. In this study, we investigated whether GEE intake reduces body weight or fat accumulation
in obese or overweight patients.

2. Materials and Methods

2.1. Ethics

The study protocol was approved by the institutional review board of Severance hospital (Seoul,
Republic of Korea, IRB number 4-2017-0860). It is also registered at the ClinicalTrials.gov (Identifier:
NCT03842774). This study was performed in accordance with the Declaration of Helsinki and Korean
Good Clinical Practice (KGCP) guidelines. All subjects provided written informed consent prior to
enrolment in the study.

2.2. Participants

We recruited 109 volunteers from Severance Hospital, Seoul, Republic of Korea. Subjects aged
between 19 and 50 years, with BMI between 23.0 and 30.0 kg/m2, were considered eligible for this study.
In addition, subjects who met the following criteria were excluded: (1) Patients presenting clinically
significant cerebrovascular and cardiovascular disease, arrhythmia, congestive heart failure, cancer,
psychiatric disorders, or hepatic or renal disease; (2) patients with uncontrolled hypertension (systolic
blood pressure ≥160 mmHg or diastolic blood pressure ≥100 mmHg), diabetes mellitus, or thyroid
disease; (3) a night worker or shift worker; (4) patients currently prescribed anti-obesity, thyroid
hormone, steroid, diuretic, or female sex hormone medications; (5) patients who experienced weight
loss within three months prior to the start of the study; (6) patients with abnormal laboratory results
(creatinine, aspartate aminotransferase, or alanine aminotransferase level ≥2.0 ×upper normal limit).

2.3. Study Design and Intervention

This was a randomized, double-blinded, multiple-dose, parallel study; the overall study schedule
is shown in Figure 1. All subjects registered in this study underwent the following baseline evaluation:
Blood pressure, anthropometric measurement, diet and physical activity assessment, laboratory
tests including lipid profile, body composition using bioelectrical impedance analyzer (InBody U20,
Biospace, Seoul, Republic of Korea), dual energy X-ray absorptiometry (DEXA; BHR-140-P Discovery
A, Hologic Inc., Bedford, MA, USA), and fat-measurement computed tomography (fat CT; Tomoscan
350, Philips, Mahwah, NJ, USA). After baseline evaluation, the participants were randomly assigned to
the test and placebo groups at a 1:1 ratio. The subjects of the test group received three tablets of GEE
extract (1000 mg/day) once a day for 12 weeks, and those of the placebo group received placebo for
12 weeks in the same regimen as the test group. Placebo tablets had similar color, flavor, and form as
those of the GEE extract. GEE extract and placebo tablets were supplied by NEWTREE (Seongnam,
Kyonggi, Republic of Korea). GEE extract were prepared using the following method. GEE was
collected in Jeju Island, Republic of Korea. The collected wild GEE were washed with water and
extracted with 70% ethanol for overnight. The supernatants of the extracts were filtered through a
50-µm bag paper and then concentrated at a temperature below 80 ◦C. The precipitants were extracted
with water at 90 ◦C for 2 h, and then filtered and concentrated in the same manner. The two extracts
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were mixed and heated at 90 ◦C for 20 min, and then filtered through a 50-µm bag filter. Subsequently,
they were dried using a spray dryer.Nutrients 2019, 11, x FOR PEER REVIEW 3 of 17 
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Figure 1. Overview of the study design.

Participants visited the clinic for evaluation of the effects of the study treatment (GEE extract
or placebo) at six and 12 weeks after randomization. At six and 12 weeks, blood pressure, as well
as waist and hip circumferences were measured, and the patients were assessed by bioelectrical
impedance analyzer. They were also subjected to DEXA and fat CT for assessment of body composition
at 12 weeks. At every visit, they were asked about the first and last date of GEE extract or placebo
treatment administration, and the remaining treatment tablets provided during the previous visit were
returned. In addition, diet and physical activity were evaluated. During the study period, all subjects
were prohibited from receiving any diuretic, steroid, antidiabetic, psychiatric, anti-obesity, female sex
hormone, thyroid hormone, herbal, and over-the-counter medications and supplements, which could
affect body weight or body composition evaluation.

2.4. Anthropometric Measurement and Body Composition
For screening tests (visit 1), we measured body weight (kg) and height (cm), approximated to the

first decimal, using an automatic extensometer (BSM 330; Biospace, Seoul, Republic of Korea) while the
participants were wearing light clothes, and BMI was calculated as the ratio of weight (kg) to height2

(m2). From visit 2 onwards, both body weight and BMI were assessed by the bioelectrical impedance
analyzer, and the values were used for evaluation of treatment effects. Waist circumference (cm) was
measured midway between the bottom edge of the last rib and the iliac crest in the mid-axillary plane.
Hip circumference (cm) was measured at the level of the widest circumference over the buttocks.
Waist–hip ratio was calculated as the ratio of waist-to-hip circumference (cm).

To evaluate body composition, we used a bioelectrical impedance analyzer, DEXA, and fat CT.
Bioelectrical impedance analyzer measured fat mass, fat percentage, and skeletal muscle content.
DEXA was used to assess total body mass, total fat mass, and total lean body mass. Fat CT scan, sliced
by 10-mm, was used to evaluate subcutaneous and visceral fat areas, measured at the level of L3–L4,
since it represents the limit of the upper abdomen and is not influenced by liver or adipose tissue from
the buttocks [16].

2.5. Blood Collection and Analysis
To assess the effect of treatment on metabolic parameters, blood samples were collected after a

10-h overnight fasting between visit 2 and 4. White blood counts were quantified using a XN-9000
Hematology Analyzer (Sysmex, Kobe, Japan). Fasting glucose, high-sensitivity C-reactive protein
(hs-CRP), total cholesterol, triglyceride content, high-density lipoprotein (HDL), and low-density
lipoprotein (LDL) cholesterol levels were measured with an ADVIA 1650 Clinical Chemistry System
(Siemens Medical Solutions, Tarrytown, NY, USA). Fasting insulin level was measured by an
electrochemiluminescence immunoassay using an Elecsys 2010 instrument (Roche, Indianapolis,
IN, USA). Insulin resistance and β-cell function were estimated using the homeostasis model analysis
(HOMA) method, by applying the following formula: HOMA-insulin resistance (IR) = {fasting insulin



Nutrients 2019, 11, 1513 4 of 16

(µIU/mL) × fasting glucose (mmol/L)}/22.5; HOMA- β = {20 × fasting insulin (µIU/mL)}/{fasting glucose
(mmol/L) – 3.5} [17].

2.6. Dietary and Physical Activity Assessment

Participants were provided with detailed instructions on how to record their diet and physical
activity by a designated and well-trained physician prior to the study, and they were asked to maintain
the same lifestyle throughout the study period. Moreover, they were prohibited from consuming any
food containing GEE during the study period. To assess food consumption at baseline and follow-up
visits, participants were asked to complete three-day diet records of all food and beverage intake over
a total of three days in the week immediately preceding the next visit. One of the three days could
include a weekend day. Data from the three-day diet records were analyzed using a computer-aided
nutritional analysis program CANPRO 3.0 (APAC Intelligence, Seoul, Republic of Korea) to evaluate
the total calorie intake [18].

To assess physical activity, we used the International Physical Activity Questionnaire-Short Form
(IPAQ-SF) at baseline and follow-up visits [19]. The IPAQ-SF records the last seven-day report of
four intensity levels of physical activity, including vigorous-intensity activity, moderate-intensity
activity, walking, and sitting. The IPAQ-SF data were converted to metabolic equivalent minutes per
week (MET-min/week) using the published formulation [20]. Compendium of average MET score
was derived for each type of activity: Walking = 3.3 METs; moderate-intensity activity = 4.0 METs;
and vigorous-intensity activity = 8.0 METs [20]. Using these values, activities corresponding to each
intensity were defined as continuous values; MET-min/week in each intensity activity = (average MET
score) × (average minutes in a day) × (average days in a week) in each intensity activity [19].

2.7. Statistical Analysis

The data were analyzed using the SAS statistical software version 9.3 (SAS Institute Inc. Cary, NC,
USA). The efficacy and baseline-analysis set included randomized participants who were compliant
with the study protocol and received study treatments of at least >80% during the study. Baseline
characteristics between the two treatment groups were compared using independent two sample t-tests
or Wilcoxon rank sum test for continuous data and chi-square test for categorical data. Difference in
parameters between the two groups after intervention was analyzed by an independent two sample
t-test or Wilcoxon rank sum test, and within-group differences were analyzed by paired t-test or
Wilcoxon signed rank test. We actually planned to analyze t-tests but, in case of rejecting in the
Shapiro–Wilk normality test, and then Wilcoxon tests were used to compare their differences. In
addition, changes from baseline of each parameter between the two groups were analyzed using
analysis of covariance (ANCOVA), which was adjusted for its baseline value, total calories, and
intensity of physical activity (MET-min/week). In an ANCOVA test, the adjusted values of parameters
were used directly. The changes from baseline of total calories and physical activity were calculated
as follows: ∆6 week (or 12 week) = {values at 6 weeks (or 12 weeks)} – {baseline}. The total calories
and physical activity used for the ANCOVA test were the average of the values evaluated at six and
12 weeks. All data were expressed as mean ± standard deviation (SD), median (interquartile range), or
number (%). The statistical tests were two-sided, and statistical significance was defined as p < 0.05.
The purpose of this study was not confirmatory, but exploratory; therefore, we did not consider any
correction for the multiple comparison.

3. Results

A total of 94 subjects were enrolled in this study and randomized into the test or placebo group at
a ratio 1:1 (Figure 2). Two subjects in the test group and four subjects in the placebo group withdrew
voluntarily from the study. A total of 88 subjects completed the study; however, 10 subjects with <80%
treatment compliance during the study were excluded from the analysis. Therefore, 41 subjects in the
test group and 37 subjects in the placebo group were included in data analysis.
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Figure 2. Flowchart illustrating the inclusion and exclusion of the study subjects.

3.1. Baseline Characteristics
The baseline characteristics of each treatment group are presented in Table 1. No significant

differences between the two groups were observed with respect to age, sex, anthropometric
measurements, blood pressure, lipid profiles, calorie intake, and physical activity.

Table 1. Demographic and baseline characteristics of the study population.

Demographic Variables Test (n = 41) Placebo (n = 37) p-Value

Age (years) 36.66 ± 8.55 34.22 ± 6.89 0.172
Sex

Male 17 (41.5) 14 (37.8) 0.924
Body weight (kg) 72.11 ± 11.88 70.87 ± 10.56 0.629

Body mass index (kg/m2) 25.78 ± 1.95 25.85 ± 1.92 0.863
Waist circumference (cm) 89.29 ± 7.84 87.29 ± 10.07 0.328
Hip circumference (cm) 102.59 ± 5.03 101.71 ± 4.83 0.438

Waist-to-hip ratio 0.87 ± 0.05 0.86 ± 0.09 0.493
SBP (mmHg) 125.85 ± 13.71 124.73 ± 13.71 0.734
DBP (mmHg) 77.56 ± 8.92 75.22 ± 11.77 0.322

Fasting glucose (mg/dL) 93.49 ± 10.38 93.49 ± 9.51 0.9995
Fasting insulin (uIU/mL) 8.45 ± 4.93 9.51 ± 5.62 0.377

HOMA-IR 1.98 ± 1.25 2.24 ± 1.45 0.396
HOMA-β 94.52 ± 94.34 120.53 ± 70.79 0.176

hs-CRP (mg/dL) 1.36 ± 1.96 2.14 ± 5.79 0.442
Total cholesterol (mg/dL) 190.37 ± 28.98 190.03 ± 36.68 0.964

LDL (mg/dL) 112.95 ± 27.99 112.81 ± 34.57 0.985
HDL (mg/dL) 56.59 ± 10.97 57.19 ± 12.51 0.821

Triglyceride (mg/dL) 125.22 ± 123.37 121.81 ± 83.08 0.886
AST (IU/L) 19.00 (6.00) 17.00 (4.00) 0.022
ALT (IU/L) 18.00 (10.00) 15.00 (8.00) 0.045

BUN (mg/dL) 12.20 ± 3.21 12.56 ± 2.55 0.583
Creatinine (mg/dL) 0.74 ± 0.17 0.71 ± 0.17 0.471

TSH (mIU/mL) 1.50 ± 1.29 1.55 ± 0.75 0.828
Calorie (kcal/day) 1715.64 ± 507.85 1737.11 ± 449.70 0.845
Physical activity
(MET-min/week) 1696.71 ± 2204.96 2981.16 ± 3601.92 0.066

Data are presented as mean ± standard deviation except for sex, which is expressed as n (%), and AST and ALT,
which is expressed as median (interquartile range). p-values were calculated using independent two sample t-test
for continuous variables except for AST and ALT and chi-square test for categorical variables. AST and ALT
were analyzed by Wilcoxon rank sum test. SBP, systolic blood pressure; DBP, diastolic blood pressure; HOMA-IR,
homeostasis model analysis-insulin resistance; hs-CRP, high-sensitivity C-reactive protein; LDL, low-density
lipoprotein; HDL, high-density lipoprotein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; BUN,
blood urea nitrogen; TSH, thyroid stimulating hormone.
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3.2. Diet and Physical Activity

Table 2 shows energy intake and physical activity for each group throughout the study period.
Compared with baseline, calorie intake after 12 weeks decreased in the GEE group, but was similar in
the placebo group. However, there were no significant differences in total calories at six and 12 weeks
after the study (p > 0.05 by Wilcoxon rank sum test). In addition, the change in calorie intake after six
and 12 weeks was not significantly different between the test and placebo groups (p > 0.05 by Wilcoxon
rank sum test).

Table 2. Energy intake and physical activity.

Variables Test (n = 41) Placebo (n = 37) p-Value *

Calories (kcal/day)
Baseline 1687 (685) 1728 (623) 0.777
6 weeks 1577 (336) 1676 (391) 0.495
12 weeks 1597 (521) 1732 (732) 0.255

∆6 week-baseline −94 (522) −106 (537) 0.948
∆12 week-baseline −63 (853) 17 (653) 0.508

Physical activity (MET-min/week)
Vigorous Baseline 0 (720) 0 (720) 0.923

6 weeks 0 (800) 0 (720) 0.839
12 weeks 0 (1200) 0 (720) 0.577

∆6 week-baseline 0 (240) 0 (0) 0.216
∆12 week-baseline 0 (240) ** 0 (320) 0.043

Moderate Baseline 0 (360) 0 (240) 0.978
6 weeks 0 (480) 0 (360) 0.848
12 weeks 0 (360) 0 (320) 0.342

∆6 week-baseline 0 (360) 0 (120) 0.881
∆12 week-baseline 0 (360) 0 (160) 0.436

Walking Baseline 495 (7590) 693 (924) 0.027
6 weeks 594 (4158) 693 (1320) 0.157
12 weeks 792 (1056) 924 (1386) 0.344

∆6 week-baseline 0 (561) 198 (957) 0.753
∆12 week-baseline 0 (660) ** 0 (462) 0.146

Total Baseline 990 (1941) 1746 (3465) 0.080
6 weeks 1386 (1839) 1386 (2493) 0.473
12 weeks 1386 (2319) 1710 (2136) 0.625

∆6 week-baseline 141 (1287) 247 (2331) 0.705
∆12 week-baseline 240 (1761) ** –9 (1062) 0.043

Data are presented as the median (interquartile range). * p-values were calculated using Wilcoxon rank sum test.
** were represented as having p-values <0.05 in the Wilcoxon signed rank test for comparison within-group differences.

Although there were no significant differences in physical activity between the two groups at
six and 12 weeks after the study (p > 0.05 by Wilcoxon rank sum test), the change in each group
was different from baseline. The placebo group maintained similar activity with baseline; however,
vigorous and walking activity in the GEE group increased compared to baseline (p < 0.05 by Wilcoxon
signed rank test). Moreover, there was a significant difference in the changes from baseline after
12 weeks in total physical activity between the two groups (p < 0.05 by Wilcoxon rank sum test).
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3.3. Anthropometrics and Body Composition

After six and 12 weeks of GEE intake, body weight and BMI decreased compared to baseline
values, but those in the placebo group increased compared to baseline values (Table 3). There were
no statistically significant differences in body weight and BMI between the two groups at each time
point (p > 0.05 by independent t-test); however, changes from baseline between the two groups at six
and 12 weeks were significantly different, as analyzed by ANCOVA test adjusted for baseline value,
calorie intake, and physical activity (Figure 3). After 12 weeks of GEE intake, waist circumference and
hip circumference decreased significantly; however, the differences were not statistically significant
compared to those in the placebo group, as determined by ANCOVA test.

Table 3. Effect of Gelidium elegans on anthropometric parameters.

Variables Test (n = 41) Placebo (n = 37) p-Value *

Body weight (kg) Baseline 72.11 ± 11.88 70.87 ± 10.56 0.629
6 weeks 71.60 ± 11.72 71.20 ± 10.34 0.873
12 weeks 70.94 ± 11.88 71.56 ± 10.38 0.807

∆6 week-baseline −0.51 ± 1.23 ** 0.33 ± 1.12 0.002
∆12 week-baseline −1.17 ± 1.74 ** 0.69 ± 1.10** <0.0001

Body mass index
(kg/m2) Baseline 25.78 ± 1.95 25.85 ± 1.92 0.863

6 weeks 25.60 ± 1.92 25.98 ± 1.95 0.387
12 weeks 25.35 ± 1.97 26.11 ± 1.96 0.090

∆6 week-baseline −0.18 ± 0.45 ** 0.13 ± 0.42 0.003
∆12 week-baseline −0.43 ± 0.65 ** 0.26 ± 0.41 ** <0.0001

Waist
circumference

(cm)
Baseline 89.29 ± 7.84 87.29 ± 10.07 0.328

6 weeks 88.41 ± 7.79 87.85 ± 7.18 0.742
12 weeks 87.85 ± 8.56 87.91 ± 8.33 0.974

∆6 week-baseline −0.88 ± 3.85 0.56 ± 6.64 0.254
∆12 week-baseline −1.44 ± 3.84 ** 0.63 ± 7.60 0.142

Hip
circumference

(cm)
Baseline 102.59 ± 5.03 101.71 ± 4.83 0.438

6 weeks 101.27 ± 4.67 101.41 ± 5.35 0.902
12 weeks 101.47 ± 5.06 101.77 ± 4.79 0.786

∆6 week-baseline −1.31 ± 1.92 ** −0.30 ± 3.79 0.150
∆12 week-baseline −1.12 ± 2.69 ** 0.06 ± 3.00 0.071

Waist-to-hip ratio Baseline 0.87 ± 0.05 0.86 ± 0.09 0.493
6 weeks 0.87 ± 0.06 0.87 ± 0.05 0.605
12 weeks 0.87 ± 0.06 0.86 ± 0.06 0.890

∆6 week-baseline 0.00 ± 0.04 0.01 ± 0.07 0.688
∆12 week-baseline 0.00 ± 0.03 0.01 ± 0.08 0.485

Data are presented as mean ± standard deviation. * p-values were calculated using independent t-test. ** were
represented as having p-values <0.05 in the paired t-test for comparison within-group differences.
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Figure 3. Changes in anthropometric parameters from baseline between the two groups at six and
12 weeks. The test group was administered Gelidium elegans extract 1000 mg/day for 12 weeks, and the
placebo group was administered placebo. (a) Body weight; (b) body mass index; (c) waist circumference;
and (d) hip circumference. p-values were calculated using ANCOVA test adjusted for baseline value,
calorie intake, and physical activity.

Table 4 and Figure 4 show changes in body composition, as measured by DEXA. At baseline,
total fat mass in the two groups was similar with no significant difference (p = 0.919). After 12 weeks,
total fat mass in the test group decreased compared to baseline value, but that in the placebo group
increased compared to the baseline value. Total body mass showed similar pattern as that of total fat
mass change, although lean body mass decreased in both groups. GEE or placebo administration once
a day for 12 weeks decreased total fat mass in the test group to 0.48 ± 1.06 kg compared to baseline,
whereas total fat mass in the placebo group increased to 1.08 ± 0.75 kg compared to baseline (Figure 4).
These changes between the two groups were statistically significant, as revealed by ANCOVA test
adjusted for baseline value, calorie intake, and physical activity. In addition, we analyzed the body
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composition measured by DEXA according to gender. There were the same results with those that
were shown in Table 4. In both male and female, the total body mass and fat mass decreased in the
GEE group while those increased in the placebo group (data not shown).

Table 4. Effect of Gelidium elegans on body composition.

Variables Test (n = 41) Placebo (n = 37) p-Value *

DEXA
Total body mass Baseline 72.78 ± 12.08 71.64 ± 10.61 0.662

(kg) 12 weeks 71.57 ± 11.90 72.10 ± 10.50 0.836
∆12 week-baseline −1.21 ± 1.66 ** 0.46 ± 1.19 ** <0.0001

Total fat mass Baseline 19.66 ± 3.89 19.76 ± 4.23 0.919
(kg) 12 weeks 19.18 ± 3.80 20.84 ± 4.30 0.075

∆12 week-baseline −0.48 ± 1.06 ** 1.08 ± 0.75 ** <0.0001
Lean body mass Baseline 50.68 ± 11.12 49.48 ± 10.51 0.626

(kg) 12 weeks 49.95 ± 10.91 48.85 ± 10.46 0.652
∆12 week-baseline −0.73 ± 1.65 ** −0.63 ± 1.05** 0.743

Fat CT
Visceral fat Baseline 99.12 ± 43.75 93.97 ± 43.73 0.605

(cm2) 12 weeks 91.76 ± 38.95 95.42 ± 45.48 0.703
∆12 week-baseline −7.36 ± 21.83 ** 1.45 ± 13.53 0.034

Subcutaneous fat Baseline 191.24 ± 56.72 198.49 ± 64.07 0.598
(cm2) 12 weeks 185.58 ± 54.96 210.12 ± 67.08 0.080

∆12 week-baseline −5.67 ± 19.68 11.63 ± 21.49 ** 0.0004
Total abdominal fat Baseline 290.36 ± 81.59 292.46 ± 81.79 0.910

(cm2) 12 weeks 277.33 ± 75.03 305.54 ± 80.18 0.113
∆12 week-baseline −13.03 ± 27.95 ** 13.08 ± 26.51 ** <0.0001

Data are presented as mean ± standard deviation. * p-values were calculated using independent t-test. ** were
represented as having p-values <0.05 in the paired t-test for comparison within-group differences.

Abdominal fat area measured by fat CT is shown in Table 4 and Figure 4. At baseline, there
were no significant differences in visceral fat area (VFA), subcutaneous fat area (SFA), and total
abdominal fat area (TAF; p > 0.05 by an independent t-test). After 12 weeks of GEE or placebo
administration, VFA, SFA, and TAF in the test group decreased to 7.36 ± 21.83 cm2, 5.67 ± 19.68 cm2,
and 13.03 ± 27.95 cm2, respectively, compared to baseline values, whereas those in the placebo group
increased to 1.45 ± 13.53 cm2, 11.63 ± 21.49 cm2, and 13.08 ± 26.51 cm2, respectively, compared to
baseline values (Figure 4). The abdominal fat areas between the two groups at 12 weeks were not
significantly different, as analyzed by independent test; however, the changes from baseline between
the two groups were statistically significant, as determined by ANCOVA test adjusted for baseline
value, calorie intake, and physical activity.
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Figure 4. Changes in body composition from baseline between the two groups at 12 weeks. The test
group was administered Gelidium elegans extract 1000 mg/day for 12 weeks, and the placebo group
was administered placebo in a similar manner. (a) Total body mass by DEXA; (b) total fat mass by
DEXA; (c) lean body mass by DEXA; (d) visceral abdominal fat area by fat computed tomography (CT);
(e) subcutaneous abdominal fat area by fat CT; and (f) total abdominal fat area by fat CT. p-values were
calculated using an ANCOVA test adjusted for baseline value, calorie intake, and physical activity.
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3.4. Laboratory Parameters

Although fasting glucose, fasting insulin, triglyceride levels increased in the placebo group, they
decreased after 12 weeks in the GEE group. These results were consistent with body weight changes,
which were observed in two groups. However, these changes within-group did not have statistical
significance. In addition, after 12 weeks of treatment with GEE or placebo, there were no significant
differences in fasting glucose, fasting insulin, HOMA-IR, HOMA-β, and hs-CRP levels between the
two groups (Table 5). The changes in the above parameters from baseline between the two groups
were also not significantly different (Figure 5).
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Figure 5. Laboratory changes from baseline between the two groups at six and 12 weeks. The test
group was administered Gelidium elegans extract 1000 mg/day for 12 weeks, and the placebo group was
administered placebo in a similar manner. (a) Glucose; (b) fating insulin; (c) total cholesterol; (d) LDL;
(e) HDL; and (f) triglyceride. p-values were calculated using an ANCOVA test adjusted for baseline
value, calorie intake, and physical activity.
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Table 5. Fasting glucose and lipid profile.

Variables Test (n = 41) Placebo (n = 37) p-Value *

Fasting glucose Baseline 93.49 ± 10.38 93.49 ± 9.51 0.9995
(mg/dL) 6 weeks 95.34 ± 9.37 91.92 ± 8.23 0.092

12 weeks 93.00 ± 10.33 94.38 ± 10.44 0.560
∆6 week-baseline 1.85 ± 8.66 –1.57 ± 9.28 0.096
∆12 week-baseline –0.49 ± 8.18 0.89 ± 11.20 0.534

Fasting insulin Baseline 8.45 ± 4.93 9.51 ± 5.62 0.377
(mIU/L) 6 weeks 9.27 ± 5.93 8.94 ± 4.83 0.791

12 weeks 8.03 ± 4.04 9.65 ± 4.81 0.110
∆6 week-baseline 0.82 ± 3.51 –0.57 ± 5.51 0.194
∆12 week-baseline –0.42 ± 4.65 0.14 ± 5.14 0.617

HOMA-IR Baseline 1.98 ± 1.25 2.24 ± 1.45 0.396
6 weeks 2.24 ± 1.56 2.08 ± 1.24 0.611
12 weeks 1.88 ± 1.05 2.31 ± 1.31 0.116

∆6 week-baseline 0.26 ± 0.94 –0.17 ± 1.40 0.124
∆12 week-baseline –0.10 ± 1.20 0.06 ± 1.31 0.567

HOMA-β Baseline 94.52 ± 94.34 120.53 ± 70.79 0.176
6 weeks 104.39 ± 56.21 113.28 ± 56.87 0.490
12 weeks 104.83 ± 61.57 115.35 ± 59.39 0.446

∆6 week-baseline 9.87 ± 83.36 –7.25 ± 73.65 0.342
∆12 week-baseline 10.31 ± 91.36 –5.18 ± 76.32 0.422

hs-CRP Baseline 1.36 ± 1.96 2.14 ± 5.79 0.442
(mg/L) 6 weeks 1.06 ± 1.25 1.61 ± 2.94 0.298

12 weeks 1.06 ± 0.91 1.13 ± 0.98 0.722
∆6 week-baseline –0.30 ± 2.10 –0.53 ± 6.46 0.839
∆12 week-baseline –0.30 ± 1.79 –1.00 ± 5.75 0.482

Total cholesterol Baseline 190.37 ± 28.98 190.03 ± 36.68 0.964
(mg/dL) 6 weeks 190.76 ± 26.02 196.22 ± 33.84 0.424

12 weeks 191.51 ± 30.39 199.46 ± 36.02 0.294
∆6 week-baseline 0.39 ± 19.05 6.19 ± 16.47 ** 0.157
∆12 week-baseline 1.15 ± 17.44 9.43 ± 20.94 ** 0.061

LDL Baseline 112.95 ± 27.99 112.81 ± 34.57 0.985
(mg/dL) 6 weeks 116.44 ± 26.48 118.73 ± 31.15 0.727

12 weeks 114.27 ± 28.81 119.81 ± 32.60 0.428
∆6 week-baseline 3.49 ± 14.99 5.92 ± 17.13 ** 0.507
∆12 week-baseline 1.32 ± 13.64 7.00 ± 21.06 0.168

HDL Baseline 56.59 ± 10.97 57.19 ± 12.51 0.821
(mg/dL) 6 weeks 55.80 ± 11.12 56.78 ± 12.58 0.716

12 weeks 56.66 ± 11.32 57.84 ± 12.73 0.666
∆6 week-baseline –0.78 ± 7.12 –0.41 ± 5.36 0.795
∆12 week-baseline 0.07 ± 6.57 0.65 ± 7.04 0.710

Triglyceride Baseline 125.22 ± 123.37 121.81 ± 83.08 0.886
(mg/dL) 6 weeks 112.41 ± 64.58 118.24 ± 65.10 0.693

12 weeks 113.56 ± 87.94 129.30 ± 83.00 0.420
∆6 week-baseline –12.80 ± 79.59 –3.57 ± 56.33 0.553
∆12 week-baseline –11.66 ± 79.86 7.49 ± 49.92 0.204

Data are presented as mean ± standard deviation. * p-values were calculated using an independent t-test. HOMA-IR,
homeostasis model analysis-insulin resistance; hs-CRP, high-sensitivity C-reactive protein; LDL, low-density
lipoprotein; HDL, high-density lipoprotein. ** were represented as having p-values < 0.05 in the paired t-test for
comparison within-group differences.

After 12 weeks, total cholesterol and LDL in the test group were similar to their baseline levels,
whereas triglyceride level decreased to 11.66 ± 79.86 mg/dL compared to baseline value (Table 5
and Figure 5). In the placebo group, total cholesterol, LDL, and triglyceride levels increased to
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9.43 ± 20.94 mg/dL, 7.00 ± 21.06 mg/dL, and 7.49 ± 49.92 mg/dL, respectively, compared to baseline
values. However, the above parameters did not significantly differ between the two groups at each
time point, as revealed by independent t-tests (Table 5). The changes in lipid parameters, including
triglycerides, from baseline between the two groups were also not statistically significant, as analyzed
by an ANCOVA test adjusted for baseline value, calorie intake, and physical activity (Figure 5).

4. Discussion

This randomized, double-blinded study was conducted to investigate the effects of GEE on body
composition and obesity-related biomarkers in overweight or obese participants. We observed that
participants administered GEE for 12 weeks showed a significant decrease in body weight and BMI
compared to the placebo group. In particular, the GEE group showed a decrease in total body fat mass,
including visceral abdominal fat. In addition, although not significant, the triglyceride level decreased
after GEE intake.

Excess energy intake relative to energy expenditure leads to an increase in adipocyte number and
volume, which, in turn, increases adipose tissue mass [21]. This adipogenesis can be divided into
three main phases: Determination, clonal expansion, and terminal differentiation [22]. It is tightly
regulated by a cascade of transcriptional factors [22]. Adipogenic stimuli, such as hormones, growth
factors, and cytokines, induce CAAT/enhancer-binding protein β (C/EBPβ) and C/EBPδ [23]. These
proteins subsequently induce the expression of peroxisome proliferator-activated receptor gamma
(PPARγ) and C/EBPα, which are the key transcriptional factors for adipogenesis [23]. Sterol regulatory
element-binding transcription factor-1 (SREBP-1) is also an important transcription factor that promotes
early adipocyte differentiation, facilitates fatty acid metabolism, and might induce the expression of
PPARγ [23].

Several studies have reported that GEE inhibits the process of adipocyte differentiation. An
in vitro study showed that the treatment of 3T3-L1 cells with GEE increases PPARγ and C/EBPα
expression and decreases lipid accumulation in a dose-dependent manner [24]. These effects were
initially considered to be due to the flavonoids contained in GEE, such as rutin and hesperidin, which
were known to have anti-adipogenic activity [22,25]. However, similar results were noted for a low
concentration of GEE without flavonoids in an in vitro study [26]. This suggests that GEE may suppress
adipogenesis independently of flavonoids.

Similar results were observed in animal studies wherein GEE inhibits adipocyte differentiation
and lipid accumulation [11,14,15]. Mice were maintained on a high-fat diet, and one group was
administered GEE whereas the other group was not. After a few weeks, the mice fed high-fat diet
alone showed a continuous increase in body weight, whereas the mice fed high-fat diet along with
GEE showed suppressed weight gain, and the effect increased as the GEE dose increased. In addition,
the mice administered GEE showed relatively low accumulation of subcutaneous and abdominal
fat, compared to the mice not administered GEE. The expression levels of transcription factors in
adipose tissue were evaluated to elucidate the molecular mechanism of GEE in mice, and the results
showed that levels of PPARγ, C/EBPα, and SREBP-1 in the GEE-supplemented group were significantly
decreased compared to those in the high-fat diet alone group [11,14,15].

Our study showed that GEE administration for 12 weeks decreased body weight and total fat
mass. These results were similar to those of in vivo studies. In this study, we did not evaluate the
molecular mechanism of GEE in humans. However, on the basis of results of in vivo and in vitro
studies, GEE could inhibit adipocyte differentiation in humans by suppressing PPARγ and C/EBPα,
and prevent fat accumulation and weight gain. Although this study has limitations in explaining
the mechanism of GEE in regulating adipogenesis in humans, it was the first study to investigate the
effects of GEE in humans. Additionally, unlike animal studies involving use of a high-fat diet, in this
study, we encouraged participants to maintain their calorie intake similar to baseline values, and there
were no differences in energy intake between the two groups during the study. This suggested that
GEE supplementation with a regular diet might exert a similar inhibitory effect on adipogenesis.
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We educated the subjects to maintain the same level of physical activity during the study as that
at baseline, and we checked physical activity at each visit. However, in the placebo group, physical
activity was similar or decreased, whereas in the GEE group, physical activity was increased compared
to the baseline. Although a well-trained researcher consistently educated the participants, this study
has a limitation that physical activity was not controlled at the same level as the baseline, which
could have affected body weight. However, since this was a randomized, controlled, double-blinded
study, the bias of the researchers and subjects in lifestyle management were well controlled. Moreover,
considering that caloric intake after 12 weeks was similar between the two groups, the increase in
physical activity in the GEE group was likely to have been caused by chance. Since an increase in
physical activity is closely related to body weight loss, we conducted an ANCOVA test with adjustment
for variables that might affect body weight, including physical activity. In the results of the ANCOVA
test adjusted for the baseline value of each parameter, calorie intake, and physical activity, the GEE
group showed a significant decrease in body weight and body fat compared to the placebo group.
Therefore, our findings suggested that GEE significantly reduced body weight and body fat.

There was no significant difference in fasting glucose level and lipid profiles between the GEE
and placebo groups after 12 weeks of each treatment. However, considering that the participants’
characteristics were within the normal range at baseline, these changes could be meaningful. The
laboratory baseline values in Table 5 indicated that the average fasting glucose level, fasting insulin
level, and lipid profiles in this study were in the normal range. After 12 weeks of treatment with GEE or
placebo, these parameters were decreased in the GEE group whereas not all parameters were increased
in the placebo group. That is, the laboratory changes observed in the GEE group were consistent
with the result of weight loss after 12 weeks. Therefore, we suggest that those changes in laboratory
parameters were clinically significant considering that the participants were near-healthy subjects and
the parameters were within the normal range at baseline.

The main feature of fatty liver disease is triglyceride accumulation in the cytoplasm of
hepatocytes [27]. Non-esterified fatty acids in plasma are transported into the cytoplasm of hepatocytes
and then rapidly activated through conversion to fatty acyl-CoAs [27]. Fatty acids are also synthesized
de novo by acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) in the liver [27]. Fatty acids in
the hepatocytes are then converted to triglycerides by various factors, such as stearoyl-CoA desaturases
1 (SCD1), lipin 1, and acyl-CoA:diacylglycerol acyltransferase (DGAT) [27]. In this study, triglyceride
level in the GEE groups decreased although not significantly after 12 weeks. It is difficult to claim that
GEE prevented fatty liver disease in humans because we did not evaluate triglyceride accumulation
in hepatocytes. However, approximately 60% of hepatic triglycerides in humans is obtained from
non-esterified fatty acids in plasma [28]. Plasma non-esterified fatty acids are elevated in fatty liver
disease and obese subjects [27]. Fatty liver disease is strongly associated with obesity, and increased fat
mass contributes directly to greater fatty acid release from adipose tissue [27]. In animal studies to
investigate the effects of GEE on hepatic lipogenesis, mice with GEE showed decreased liver weight and
liver triglyceride content [11,14,15]. In high-fat diet-induced obese mice, GEE decreased the expression
of SREBP-1, ACC, FAS, and DGAT-1 [11,14]. SREBP-1 is a transcription factor that promotes the
expression of lipogenic genes, including FAS, ACC, SCD1, and lipin 1 [29,30]. Moreover, GEE induced
the expression of thermogenesis regulatory molecules, such as adenosine monophosphate-activated
protein kinase, PR domain-containing 16, and uncoupling protein-1 in hepatic tissues, indicating
that GEE may increase energy metabolism [11]. Considering these results from animal studies, the
reduction of triglycerides and fat mass in the GEE group of this study might be an indication that,
in humans, GEE could play the role of a negative regulator of lipogenesis and might inhibit the
accumulation of triglycerides in hepatocytes. Further studies in patients with fatty liver disease are
needed to evaluate whether GEE prevents triglyceride accumulation in hepatocytes or improves fatty
liver disease severity.
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5. Conclusions

In conclusion, our findings indicated that GEE intake might have a beneficial effect in ameliorating
body weight, total fat mass, subcutaneous fat, visceral fat, and triglycerides in overweight and obese
individuals regardless of whether these individuals change their lifestyle to reduce body weight. On
the basis of the mechanism of GEE with respect to adipocyte differentiation and hepatic lipogenesis,
the results of this study suggested that GEE supplementation might reduce body weight, especially
body fat mass, and its effect could be expanded to reduce hepatic fat accumulation. The efficacy of GEE
against body fat will be useful considering that the size of the obese population has been increasing
but anti-obesity treatment is limited. However, to confirm the efficacy of GEE against obesity or fat
accumulation, further studies are necessary to investigate whether these effects can be obtained even
over long-term administration and whether GEE has an effect on fatty liver disease.
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