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Abstract

A major hallmark of Parkinson’s disease (PD) is the degeneration of dopaminergic neurons in the substantia nigra,
and the causative mechanism is thought to be the activation of programmed neuronal death. Necroptosis is a
regulated process of cell death triggered by RIPK1. Although the pathophysiology of PD has been studied
extensively, the cellular mechanism underlying dopaminergic neuron death remains unclear. In this study, we
detected a specific miRNA, miR-425, in response to MPTP toxicity and dopaminergic degeneration. In MPTP-treated
mice, we observed necroptosis activation and miR-425 deficiency in the substantia nigra, which is correlated with
dopaminergic neuron loss. This miRNA targeted RIPK1 transcripts and promoted the phosphorylation of MLKL and
necroptosis. Similarly, in the brains of PD patients, miR-425 deficiency and necroptosis activation were also confirmed
in dopaminergic neuron. Furthermore, we found that genetic knockdown of miR-425 aggravated MPTP-induced
motor deficits and dopaminergic neurodegeneration via early upregulation of necroptotic genes. Intracerebral miR-
425 mimics (AgomiR-425) treatment attenuated necroptosis activation and dopaminergic neuron loss, and improved
locomotor behaviors. In conclusion, our study suggests that miR-425 deficiency triggers necroptosis of dopaminergic
neurons, and targeting miR-425 in MPTP-treated mice restored dysfunctional dopaminergic neurodegeneration and
ameliorated behavioral deficits. These findings identify brain delivery of miR-425 as a potential therapeutic approach
for the treatment of PD.

Introduction

Parkinson’s disease (PD) is characterized by the degen-
eration of dopaminergic neurons in the substantia nigra
(SN), and the causative mechanism is thought to be the
activation of neuronal death’. Although different forms of
cell death have been identified, their molecular mechanism
and involvement in neurodegenerative diseases are not
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well elucidated®*. Moreover, in PD, although the patho-
genesis has been investigated extensively, the mechanism
underlying dopaminergic neuron death remains unclear®.

Necroptosis is a regulated process of cell death triggered
by receptor-interacting protein kinase 1 (RIPK1)>° and
was first identified as a result of inflammation®’. Patho-
logically, necroptosis is initiated by activation of the TNFa
receptor, followed by kinase activation of RIPK1 and
RIPK3®*”. In particular, RIPK1, a death domain-containing
Ser/Thr kinase, has an established role in mediating the
deleterious mechanisms downstream of type I tumor
necrosis factor o receptor (TNFR1)'. Activated RIPK1
and RIPK3 form the necrosome complex and then recruit
MLKL, leading to necroptosis execution and mitochon-
drial membrane disintegration'™'?, The involvement of
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necroptosis is reported in neurodegenerative diseases,
including amyotrophic lateral sclerosis and Alzheimer’s
disease®'*',

Alterations in microRNAs (miRNAs) reportedly con-
tribute to the pathogenic mechanisms in neurodegenera-
tive diseases, including PD'>'®, miRNAs are strong
candidates for coordinating complex pathological pro-
cesses'’. These short noncoding RNAs act as post-
transcriptional regulators of gene expression by binding to
mRNA containing a miRNA recognition element. A single
miRNA binding its target mRNA can orchestrate the
epigenetic regulation of gene products and facilitate
developmental or pathological switches, such as cell sur-
vival and death'®'®. However, it remains unclear how
miRNA might be involved in mediating necroptosis in PD.

In the present study, we hypothesized that miRNA-
mediated necroptosis is involved in dopaminergic neuron
death in PD. First, we confirmed whether necroptosis is
activated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-treated mice or not in order to reveal the role of
miRNAs in necroptosis. Second, we investigated whether
the ablation of miR-425 could aggravate pathological PD-
like processes in miR-425 knockdown mice treated with
MPTP. Finally, we determined whether targeting miR-425
in MPTP-treated mice could restore dysfunctional dopa-
minergic neurodegeneration and ameliorate the disease,
thereby identifying miR-425 as a therapeutic target
for PD.

Materials and methods
Animals and MPTP injection

C57BL/6 mice (male, 6 months old) and Mir-425"°"
mice (male, 3 months, 6 months, and 15 months old) used
for all experiments were from Model Animal Research
Center of Nanjing University. Mir-425'" mice were
generated using CRISPR/Cas9 approach at the Nanjing
Animal Center and 248bp DNA fragment containing
miR-425 was deleted to produce the null allele. Hetero-
zygous Mir-425'°" mice were obtained from Mir-425""
mice crossing with wild-type C57BL/6 mice. The primer
sequences used for genotyping are as follows: forward
primer: 5-ATGGTGGCAGTCAGAGGCGA-3’; the
reverse primer 5'-GTGATGATGAGAAGACCCAA-3'.

Animal experiments were performed according to the
protocols and guidelines and were approved by the Ethics
Committee of Shanghai Jiao Tong University School of
Medicine. MPTP (30 mg/kg, Sigma-Aldrich, USA) was
injected intraperitoneally in C57BL/6 mice (N=5,
respectively) and Mir-425"" or wild-type (WT) mice (N
= 8, respectively). MPTP was injected daily for 5 days®**".
Mice were anesthetized with isoflurane and transcardially
perfused with ice-cold phosphate-buffered saline (PBS).
One half of the brain was dissected and homogenized for
western blot analysis. The other half of the brain was fixed
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in 4% PFA overnight at 4 °C and incubated in 30% sucrose
for immunostaining.

Cell culture and transfection

Rat pheochromocytoma PC12 cells were cultured in
DMEM (Gibco, USA) with 10% fetal bovine serum (FBS)
at 37°C in a 5% CO, incubator. Cells were plated at a
density of 10° cells/cm® in 6-well dishes that were coated
with 100 pg/ml poly-lysine. Cell transfections were per-
formed with AntagomiR-425-FAM, RIPK1 3'UTR or
mutant plasmid (Genepharma, China) using Lipofecta-
mine 3000 (ThermoFisher, USA). After 48 h, cells were
harvested for firefly and the Renilla luciferase activities
assay using the dual-luciferase reporter assay kit accord-
ing to the manufacturer’s protocol (Promega, USA). The
Renilla/firefly activity was used for analysis.

Dopamine level determination

Dopamine levels were examined through high perfor-
mance liquid chromatography- tandem mass spectro-
metry (HPLC-MS/MS)*. Samples were homogenized in
RIPA buffer, centrifuged at 14,000 rpm for 15 min at 4 °C
and analyzed for protein content by BCA protein assay
reagent. Supernatant fractions were filtered, injected into
an ultrasphere HPLC column and separated with a mobile
phase containing 0.3 mM sodium octyl sulfate, 0.1 mM
EDTA, 0.1 M sodium phosphate, and 5% (v/v) acetoni-
trile. With a standard curve generated with standard
dopamine, the dopamine amount was then quantified.

Behavioral tests

Motor coordination was investigated with the rotarod
test. Before the experiments, animals were placed on
rotating lanes for 5min and acclimated to the testing
environment. Mice were trained for 2min at a fixed
speed of 4 rpm. After training, mice were performed four
trials for 60s with programmed acceleration speed
starting from 4 to 40 rpm. The time of falling off the
rotating rod was recorded. Spontaneous locomotor
activity was examined in the open field test. The mice
were individually placed into the center of an open field
box (38 x 38 cm) in a noise and light-controlled room.
The spontaneous locomotor activities (central-area dis-
tance and whole-area distance) of each mouse were
recorded and analyzed in 300 s****, The parameters were
analyzed by the SuperMaze tracking system (Shanghai,
China).

The enzyme-linked immunosorbent assay (ELISA)

Cell culture media were collected 72 h after transfection
and cell debris was removed by centrifugation. For brain
lysates, mouse brains were homogenized and diluted with
PBS. Mouse TNFa was detected using sandwich ELISA
kits (ThermoFisher, USA) following the manufacturer’s
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instructions. Plates were read at 450 nm on a Synergy MX
plate reader (BioTeck, USA).

Stereotaxic injection

AgomiR-425 with FAM labeling (Genepharma, China) was
injected into the SNpc of mice brain. Six-month-old mice
from each group were anesthetized with isoflurane. Intra-
cerebral injection was performed with following coordinates:
—28mm anteroposterior, —12mm mediolateral, and
—4.3 mm dorsoventral. Five microliters of AgomiR-425 sus-
pension was injected into each site using a 10 ul Hamilton
syringe over a 5-min period. The needle remained in place for
5 min after complete injection then slowly removed. The mice
were placed on a pad until recovery from the anesthesia.

Immunostaining and quantification

Harvested mouse brain tissues were fixed in 4% paraf-
ormaldehyde (PFA) and embedded in paraffin or OTC
(SAKURA, USA). Specimen was cut to 4-pm-Paraffin-
embedded brain sections or 40-um-free-floating mouse
brain sections. Sections were washed and blocked in 5%
BSA, 0.3% Triton X-100 for 30 min and incubated over-
night with anti-TH (1:500, Abcam, USA) antibody, anti-
RIPK1 antibody (1:1,000, Abcam, USA,), anti-RIPK3 (1:
1000, Abcam, USA,), or anti-pMLKL (1:500, Abgent,
China) at 4°C. The slides were washed three times in
PBST and incubated with AlexaFluor 488-conjugated
donkey anti-rabbit or AlexaFluor 594 anti-mouse IgG
secondary antibodies (Invitrogen), and image were
acquired using a confocal microscope (Zeiss, Germany).
Mouse miR-425 in situ hybridization (ISH) was per-
formed on paraffin-embedded brain sections using a
microRNA ISH buffer set and a miRCURY LNA miR-425
probe (Exiqon, Denmark) according to the manufacturer’s
instructions.

Stereological estimation of TH-positive neurons

To estimate the number of nigral dopaminergic neu-
rons, stereological counts were performed and every sixth
section was selected between levels 2.80 and 3.80 mm
from the bregma. After delineation of the SN pars com-
pacta with a x4 objective, counts were performed at x60
magnification in Image] with the following parameters:
8 um height of an optical disector, 50 x 50 pm counting
frame, 100 x 100 um area of a grid. Coefficient of error
<0.10 were accepted.

Transmission electron microscopy

PC12 cells were collected, fixed with 2.5% glutar-
aldehyde for 2h, and embedded in Epon resin after
dehydration. The ultrastructure of mitochondria was
obtained from ultrathin sections with a CCD camera of a
Hitachi transmission electron microscope at an accel-
erating voltage of 80 kV.
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Western blot analysis

Brain tissue or cells were lysed with lysis buffer and
subjected to a 12,000 rpm centrifugation. Total protein
was determined using the BCA Protein Assay Reagent
(ThermoFisher, USA). Fifty micrograms of protein and
sample buffer was loaded onto 10% SDS-PAGE gels, and
then the gels were transferred to PVDF membranes.
Membranes were blocked and then incubated with pri-
mary antibodies anti-RIPK1 antibody (1:1,000), anti-
RIPK3(1:1,000), anti-MLKL (1:1,000), or anti-pMLKL
antibody (1:500) overnight at 4 °C. After washing three
times with TBST, membranes were incubated with sec-
ondary peroxidase-conjugated antibodies, and protein
blots were visualized using the ECL kit. GAPDH was used
as a loading control. Images were captured, and band
intensities were quantified using an Odyssey Image Sta-
tion (LI-COR, USA).

RNA sequencing and bioinformatics analysis

Total RNA was extracted using the RNeasy Mini Kit
(QIAGEN, Germany), and RNA-seq libraries were con-
structed per the Illumina TrueSeq RNA sample prepara-
tion kit. High-throughput sequencing was performed
using the I[llumina HiSeq 4000 (Aksomics, China). Dif-
ferentially expressed miRNAs were analyzed and plotted
in heatmap in R software. To explore gene changes in
SNpc after MPTP treatment, publicly available GEO data
sets GSE17542, GSE47788, GSE60080, and GSE7707 were
used for bioinformatics analysis. Differentially expressed
genes were analyzed and plotted in a volcano plot in R
software.

Real-time qPCR

Total RNA was extracted using the RNeasy Mini Kit
(QIAGEN, Germany), and cDNA was synthesized with a
cDNA reverse transcription kit (Takara, Japan). Real-time
qPCR was performed with a LightCycler 480 instrument
with SYBR Green reagents (Takara, Japan).

Human brain material

Postmortem brain tissues from the midbrain of four
control and four PD patients with clinical diagnosis and
neuropathological confirmation were obtained from the
Human Brain Bank of Peking Union Medical College
(PUMC). Written informed consent for the use of brain
tissues and clinical data for research purposes was
obtained and human brain tissues were analyzed anon-
ymously. This study was approved by ethical committees
of Shanghai Jiao-Tong University.

Reactive oxygen species (ROS) detection

Cellular oxidative stress production was investigated
through the Cellular ROS/Superoxide detection assay kit
(ab139476, Abcam, UK) following the manufacturer’s



Hu et al. Cell Death and Disease (2019)10:589

protocol. Briefly, cells were seeded onto 96-well black/
clear bottom plates and transfected with AntagomiR-425
or scramble. After 48 h, cells were stained with an oxi-
dative stress reagent. Fluorescence was then measured
using a fluorescent microplate reader (Biotek Synergy
MX, USA).

Statistical analysis

GraphPad Prism 7.0 software was used to analyze the
data, which are reported as the means + SEM. Unpaired
Student’s ¢ test was used for comparison between two
groups. For more than two groups, one-way or two-way
ANOVA followed by post hoc Dunnett’s test was applied.
Statistical significance was defined as P < 0.05.

Results
Cellular localization and RIPK1 upregulation in the SN in
the MPTP mouse model

To confirm MPTP-induced dopaminergic degeneration,
we first assessed PD-like pathology and motor dysfunc-
tions in C57BL/6 mice after MPTP treatment (30 mg/kg)
for 5 consecutive days. As expected, both the significant
degeneration of tyrosine hydroxylase (TH)-positive neu-
rons and the loss of cresyl violet-stained neurons were
observed in the substantia nigra par compacta (SNpc)
(Fig. 1a). Levels of striatal dopamine in the MPTP group
were remarkably decreased compared with those in the
control group via HPLC analysis (Fig. 1b). Consistent with
the neuropathological and biochemical findings, motor
dysfunctions were observed following MPTP treatment,
and MPTP-treated mice showed a significant decrease in
overall motor activity with less mobile time in the open
field test, as well as impaired balance and coordination
with an apparent reduction in movement time on the
rotarod test. Collectively, MPTP-treated mice successfully
exhibited PD-like pathology and an impaired locomotor
phenotype (Fig. 1la—d).

A recent report found that administration of
necrostatin-1 (Nec-1), a pharmacological inhibitor of
necroptosis, effectively attenuated MPTP-induced dopa-
minergic neuron loss and mitochondrial toxicity, sug-
gesting that necroptosis existed following MPTP
treatment>®. However, the roles of three key proteins,
RIPK1, RIPK3, and MLKL, and local neuroinflammation
involved in necroptosis remain unclear and need to be
further investigated. In the present study, following MPTP
treatment for 5 consecutive days, immunofluorescence
results revealed that RIPK1 and RIPK3 were increased in
TH-positive neurons in the mouse SN (Fig. le). This
result suggested that necrosomes were formed as a key
initiator of necroptosis. Noticeably, RIPK1 and pMLKL
levels were significantly higher in the MPTP-treated
group (Fig. 1e, f and Fig. S2A, B). Considering the bene-
ficial effects of Nec-1 treatment targeting RIPK1 and the
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significant changes in RIPK1 expression in the SNpc of
the MPTP mouse model, we believe that RIPK1 plays a
more critical role in inducing necroptosis. With regard to
RIPK1, it was reported that it can trigger both necroptosis
and apoptosis®®?’, we further investigated the role of
necroptosis and apoptosis in the context of dopaminergic
neurodegeneration. We found that even though apoptotic
marker cleaved Caspase-3 immunoreactivity was observed
in MPTP-treated mice, however, cleaved Caspase-3 was
rarely colocalized with TH-positive neuron. In contrast,
necroptotic marker pMLKL was mostly colocalized with
TH-positive neuron. This result confirmed that necrop-
tosis played a major role in the execution of dopaminergic
neuron loss. Moreover, activation of microglia and
astroglia was observed in the SNpc with increased TNFa
release (Fig. 1g and Fig. S2C). Taken together, these data
indicate that activated necroptosis and the inflammatory
response occurred in degenerated dopaminergic neurons
in the MPTP mouse model, correlating with an upregu-
lation of RIPK1.

miR-425 was correlated with RIPK1 expression and MPTP-
induced dopaminergic degeneration

To further investigate MPTP-induced necroptosis-
associated gene alterations, gene profiles of the SNpc
using an mRNA microarray were analyzed. A volcano plot
of gene expression indicated that RIPK1 was significantly
increased after MPTP treatment (Fig. 2a). Given the sig-
nificant number of genes that differentially changed, gene
ontology (GO) and gene set enrichment analysis (GSEA)
were adopted to identify the MPTP-associated pathways.
GO analysis showed that TNFa response and regulation,
neuronal death, and neuroinflammatory responses were
associated with MPTP toxicity (Fig. 2b). Moreover, the
GSEA results indicated that the immune response-related
gene set was significantly activated, whereas the
locomotion-related gene set was suppressed (Fig. 2c),
consistent with previous findings in an MPTP mouse
model*®*’,

To explore the possible mechanism underlying
necroptosis in MPTP-induced Parkinsonism, we specu-
lated that MPTP regulated necroptosis-associated gene
expression through posttranslational modification. As
miRNAs are the best known to exert posttranslational
control, we first screened miRNAs involved in RIPK1
regulation. Using miRNA sequencing (miRNA-seq) of
SNpc tissue from MPTP- and saline-treated mice, we
identified the most significantly changed miRNA in the
SNpc after MPTP treatment (Fig. 2d). Furthermore, we
chose RIPK1 as the target gene to screen miRNA binding
the 3'UTR of RIPK1 mRNA using online prediction
programs, including miRbase and  Targetscan
(www.mirbase.org and www.targetscan.org). Finally, we
identified 52 miRNAs and, using established programs,
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Fig. 1 Cellular localization and RIPK1 upregulation in the SNpc in the MPTP mouse model. a Immunofluorescence for TH in the striatum
(upper panel) and SNpc (lower panel) of MPTP mice. Quantification of TH-positive neuronal fibers in the striatum and TH-positive neurons in the
SNpc. b Quantification of dopamine in the striatum by HPLC. ¢ Immunohistochemistry for cresyl violet-positive cells and dopamine transporter (DAT)
in the SNpc. d Motor behavior in the open field in the MPTP-induced mouse model. Representative tracks of mice in the open field chamber over
5 min. Whole-area distance and central-area distance were measured. Motor behavior on the rotarod tests in the MPTP-induced mouse model. Time
spent on the rotarod was measured. e Representative images and quantification of immunofluorescence for RIPK1 and RIPK3 in dopaminergic
neurons. f Immunohistochemistry for phosphorylated MLKL (pMLKL) in dopaminergic neurons. g Representative confocal micrographs of Ibal and
GFAP staining in the SNpc. All data represent the mean + SEM. Student’s t test, *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001

revealed that miR-425 is a possible candidate with a
higher context score and percentile compared with other
dysregulated miRNAs (Fig. 2e, g and Table S1)*.

Using ISH and RT-PCR, we confirmed that miR-425
was reduced in the SNpc of MPTP-treated mice (Fig.
2f-h). Moreover, miR-425 deficiency was correlated with
decreased RIPK1 expression and dopaminergic neuron
loss (Fig. 2i, j). These results suggest that miR-425 may be
involved in dopaminergic pathology by regulating RIPK1.

miR-425 promoted necroptosis by targeting RIPK1

To further ascertain the relationship between miR-425
and RIPK1, we transfected a synthetic miR-425 inhibitor,
AntagomiR-425, into PC12 cells to mimic miR-425 defi-
ciency observed in the SNpc of the MPTP mouse model
(Fig. 3a). A luciferase reporter assay was performed using
this cell model to examine the specificity of miR-425
targeting RIPK1 mRNA. We found that miR-425 inhibi-
tion promoted luciferase activity, moreover, mutant
RIPK1 3'UTR interrupted the binding of miR-425 with
RIPK1 mRNA, resulting in increased luciferase activity in
contrast to the wild-type (WT) RIPK1 3'UTR (Fig. 3b, c).

To better understand the contribution of miR-425
inhibition in necroptosis, after transfecting the miR-425
inhibitor AntagomiR-425 in PC12 cells, we found that
inhibition of miR-425 suppressed neuron viability and
promoted cell death. However, these effects were reversed
by the necroptosis inhibitor Nec-1 (Fig. 3d, e). Western
blotting revealed that necroptosis-associated proteins,
including RIPK1, MLKL, and pMLKL, were significantly
increased following AntagomiR-425 transfection in PC12
cells (Fig. 3f, g). In addition, the TUNEL assay revealed
that miR-425 inhibition promoted neuron death relative
to that in cells transfected with the scramble control
(Fig. 3h). Thus, these observed findings suggest that miR-
425 inhibition promotes necroptosis.

Previous studies indicated that RIPK1 was a trigger for
mitophagy and ROS production''. After confirming the
relationship miRNA between miR-425 and RIPK1, we
next sought to ascertain whether miR-425 deficiency leads
to mitochondrial dysfunction. Structure analysis of
mitochondria using transmission electron microscopy
(TEM) confirmed that the length of mitochondria was
decreased and presented a rounded morphology following
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miR-425 inhibition (Fig. 3i, j). MitoTracker staining
revealed that miR-425 inhibition promoted mitochondrial
accumulation and fractions in the cell body accompanied
by increased ROS production (Fig. 3j, k). The alterations
in mitochondrial dysfunction following miR-425 inhibi-
tion were very similar to the changes in MPTP-induced
mitochondrial toxicity as previously reported®'. Given
these results, we believe that the miR-425-RIPK1 pathway
plays a critical role in the execution of necroptosis and
dopaminergic degeneration.

miR-425 deficiency and necroptosis activation were
observed in human PD brains

To further confirm the role of miR-425 and necroptosis
in dopaminergic neurodegeneration, we validated the
changes of miR-425 and necroptotic markers in SN of
patients with PD. The results showed that miR-425 was
markedly reduced in SN of PD brains (Fig. 4a). Moreover,
confocal imaging indicated a higher degree of colocali-
zation between miR-425 and dopaminergic neurons (Fig.
4b). Immunofluorescence staining revealed a higher
RIPK1 immunoreactivity in dopaminergic neurons of PD
cases compared with the control. Similarly, we found a
significantly increase in RIPK3 and pMLKL in dopami-
nergic neurons of PD brains (Fig. 4c—f). Thus, those data
indicated that miR-425 deficiency was involved in dopa-
minergic neurodegeneration by triggering necroptosis
activation in SN of PD patients.

miR-425 knockdown exacerbated MPTP-induced
dopaminergic neuron loss and impaired locomotor
behaviors

To address the relationship between miR-425 deficiency
and necroptosis in vivo, we generated heterozygous Mir-
425" mice with a C57BL/6 background. First, miR-425
ISH confirmed that Mir-425"" mice showed decreased
levels of miR-425 in the SNpc compared with those in
WT mice at 3 months old (Fig. 5a). Moreover, we found
that miR-425 levels in the SNpc were further decreased at
15 months of age in Mir-425'" mice (Fig. 5a and Fig. S3).
To determine the effects of miR-425 knockdown on
necroptosis and neuron loss, the findings indicated that
TH-positive and cresyl violet-positive neuron loss was not
detected at 3 or 6 months of age but was observed at
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and ****P < 0.0001

Fig. 2 miR-425 was correlated with RIPK1 expression and MPTP-induced dopaminergic degeneration. a Volcano plots showing the mRNA
expression profile of the MPTP mouse model compared with the saline control mice. b Summary of the gene ontology terms of differentially

expressed genes in the MPTP mouse model. ¢ Gene set enrichment analysis of differentially expressed genes in the MPTP mouse model. The

enrichment plots of the hallmark of immune response and locomotion are shown. d Expression heatmap of differential miRNA profiles in the SNpc of
the MPTP mouse model and saline control mice. e Context score of predicted miRNAs associated with RIPK1. f miR-425 expression in mouse brains
detected using chromogenic ISH. g Seed region of miR-425 in the 3’UTR of mouse RIPK1. h Quantification of miR-425 levels in mouse midbrains by
RT-PCR. i Correlations of miR-425 expression with cresyl violet-positive neurons in the SNpc in both MPTP and saline groups. j Correlations of the
expression of miR-425 with that of RIPK1 in the SNpc in both MPTP and saline groups. All data represent the mean + SEM. Student's t test, ***P < 0.001

15 months (Fig. 5b, ¢). However, in WT mice we could
not observe such age-associated changes of miR-425 and
dopaminergic neuron in SNpc (Fig. S2). To validate the
results, Fluro-Jade B staining was performed to show
degenerative neurons in the brain (Fig. 5d). As expected,
Mir-425"" mice at 15 months of age had more Fluro-Jade
B positive neurons in the SNpc than 3-month Mir-425""
mice did. Taken together, these results suggest that aging
is a critical risk factor for dopaminergic degeneration and
is also involved in triggering miR-425 deficiency in the
SNpc of mice.

To further investigate the contribution of miR-425-
mediated necroptosis in MPTP-induced dopaminergic
neurodegeneration and rule out possible involvement of
aging, we sought to introduce MPTP-treated Mir-425""
mice and chose 6-month-old mice for injection (Fig. 5e).
Compared with the WT mice, Mir-425" mice showed
more severe miR-425 deficiency and inflammatory cyto-
kine TNFa release in the brains of mice (Fig. 5f-h).
Moreover, miR-425 knockdown mice showed fewer TH
neurons, a decreased density of cresyl violet-stained cells
and fewer DAT-positive neurons relative to the WT mice
after MPTP treatment (Fig. 6a—c). In all, miR-425
knockdown aggravated dopaminergic degeneration
pathology in MPTP-treated mice.

To investigate the regulation of necroptosis in MPTP-
treated Mir-425'" mice, western blotting revealed that
RIPK1 as well as MLKL and pMLKL expression was sig-
nificantly increased in the SNpc of Mir-425'" mice
(Fig. 6d, e). These results suggested that Mir-425'" mice
showed more highly activated necroptosis in dopaminer-
gic neurons following MPTP treatment, resulting in more
severe degenerative pathology.

To determine the behavioral changes of miR-425
knockdown in MPTP-treated mice, the open field test
and rotarod test were used. miR-425 knockdown mice
exhibited less mobile time with decreased motor activity
in the open field test and displayed shorter coordination
time in the rotarod test (Fig. 6f-i). Together, miR-425
knockdown mice showed more severe dopaminergic
degeneration pathology and motor dysfunction after
MPTP treatment.

Official journal of the Cell Death Differentiation Association

AgomiR-425 treatment reduced MPTP-induced necroptosis
and restores behavioral deficits

After demonstrating the role of miR-425 in MPTP-
induced necroptosis, we investigated whether miR-425
supplementation in dopaminergic neurons could amelio-
rate PD-like pathology and motor dysfunction. WT mice
received a stereotactic injection of miR-425 mimics
(AgomiR-425) into both sides of the SNpc and were
administered MPTP for 5 days (Fig. 7a). First, we con-
firmed the successful transfection at the site of the the
SNpc by tracing fluorescence-labeled miRNA (Fig. 7b).

Immunofluorescence of miR-425 ISH confirmed that
miR-425 was significantly increased following AgomiR-
425 injection (Fig. 7c). To explore the effects of miR-425
supplementation on dopaminergic necroptosis, the results
revealed that AgomiR-425 injection led to significant
preservation of TH-positive fibers and neurons in the
striatum and SNpc (Fig. 7d). Importantly, we found that
AgomiR-425 specifically decreased RIPK1 expression and
protected TH-positive neurons in the SNpc (Fig. 7e).
Meanwhile, the level of MLKL phosphorylation was
decreased in the SNpc after AgomiR-425 treatment (Fig.
7f), and TNFa levels were also decreased with reduced
glial activation (Fig. 7g, h). Noticeably, dopamine levels
were increased in the striatum (Fig. 7i), suggesting that
the dopaminergic system was relatively protected from
MPTP toxicity with AgomiR-425 treatment.

In addition, AgomiR-425 attenuated locomotor
impairments by MPTP. In the open field test, AgomiR-
425 injection increased the overall motor activity with
more mobile time (Fig. 7j—1). In the rotarod test, AgomiR-
425-treated mice showed better balance and coordination
with increased movement time (Fig. 7m).

Discussion

Progressive loss of dopaminergic neuron in the SN is a
cardinal feature of PD. However, the precise molecular
mechanism by which neuron death occurs remains to be
elucidated. Revealing the mechanisms leading to neuronal
loss is essential to develop new therapeutic strategies to
delay or reverse the progression of PD*%. A growing body
of evidence suggests that the regulation of dopaminergic
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Fig. 3 miR-425 promoted necroptosis by targeting RIPK1. a FAM immunofluorescence tracing of transfected AntagomiR-425 and scrambled

control. b Luciferase activity of PC12 cells cotransfected with the WT 3’UTR of RIPK1 luciferase reporter plasmids together with AntagomiR-425 and
scramble control. ¢ Luciferase activity of PC12 cells cotransfected with the WT or mutant 3’UTR of RIPK1 luciferase reporter plasmids together with
AntagomiR-425. d Quantification of PC12 cells 3 days after treatment with MPTP, Nec-1, or vehicle control. e Quantification of PC12 cells 3 days after
treatment with AntagomiR-425, Nec-1, or vehicle control. f Immunoblotting of RIPK1, RIPK3, MLKL, and pMLKL expression in PC12 cells transfected
with AntagomiR-425 or scrambled control. g Quantification of RIPK1, RIPK3, MLKL, and pMLKL expression in PC12 cells transfected with AntagomiR-
425 or scrambled control. h TUNEL assay of PC12 cells 3 days after treatment with AntagomiR-425. i Representative mitochondria are shown using
TEM and quantification of mitochondria vacuolation. j Representative mitochondria are shown using MitoTracker Red staining. k ROS assay of PC12
cells 3 days after treatment with AntagomiR-425. All data represent the mean + SEM. In d, e, one-way ANOVA followed by Dunnett’s test was applied.

| Other experiments used Student's ¢ test, **P < 0.01, **P < 0.001, and ns, not significant

neurodegeneration is critical to reveal the pathogenesis of
PD***3* Here, we confirmed that necroptotic processes
are involved in the neurodegeneration of dopaminergic
neurons via miR-425-mediated RIPK1 activation. Firstly,
in this study, we identify that miR-425 deficiency is
associated with dopaminergic neurodegeneration in
MPTP-treated mice and PD patients. To dissect the
mechanism of miR-425 action, we validate that reduced
miR-425 promotes necroptosis by targeting the 3'UTR of
RIPK1. Next, in a miR-425 knockdown mouse model, we
demonstrate that miR-425 inhibition induces the upre-
gulation of RIPK1 and necroptosis activation. From a
therapeutic perspective, our current results suggest that
miR-425 supplements in dopaminergic neurons could
reduce necroptosis and may be a valid therapeutic
approach for PD. Alternatively, it could be combined with
other therapeutics that aim to block the neurotoxic insult,
especially MPTP.

MPTP is a neurotoxin that recapitulates the neuro-
pathology of PD and causes specific loss of dopaminergic
neurons in animals and a profound reduction of striatal
dopamine levels®*. MPTP could be specifically uptaken by
dopaminergic neurons and targets the mitochondria of
neurons®®, Neuronal degeneration is caused by its toxic
metabolite MPP™, followed by mitochondrial dysfunction
induced by elevated oxidative stress>>. How this toxicity
induces intracellular protein changes and mediates cell
death remains ambiguous. Our results show that MPTP
could regulate posttranslational modification of
necroptosis-associated gene through miR-425. Further-
more, we highlight the role of miR-425-RIPK1 axis in
mediating the inflammatory responses and neuronal
death. Previous reports suggest that RIPK1 activation
results in the regulation of ROS, mitophagy, and oxidative
stress'?”7, Consistent with those reports, our findings
further reveal that miR-425-mediated RIPK1 regulation
serves a critical role in dopaminergic neurodegeneration.

According to previous studies and our results, MPTP
treatment induces prominent dopaminergic neuron loss
and dopamine depletion in the striatum and the SNpc
with impaired dopaminergic system functions®>**, This
dysfunction and pathology were aggravated by miR-425
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knockdown in the MPTP-treated mice model. MPTP
neurotoxicity in vivo is thought to arise from superoxide
production due to mitochondrial complex I inhibition
accompanied by microglial activation and inflammatory
response®>*’, Our results show that miR-425 inhibition
could also increase both ROS production and mitochon-
drial disruption, which correlates with the occurrence of
dopaminergic neuron loss and dopamine depletion. These
findings bridge the relationship between oxidative stress
and necroptotic neuron death in the pathogenesis of PD*.

When finishing the experiments in MPTP-treated mice,
we cannot neglect an unavoidable problem: Since MPTP-
treated mouse is an artificial PD model, how about the
miR-425 and RIPK1 levels in human brain tissue? Thus,
we validate the role of miR-425 in neurodegeneration and
neuron death in SN sections from patients with PD and
controls. We find that that brain enriched miR-425 is
markedly reduced in SN of PD brains, and a higher degree
of colocalization between miR-425 and dopaminergic
neurons. Moreover, the necroptosis-associated proteins,
including RIPK1, RIPK3, and pMLKL, are significantly
increased in PD cases compared with the control.
Therefore, dopaminergic neurodegeneration by triggering
necroptosis activation in SN of PD patients are success-
fully validated for the first time so far. Our data broaden
the spectrum of molecular pathogenesis of PD from
bench to bed.

However, this study does not address the detailed
mechanism of MPTP-mediated downregulation of miR-
425 expression. A possible explanation is that the
inflammatory response cytokines such as TNFa might
mediate transcriptional activity suppression by miR-425.
Meanwhile, we show that decreased levels of miR-425
result in higher activation of the necroptosis pathway.
Increased necroptosis and disruption of the cell mem-
brane may promote miR-425 degradation. Then, a vicious
circle between necroptosis and miR-25 would occur.

Conclusion

In conclusion, our data indicate that miR-425 deficiency
in PD triggers necroptosis of dopaminergic neurons, and
targeting miR-425 in MPTP-treated mice restored
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Fig. 4 miR-425 deficiency and necroptosis activation were observed in human PD brains. a Chromogenic ISH of miR-425 expression in
substantia nigra of PD brains and control; b Fluorescence ISH of miR-425 and colocalization with dopaminergic neurons in substantia nigra of PD
brains and control; ¢-e Immunohistochemistry for RIPK1, RIPK3 and pMLKL in dopaminergic neurons in substantia nigra of PD brains and control;
f Violin plots of miR-425, RIPK1, RIPK3, and pMLKL expression in substantia nigra of PD brains and control. Box plot with bars represent the mean +
SEM. Student’s t test, *P < 0.05, **P < 0.01, and ***P < 0.001
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dysfunctional dopaminergic neurodegeneration and and propose miR-425 supplements as a probable ther-
ameliorated behavioral deficits. Our results establish a apeutic approach for neurodegenerative disease with
previously undescribed link between RIPK1 and miR-425  neuron loss.
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