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Constraints to counting 
bioluminescence producing cells 
by a commonly used transgene 
promoter and its implications for 
experimental design
E. O. Mosaad1,2,3, K. Futrega1, I. Seim   2,4,5, B. Gloss   6, K. F. Chambers7, J. A. Clements2 & 
M. R. Doran1,2,8,9

It is routine to genetically modify cells to express fluorescent or bioluminescent reporter proteins to 
enable tracking or quantification of cells in vitro and in vivo. Herein, we characterized the stability of 
luciferase reporter systems in C4-2B prostate cancer cells in mono-culture and in co-culture with bone 
marrow-derived mesenchymal stem/stromal cells (BMSC). An assumption made when employing 
the luciferase reporter is that the luciferase expressing cell number and bioluminescence signal are 
linearly proportional. We observed instances where luciferase expression was significantly upregulated 
in C4-2B cell populations when co-cultured with BMSC, resulting in a significant disconnect between 
bioluminescence signal and cell number. We subsequently characterized luciferase reporter stability 
in a second C4-2B reporter cell line, and six other cancer cell lines. All but the single C4-2B reporter cell 
population had stable luciferase reporter expression in mono-culture and BMSC co-culture. Whole-
genome sequencing revealed that relative number of luciferase gene insertions per genome in the 
unstable C4-2B reporter cell population was lesser than stable C4-2B, PC3 and MD-MBA-231 luciferase 
reporter cell lines. We reasoned that the low luciferase gene copy number and genome insertion 
locations likely contributed to the reporter gene expression being exquisitely sensitive BMSC paracrine 
signals. In this study, we show that it is possible to generate a range of stable and reliable luciferase 
reporter prostate- and breast- cancer cell populations but advise not to assume stability across different 
culture conditions. Reporter stability should be validated, on a case-by-case basis, for each cell line and 
culture condition.

Quantifying the number of a specific type in complex co-cultures, or in animals, requires that cells of inter-
est are distinguishable from neighboring cells. To this end, it is increasingly common to genetically label cells 
such that they express a specific fluorescent or bioluminescent (e.g. luciferase) reporter proteins, thereby ena-
bling their tracking and quantification. Luciferase-expressing cancer cells have been used previously to estimate 
their number in complex co-cultures1–3. For example, in Nature Medicine, McMillin and colleagues retrovirally 
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transduced human multiple myeloma cells to express luciferase and used this as a reporter to quantify myeloma 
cells in co-culture with bone marrow-derived mesenchymal stromal cells (BMSC)4. It is increasingly recognized 
that non-cancerous cells in the tumor microenvironment play a significant role in tumor establishment, growth 
and drug response5–8. For these reasons, co-cultures are increasingly being utilize, and reporter-based co-culture 
assays use will increase in frequency.

The underlying assumption when using bioluminescence to estimate the number of cells in a co-culture, or 
in an animal, is that there is a linear relationship between the bioluminescence signal and the number of viable 
cells expressing the reporter protein (typically luciferase). This requires that expression and production of the 
luciferase enzyme is stable in cell populations over time, and across different culture conditions. This is analo-
gous to the properties desired by a housekeeping gene in RT-qPCR9. It is common practice for research groups 
to calibrate their bioluminescence assays using a titration of luciferase-expressing cells in a mono-culture. The 
mono-culture titration data is next used to estimate the number of luciferase-expressing cells in a co-culture 
based on relative bioluminescence10.

The luciferase reporter construct, which is inserted into the genome of the labelled cell population in stable 
cell lines, is usually composed of at least two regions. The first region is a promoter designed to constitutively 
drive the expression of the reporter(s). The second region is the reporter, usually the gene sequence for biolumi-
nescent luciferase, a fluorescent protein (for example red fluorescent protein, RFP; or green fluorescent protein, 
GFP), or both. The gene expression of the reporter is dependent on that of the promoter, and ideally the promoter 
activity should be uniform across all culture conditions11.

In our own work, we observed instances where the luciferase bioluminescence signal generated by C4-2B 
cells, an LNCaP-derived cell line isolated from metastatic prostate cancer cells from the lumbar spine of castrated 
mice12,13, was significantly greater when these cells were co-cultured with BMSC, compared to mono-culture. 
These observations suggested that a luciferase reporter may not be a viable method to estimate relative cancer cell 
number under co-culture conditions. Herein, we sought to better understand the utility and reliability of using 
the bioluminescence signal from luciferase transduced cells to estimate C4-2B cell numbers in BMSC co-culture. 
We compared bioluminescence signal, luciferase gene expression, and DNA content in C4-2B populations where 
the luciferase reporter appeared to be stable and in populations where the luciferase reporter appeared to be 
unstable. Next, we performed whole-genome sequencing to determine the genetic difference between the sta-
ble and unstable cell lines. Then, we characterized the stability of six additional luciferase reporter cell pop-
ulations, driven by distinct gene promoters, in mono-cultures and BMSC co-cultures. Finally, we performed 
whole-genome sequencing on two additional stable reporter cell lines in an effort to determine if reporter stability 
could be predicted from sequence data.

Materials and Methods
Bone marrow-derived mesenchymal stromal cell isolation and characterization.  Human bone 
marrow aspirates were collected at the Mater Hospital (Brisbane, Australia) from fully informed and consenting 
healthy volunteer donors. Ethical approval was granted through the Mater Health Services Human Research 
Ethics Committee and the Queensland University of Technology Ethics Committee (number 1000000938); in 
accordance with the Australian National Health and Medical Research Council’s Statement on Ethical Conduct 
in Research Involving Humans. Mononuclear cell isolation was achieved by density gradient centrifugation, using 
Ficoll-Paque Plus (GE Healthcare), as previously described14. Cells were maintained in low glucose Dulbecco’s 
modified Eagle’s medium (DMEM-LG; Gibco, Invitrogen) supplemented with 10% fetal bovine serum (FBS), 
100 U/mL penicillin, and 100 μg/mL streptomycin (1% PS; Gibco) in a humidified incubator containing 5% CO2 
with 2% O2 atmosphere at 37 °C. The isolated cells were characterized by flow cytometry for their expression of 
BMSC specific surface antigen panel (Supplementary Table 1). Mesodermal trilineage differentiation capacity was 
confirmed using the corresponding induction media for osteogenic, adipogenic, and chondrogenic differentia-
tion; using methods described previously15,16 (Supplementary Fig. 1).

Cancer cell line culture.  Two prostate cancer cell lines were used. PC3 were obtained from the American 
Type Culture Collection (American Type Culture Collection, ATCC) and C4-2B were derived and generously 
shared by Dr. Chung12,13. Breast cancer cell lines (MDA-MB-231 and MCF-7) were kindly provided by Dr. Eloïse 
Dray and Prof Lisa Chopin (Queensland University of Technology). Cell lines were authenticated at the Genomic 
Research Centre (GRC; Brisbane, Australia) using Short Tandem Repeat (STR) analysis. Briefly, STR profiles 
were compared to the ATCC STR Database to verify cell line identity. All cultures were performed in DMEM-LG 
(Gibco, Invitrogen) supplemented with 10% FBS and 1% PS in a humidified incubator containing 5% CO2 with 
a 20% O2 atmosphere at 37 °C.

Production of luciferase-tagged prostate cancer cell lines.  All transduced cell lines are listed in 
Table 1, along with the terms used throughout this study to describe them. Luciferase expressing C4-2B cells 
(termed C4-2B-CMV1 in Table 1) were generated using the 3rd generation ViraPower lentiviral gene expression 
system (Invitrogen), as described previously17. This cell line was a generous gift from Dr. Patrick Ling (previously 
employed at Queensland University of Technology). As our team did not produce this specific cell line, we did not 
have the original vector map. We performed PCR to validate that in the C4-2B-CMV1 genome (1) the luciferase 
gene was present, (2) there the CMV promoter was present, and (3) that the CMV promoter sequence flanked 
the luciferase gene. This was achieved using the following steps: DNA was collected from C4-2B-CMV1 cells 
using TRIzol reagent (Invitrogen) as per the manufacturers’ instructions. Extracted DNA was used in PCR using 
Platinum Taq DNA polymerase (Invitrogen). Suitable PCR primers for GAPDH, Luc genes, and the CMV pro-
moter were designed and their sequences listed in Table 2. To validate that the CMV promoter flanked the lucif-
erase gene, we used the CMV forward primer and the luciferase reverse primer to amply a region that overlapped 
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with both the promoter and luciferase gene. The thermocycling conditions were as follows: a single 2 minutes 
initial denaturation at 95 °C; 35 cycles of 30 seconds denaturation at 95 °C, 30 seconds annealing at 55 °C, and 
45 seconds extension at 72 °C, and a one-minute final extension at 72 °C. PCR products were visualized using 
a 2% ethidium bromide-agarose gel in Tris-borate-EDTA buffer (TBE buffer, pH 8.3), Gel loading dye, Purple 
(New England Biolabs), and HyperLadder 50 bp (Bioline). The agarose gel was visualized under ultraviolet light.

We subsequently generated a number of additional luciferase-expressing prostate cancer and breast can-
cer cell lines. MCF-7 breast cancer cells were transduced with commercial, pre-made 3rd generation lentiviral 
expression particles (AMSBIO, LVP020) as per the manufacturers’ instructions. In these cells, luciferase and 
GFP were driven by the elongation factor 1 alpha (EF1a) promoter. Cultures were enriched for transduced cells 
by FACSorting (MoFlo Astrios; Beckman Coulter) for GFP+ cells. Cultures were validated to be stably GFP+ at 
subsequent culture time points via flow cytometer analysis.

Using Lentiviral particles manufactured in-house, we transduced C4-2B, MDA-MB-231, and PC3 with plas-
mids carrying luciferase and a fluorescent reporter genes. These lentiviral particles contained constructs designed 
to express luciferase and red fluorescent protein (Luc-RFP) or luciferase and green fluorescent protein (Luc-GFP). 
Constructs were purchased from Bioluminescence Imaging Vectors (BLIV, System Biosciences). The promoter 
and color combinations were cytomegalovirus (CMV) as CMV-Luc-RFP, murine stem cell virus (MSCV) as 
MSCV-Luc-GFP, or (EF1a) as EF1a-Luc-GFP. Please see Supplementary Fig. 3 for construct details. Viral particles 
were manufactured, and cells transduced, as described below.

Plasmids were produced using Stbl3 Chemically Competent E.coli (Invitrogen), as per the manufacturer’s  
instructions. Plasmids were purified using a NucleoBond Xtra EF plasmid purification kit (Midi EF, 
Macherey-Nagel). They were packaged in Lipofectamine 2000 (Invitrogen), and transfected into 293FT cells 
(Invitrogen) to produce viral particles. Cancer cells were next exposed to the viral particles in the presence of 
8 µg/mL polybrene to facilitate transduction. Transduced cells were FACs sorted to enrich for GFP+ or RFP+ 
cells, yielding cell lines stably expressing Luc-RFP or Luc-GFP with one of three regulatory promoters (MSCV, 
CMV, or EF1a).

DNA quantitation.  The Quant-iT PicoGreen dsDNA assay (Invitrogen) was performed, as per the manu-
facturer’s instructions, to determine the quantity of double stranded DNA (i.e. genomic DNA) in each culture 
condition.

Cell viability measurement.  The AlamarBlue assay (Invitrogen) was used to measure the metabolic activ-
ity of cells. AlamarBlue reagent was added to the culture media at a final concentration of 3%. The plates were 
incubated for 1 hour at 37 °C, to permit reduction of the AlamarBlue reagent, and fluorescence read at 544 nm 
excitation and 590 nm emission (BMG Omega plate reader (BMG LABTECH)).

Bioluminescence assay.  For luciferase assays, D-luciferin (Promega) was added to the culture medium 
at a final concentration of 15 μg/mL, incubated at 37 °C for 15 minutes, and bioluminescence measured using a 
PHERAstar FS plate reader (BMG LABTECH). Data is presented as relative bioluminescence (RLU) compared 

Parent cell line Promoter-reporter Referred to as Construct source

C4-2B CMV-Luc C4-2B-CMV1 Plasmid (Dr. Patrick Ling17)

C4-2B CMV-Luc-RFP C4-2B-CMV2 Plasmid (Supplementary Fig. 3b)

C4-2B MSCV-Luc-GFP C4-2B-MSCV Plasmid (Supplementary Fig. 3a)

C4-2B EF1a-luc-GFP C4-2B-EF1a Plasmid (Supplementary Fig. 3c)

PC3 CMV-Luc-RFP PC3-CMV2 Plasmid (Supplementary Fig. 3b)

MCF-7 EF1a-Luc-GFP MCF-7-EF1a Viral particles (AMSBIO, LVP020)

MDA-MB-231 CMV-Luc-RFP MDA-CMV2 Plasmid (Supplementary Fig. 3b)

MDA-MB-231 MSCV-Luc-GFP MDA-MSCV Plasmid (Supplementary Fig. 3a)

Table 1.  List of cancer cell lines used with respective transduced promoters.

Gene Sequence (5′-3′)
Annealing 
temperature (°C)

Primer 
concentration (nM)

Amplicon 
size (bp)

GAPDH F GGGAGGTAGAGGGGTGATGT
R TTCAGCTCAGGGATGACCTT 60.0 400 204

firefly luciferase (Luc) F TGAAGAGATACGCCCTGGTT
R CCAACACCGGCATAAAGAAT 59.8 400 198

CMV F GCGTGGATAGCGGTTTGACT
R CAATGGGGCGGAGTTGTTAC 60.1 400 124

Table 2.  Primers and annealing temperatures used for standard PCR. The firefly luciferase (Luc) and CMV 
primer pairs were used to demonstrate that C4-2B-CMV1 cell line genome had both genes, and that these gene 
sequences were adjacent to each other in the genome. The CMV forward primer and the luciferase reverse 
primer were used to amply the adjacent sequence spanning from the CMV promoter into the luciferase gene. 
GAPDH was used as a positive control in the PCR reactions.
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to the control, unless stated otherwise. Direct comparison of the relative bioluminescence of C4-2B-CMV1 and 
C4-2B-CMV2 was performed by contrasting the signal generated by titrations of the two cell types. For these 
studies, cells were seeded in 96 well plates (4 replicates each) at densities of 500, 1000, 2000, 5000, 10,000, 20,000, 
and 50,000 cells/well. Cells were permitted to attach to the tissue culture plastic surface for 4 hours, and then 
D-luciferin was added to the culture medium at a final concentration of 15 μg/mL, cultures incubated at 37 °C for 
15 minutes, and bioluminescence measured.

Luciferase antibody staining.  To validate the relative percentage of C4-2B-CMV1 and C4-2B-CMV2 
cells that were expressing detectable levels of luciferase protein, cells were fixed, permeabilized, stained 
with anti-Luciferase, and characterized by flow cytometry. Cells were prepared using FIX & PERM Cell 
Permeabilization Kit (ThermoFisher). Cells were stained with anti-firefly Luciferase (Alexa Fluor 488, Abcam 
ab214950) as per the manufacturer’s instructions, then characterized on a LSRFortessa X-20 flow cytometer (BD 
Biosciences), and data analyzed using FlowJo software (TreeStar).

Co-culture system.  For direct co-cultures, BMSC (1 × 104) were seeded in 96-well plates for 24 hours to 
permit adherence to the tissue culture plate. The following day, a titration of cancer cells was seeded either on 
the top of adherent BMSC (co-cultures) or into empty wells (control mono-cultures). For Transwell assays, 
BMSC (1 × 104) were seeded into the top Transwell insert (Millicell culture inserts, Merck Millipore) and 
9 × 104 cancer cells seeded in the bottom wells of 24-well plates. Transwell insert pore sizes of 0.4 µm were 
employed to prevent the passing of BMSC through the Transwell membrane, and to enable independent quan-
tification of the cell number on the top and bottom of the cultures at endpoint. Co-cultures were incubated for 
0, 5, 24 hours, bioluminescence measured, and cells harvested. A parallel mono-culture was maintained as a 
control for every time point.

Quantitative real-time RT-PCR (qRT-PCR).  To assess the stability of luciferase gene expression 
in mono-cultures and co-cultures, RNA was extracted from cancer cells grown in mono-culture and indi-
rect co-culture using an RNAeasy Mini Kit (QIAGEN). Luciferase gene primer pairs were designed using 
Primer3Plus18 and were checked for specificity by querying the firefly (Photinus pyralis) luciferase gene (GenBank: 
M15077.1) and Homo sapiens genome using NCBI Primer-BLAST19. To optimize the housekeeping genes and 
luciferase gene primers for qRT-PCR, four primer concentrations were used with three different cDNA template 
amounts. The optimum primer concentrations were selected based on conditions yielding the greatest amplifi-
cation efficiency.

All RNA samples were treated with DNase I (1 U/µL final concentration) in solution, at 37 °C for 30 minutes 
followed by 10 minutes incubation at 65 °C to deactivate the enzyme. Next, cDNA was generated from 500 ng total 
RNA using the SuperScript III First-strand synthesis kit (Invitrogen). We measured relative gene expression using 
Power SYBR Green PCR master mix (Applied Biosystems) on Viia7 Real Time PCR system (Applied Biosystems) 
(5 µL reactions on a 384-well plate; three technical replicates). Each condition had four biological replicates. 
Amplification was performed with an initial cycle of 50 °C for 2 minutes and 60 °C for 1 minute, 40 quantification 
cycles (with one cycle consisting of 95 °C for 15 seconds and 60 °C for 1 minute), followed by the thermal dissocia-
tion protocol for SYBR Green detection. Relative luciferase gene expression was normalized to the housekeeping 
gene ribosomal protein lateral stalk subunit P0 (RPLP0). The primers used are listed in Table 3 along with the 
annealing temperature and the primers’ final concentrations in each reaction.

Whole-genome sequencing.  Genomic DNA sequencing was performed at the Garvan Institute’s 
Kinghorn Centre for Clinical Genomics (KCCG; Sydney, Australia). DNA was extracted from C4-2B-CMV1, 
C4-2B-CMV2, PC3-CMV2, and MDA-MSCV cell populations using TRIzol reagent (Invitrogen). Whole-genome 
sequencing was performed on the HiSeqX Ten sequencing platform (TruSeq Nano) using HiSeq X Reagent Kit 
v2.5. Transgene insertion mapping was performed using STAR20, and chimeric reads with at least 20 base pair 
overhang between luciferase (GenBank: M15077.1) and human reference genome (hg38) retained. Discordant 
read-pair mappings from BWA-MEM21 were used to independently verify the location of the transgene inser-
tions. Insert locations were visualized using Circos22. Full sequence data is freely available upon request; please 
contact the authors.

Statistical analysis.  Results are displayed as the mean values of three independent experiments, each 
with four technical replicates, unless mentioned otherwise. Error bars represent standard deviation. Statistical 
significance of data was evaluated using two-way analysis of variance (ANOVA) in Prism v6.0 (GraphPad 
Software). P-values obtained in each comparison are represented by asterisks in graphs, as detailed in figure 
captions.

Gene Sequence (5′-3′)
Annealing 
temperature (°C)

Primer 
concentration (nM)

Amplicon 
size (bp)

RPLP0 F TGTGGGCTCCAAGCAGATGCA
R GCAGCAGTTTCTCCAGAGCTGGG 60.0 200 137

firefly luciferase F GTGTTGGGCGCGTTATTTAT
R TACGGTAGGCTGCGAAATGT 60.7 200 102

Table 3.  Primers and annealing temperatures used for qRT-PCR.
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Results
Validation of C4-2B-CMV1 luciferase and CVM promoter proximity.  The C4-2B-CMV1 was 
described in a previous publication17 and gifted to our laboratory. To validate that the CMV promoter was driving 
luciferase gene expression in the C4-2B-CMV1, we used PCR to demonstrate that the CMV and luciferase genes 
were in the genome (Supplementary Fig. 2a) and adjacent to each other (Supplementary Fig. 2b). In the PCR 
reaction, we used a forward primer specific to the CMV sequence and a reverse primer specific to the luciferase 
gene sequence. This strategy enabled the amplification of a fragment of approximately 600 bp that spanned from 
the CMV promoter into the luciferase gene sequence.

C4-2B-CMV1 characterization in mono-culture and co-culture.  BMSC were used in co-cultures. 
These cells demonstrated expected BMSC characteristics, including accepted CD marker profiles and tri-lineage 
differentiation capacity (see Supplementary Table 1 and Supplementary Fig. 1)23. We characterized the biolu-
minescence signal and AlamarBlue conversion of cultures established from different numbers of C4-2B-CMV1 
cells (Fig. 1a). Both bioluminescence signal and AlamarBlue signal were linearly proportional to the number of 
C4-2B-CMV1 cells in mono-culture. When C4-2B-CMV1 cells were co-cultured with varying numbers of BMSC 
for 5 or 24 hours, the bioluminescence signal increased substantially in cultures containing BMSC (Fig. 1b). The 
bioluminescence signal increased with greater BMSC co-culture number up to 10 × 103 BMSC, after which the 
bioluminescence signal stabilized. When titrations of C4-2B-CMV1 cell numbers were made with fixed numbers 
of BMSC in co-culture, a bioluminescence signal proportional to C4-2B-CMV1 cell number was evident (Fig. 1c). 
However, the linear relationship between bioluminescence signal and C4-2B-CMV1 cell number was significantly 
different for mono- and co-cultures at 5 and 24 hours. The slope of the curve was always greater for co-cultures, 
relative to time-matched (5 or 24 hours) mono-culture controls. At 5 hours, the bioluminescence signal from 
C4-2B-CMV1 cells was significantly greater when these cells were maintained either in direct co-culture (seeded 

Figure 1.  C4-2B-CMV1 behavior in mono-cultures and co-cultures with bone marrow-derived mesenchymal 
stromal cells (BMSC). (a) Comparison of luciferase and AlamarBlue assay readouts in C4-2B-CMV1 mono-
cultures. (b) Ten thousand C4-2B-CMV1 cells were directly cultured with increasing cell number of bone 
marrow-derived mesenchymal stromal cells (BMSC). Bioluminescence was measured at the indicated 2 time 
points. Data was normalized to the values of the lowest BMSC cell density at the corresponding time point 
(n = 4). (c) Increasing numbers of C4-2B-CMV1 cells were cultures alone (mono-culture) or directly cultured 
with 10 × 103 BMSC (co-culture) in 96-well plates. The graph represents the mean bioluminescence values of 
2 independent experiments each having 3 replicate cultures (n = 2). (d) The relative bioluminescence values 
elevated after 5 hours of direct and indirect co-cultures of C4-2B-CMV1 and BMSC compared to mono-
cultures. Three independent experiments each had four technical replicate cultures (n = 4) were performed 
(A–D). Statistical significance was performed using Student’s t-test (***P < 0.001).
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on top of BMSC) or indirect co-culture (with BMSC in a Transwell assay), relative to mono-culture controls 
(Fig. 1d). Direct and indirect co-culture resulted in ~7-fold or ~4-fold increase in bioluminescence signal after 
5 hours of culture, respectively. As C4-2B cells double approximately once every 48 hours24, the magnitude of 
bioluminescence signal increase after 5 hours could not be accounted for by cell proliferation.

C4-2B-CMV1 versus C4-2B-CMV2 culture characterization.  We compared the bioluminescence 
signal, DNA content, and luciferase gene expression in C4-2B-CMV1 versus C4-2B-CMV2 mono-cultures and 
co-cultures with BMSC in Transwell assay (Fig. 2). At 5 and 24 hours there was a significant increase in the bio-
luminescence signal from C4-2B-CMV1 cell co-cultured with BMSC (Fig. 2a). This was consistent with the data 
presented in Fig. 1. This increase correlated with a significant upregulation in luciferase gene expression (Fig. 2c). 
However, there was no corresponding increase in C4-2B-CMV1 cell culture DNA content in co-cultures, relative 
to mono-cultures. This suggested that the increase in luciferase gene expression and bioluminescence signal was 
not related to an increase in C4-2B-CMV1 cell number in co-cultures. Rather, luciferase gene expression and 
bioluminescence signal in C4-2B-CMV1 appeared to change independently of cell number in co-cultures.

A small, but consistent, increase in bioluminescence signal from C4-2B-CMV2 cells was detected after 
24 hours of co-culture, relative to mono-culture controls. There was no measurable difference in luciferase 
gene expression or DNA content in C4-2B-CMV2 mono-cultures and BMSC co-cultures. C4-2B-CMV1 and 
C4-2B-CMV2 cell culture DNA content did increase over the 24-hour culture period, but the presence of BMSC 
did not measurably alter the rate of DNA content increase. Luciferase expression and bioluminescence signal was 

Figure 2.  Luciferase gene expression is dependent on culture condition. C4-2B-CMV1 (left panel) and 
C4-2B-CMV2 cell lines (right panel) were either mono- or co-cultured with BMSC in a Transwell assay for 
the indicated time points. The relative bioluminescence (a), DNA content (b) and relative luciferase gene 
expression (c) were assessed. Three independent experiments each had four technical replicate cultures (n = 4) 
were performed. Statistical significance was determined using two-way ANOVA (*P < 0.05, **P < 0.001, 
***P < 0.00001).
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stable across mono- and co-culture conditions for C4-2B-CMV2 cells at 5 hours. By contrast, luciferase expres-
sion and bioluminescence signal were not stable across mono and co-culture conditions for C4-2B-CMV1 cells 
at 5 hours. We replicated these assays with different quantities of FBS or co-culture with parental C4-2B cells in 
place of BMSC (C4-2B cells not modified to express luciferase) to determine if a change in any soluble signaling 
environment could cause the artefact shown in Fig. 2. Neither changes in FBS concentration, nor co-culture with 
additional parental C4-2B cells, modified the bioluminescence signal (see Supplementary Fig. 4). These data 
indicated that factors specifically secreted by BMSC, not contained in FBS or secreted by C4-2B cells, caused the 
increase in bioluminescence signal from the C4-2B-CMV1 cells.

C4-2B-CMV1 versus C4-2B-CMV2 relative bioluminescence and luciferase content.  We rea-
soned that the observations in Fig. 2 could potentially result if only a small portion of the C4-2B-CMV1 cell pop-
ulation were stably transduced. To better understand this, and to determine the percentage of transduced cells, 
we quantified the proportion of C4-2B-CMV1 and C4-2B-CMV2 cells that contained the luciferase protein. This 
was performed using an antibody against luciferase, and characterization of the stained cells via flow cytometry. 
This was an important validation step, as the C4-2B-CMV1 cell line did not express a fluorescent reporter that 
would enable direct validation of cell transduction by tracking of the percent of fluorescent cells. Figure 3a–d 
show flow cytometry characterization of the C4-2B-CMV1 and C4-2B-CMV2 cell lines. Figure 3a shows direct 
flow cytometry analysis of C4-2B-CMV2 cells relative to wild-type C4-2B cells. In this analysis approximately 
90% of C4-2B-CMV2 had an RFP signal greater than wild-type, suggesting that at least 90% of the C4-2B-CMV2 
cells were stably transduced. Figure 3b shows that the RFP signal from the same cells decreased approximately 
5% following treatment with the FIX & PERM Cell Permeabilization Kit (ThermoFisher). Fixation of cells is 
known to compromise RPF fluorescence25, and some signal loss following fixation was expected. Figure 3c,d 
show anti-luciferase (Alexa Fluor 488) signal from C4-2B-CMV1 and C4-2B-CMV2 cell lines, respectively, and 
relative to wild-type C4-2B cells also stained with anti-luciferase. Luciferase protein signal was present in the 
majority of both C4-2B-CMV1 and C4-2B-CMV2 cells. Because fixation is likely to influence antibody binding, 
we did not use this as a quantitative assay, but rather used it as a binary assay to indicate if individual cells in 
the bulk populations were likely to contain luciferase protein. We subsequently, used titrations of C4-2B-CMV1 
and C4-2B-CMV2 cells to contrast the relative bioluminescence, and to infer the relative luciferase protein 
expressed by both cell populations. Figure 3e shows that the C4-2B-CMV2 cell population yielded a stronger 
bioluminescence signal than C4-2B-CMV1 cell population. Regression analysis demonstrated that the slope, 
or relative intensity per cell, for the C4-2B-CMV1 cell population was 0.0168 ± 0.0085 and 0.0272 ± 0.0004 for 
C4-2B-CMV2 cell population, equating to approximately 1.6-fold greater intensity from the C4-2B-CMV2 cell 
population. In summation, the majority of individual cells within the C4-2B-CMV1 cell population appeared to 
contain detectable levels of luciferase. By comparison, C4-2B-CMV1 cells were dimmer at the population level.

C4-2B-CMV1 versus C4-2B-CMV2 genome characterization.  To gain insight into why the 
C4-2B-CMV1 and C4-2B-CMV2 cells behaved so differently, we conducted whole-genome sequencing of both 
populations (at 30× coverage). This process was also completed using two other cancer cell lines (PC3-CMV2 
and MDA-MB-231-MSCV, described in Table 1) both shown to yield a stable bioluminescence signal in the pres-
ence of BMSC co-culture. All of the cancer cell lines (C4-2B, PC3, MDA-MB-231) sequenced in our study exhibit 
aneuploidy. Previous studies characterized C4-2B as having 83 chromosomes24, PC3 cells as having 62 chromo-
somes26, and MDA-MB-231 having a reported mean chromosome number between 65–6927. To account for the 
heterogeneity within the individual cell lines, and to standardize for the number of additional chromosomes in 
the different cell lines, we estimated the number of luciferase gene coding reads on a per genome basis. Assuming 
a standard human genome of 46 chromosomes, we plotted the relative number of chimeric read mapping between 
the human genome and firefly luciferase (Fig. 4). Chromosome numbers derived from previous karyotype anal-
ysis were to standardize insertion per genome estimates24,26,27. Once standardized, first we observed that the 
luciferase sequence was approximately 5-times more abundant in C4-2B-CMV2 cells relative to C4-2B-CMV1 
cells on a per genome basis (Fig. 4, top two bars). When we contrasted C4-2B-CMV1 and C4-2B-CMV2 against 
PC3-CMV2 and MDA-MSCV reporter cell lines, we found that the luciferase sequence abundance was similar or 
greater in frequency to that observed in the C4-2B-CMV2 cell line on a per genome basis.

To better understand factors, in addition to the luciferase sequence abundance, that might impact on reporter 
stability we used chimeric read mapping between the human genome and firefly luciferase gene sequence to map 
sites with evidence of CMV-luciferase insertion into the C4-2B genomes. This analysis mapped 4 CMV-luciferase 
insertion sites in the C4-2B-CMV1 cell population, while it mapped 84 insertion sites in the C4-2B-CMV2 cell 
population (Supplementary Fig. 5). Cumulatively, the unstable luciferase reporter in C4-2B-CMV1 cells had a 
reduced number of insertions per genome and a reduced number of insertion sites relative to comparable stable 
C4-2B-CMV2 cells.

Stability of luciferase reporters in other breast and prostate cancer cell lines.  To gain a general 
understanding of the stability of the luciferase reporter in BMSC co-cultures with prostate and breast cancer cell 
lines, we generated and characterized the behavior of six additional reporter cell populations. We compared their 
relative bioluminescence signal in mono-cultures and in co-cultures with BMSC. We found that all six cell lines 
tested had stable luciferase reporter expression at both 5 and 24 hours (Fig. 5). The cell lines and the different 
promoters used to drive luciferase expression are included in the cell population name and described in the fig-
ure caption. Prostate cancer reporter cell lines were generated from parental PC3 and C4-2B cells. Breast cancer 
reporter cell lines were generated from parental MDA-MB-231 and MCF-7 cells. Luciferase gene expression was 
driven by CMV2, MSCV, or EF1a promoters.
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Figure 3.  Detection of luciferase protein in discrete C4-2B-CMV1 and C4-2B-CMV2 cells, and comparison 
of population level relative bioluminescent signal. (a) RFP signal from C4-2B-CMV2 relative to wild-type 
C4-2B cells. (b) RFP signal from fixed and permeabilized C4-2B-CMV2 relative to wild-type C4-2B cells. (c) 
Anti-luciferase signal (Alexa Fluor 488) from fixed and permeabilized C4-2B-CMV1 cells, relative to wild-type 
C4-2B cell controls. (d) Anti-luciferase signal (Alexa Fluor 488) from fixed and permeabilized C4-2B-CMV2 
cells, relative to wild-type C4-2B cell controls. (e) Relative bioluminescence signal intensity from titrations 
of C4-2B-CMV1 and C4-2B-CMV2 cells 4 hours after seeding (n = 4, error bars = 1 standard deviation). 
Regression analysis yielded a slope for the C4-2B-CMV1 cell population of 0.0168 ± 0.0085 and a slope of 
0.0272 ± 0.0004 for the C4-2B-CMV2 cell population.
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PC3-CMV2 and MDA-MB-231-MSCV, for which relative luciferase gene insertion sites per genome are 
detailed in Fig. 4, were both found to be stable in mono-cultures and in co-cultures with BMSC. Their relative 
number of luciferase gene insertions per genome were found to be greater than the number of luciferase gene 
insertions in the unstable C4-2B-CMV1 cell population.

Discussion
Luciferase reporter systems are increasingly used to estimate luciferase-expressing cancer cell number in 
co-cultures4,8,28 and in animal models29,30. This approach assumes that luciferase expression is stable under differ-
ent culture conditions and within animal models. Most studies do not validate reporter stability in co-culture4,8,28. 
Our data (Fig. 5) suggest that in most cases, reporter cell lines produce a bioluminescence signal that is propor-
tional to the reporter cell number in mono-culture and co-culture with BMSC. However, in some cases (Figs 1 
and 2) the bioluminescence signal generated by luciferase reporter cells can be significantly different. We made 
this observation with a population of C4-2B cells transduced to express luciferase driven by the CMV promoter 
(we described this population as C4-2B-CMV1).

Here, we report on the stability of luciferase reporters in a number of prostate and breast cancer cell lines 
maintained in mono-culture or co-culture with BMSC. In mono-culture, both cell lines (C4-2B-CMV1 and con-
trol matched C4-2B-CMV2) generated strong bioluminescence signals that were proportional to the number 
of cells in culture (Fig. 3e). Additionally, the majority (>85%) C4-2B-CMV1 and C4-2B-CMV2 cells stained 
positively with anti-luciferase, suggesting that most cells contained detectable quantities of the firefly lucif-
erase protein (Fig. 3c,d). Unlike monocultures, the bioluminescence signal from the C4-2B-CMV1 cell popu-
lation increased 4 to 7-fold within 5 hours with indirect and direct co-culture with BMSC, respectively (Fig. 2). 
This increase in bioluminescence signal was not associated with an increase in cell number, indicating that the 
C4-2B-CMV1 reporter population cannot be used to estimate relative cell numbers in different culture condi-
tions. This unexpected behavior might not be detected unless standard curves were generated simultaneously 
in mono- and co-culture conditions. This may explain why previous investigations in the literature have not 
reported this anomaly.

When the genomes of C4-2B-CMV1 and C4-2B-CMV2 were sequenced and compared we found that there 
were 4 versus 84 CMV-luciferase genome insertion sites, respectively (Supplementary Fig. 5) and a lower relative 
number of luciferase insertions (corrected for chromosome number; Fig. 4). The low number of CMV-luciferase 
genome insertion sites in the C4-2B-CMV1 cell population appears to render the cells more sensitive to the 
modified BMSC co-culture environment. We subsequently sequenced two additional stable luciferase reporter 
cell lines (PC3-CMV2 and MDA-MB-231-MSCV) and found that they also had a greater number of luciferase 
gene insertions per genome than the unstable C4-2B-CMV1 cell population (Fig. 4). It is worthwhile to consider 
that the generation of reporter cell lines involves selection for stably transduced cells. This selection process can 
be initiated from a small starting cell population, low initial transduction efficiency, and possibly iterative enrich-
ment (i.e. sequential FACSorting of cultures to select for stably induced cell populations). Inefficiencies in each 
step could potentially select for a clone or clones with a small number of reporter gene sequences per genome. 
Additionally, cancer cell lines are known to be heterogenous31,32, and selection for stably transduced cells may 
yield a population that is not representative of the heterogenous parental population. Taken together, it is clear 
that a number of factors determines the success of a transduction process aimed at developing a cell line that 
stably expresses a reporter gene and is representative of the parental population.

Our data could be interpreted as indicating that a greater number of luciferase insertions per genome yields 
a reporter cell population more likely to be stable across a range of culture conditions. Indeed, it has been shown 
that the CMV promoter can be repressed or hyper-activated in various ways33–35. Thus, it is rational to assume 
that if the reporter construct is only located at a few sites within the genome it may be hypersensitive to small 
changes in the culture microenvironment. However, attempting to define a threshold of number of insertions that 
will yield a stable reporter cells may not be rational, as stability is likely a function of insert number and insert 
location(s) in the genome. Insert number and location(s) can be determined via sequencing of reporter cell lines, 
and mapping of insertion sites, but this remains costly (our cost was AUD $2,000 per genome, plus bioinformat-
ics) and laborious.

Figure 4.  Using whole-genome sequencing of the reporter cell populations (at 30× coverage). We estimated the 
relative number of firefly luciferase gene insertions per genome. Chromosome numbers derived from previous 
karyotype analysis were to standardize insertion per genome estimates.
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We were not able to determine which signal(s) derived from the BMSC co-cultures modified luciferase expres-
sion in the unstable C4-2B-CMV1 cell population. BMSC are known to secrete a plethora of trophic factors that 
can influence cell behavior36, their secretions are thought to likely influence prostate cancer metastasis37, and it 
was in studying these interactions that we identified the phenomenon described in this paper. In an attempt to 
mimic the C4-2B-CMV1 cell population response to BMSC secretions, we tried unsuccessfully supplementing 
medium with growth factors (data not shown) or with additional FBS, which is known to contain many factors 
(See Supplementary Fig. 4). The broad range of signal molecules secreted by MSC was described as a “drug store” 
by Caplan36, and it may be that multiple factors in combination are required to generate the response observed in 
co-culture with BMSC.

Because knowing the number or the site of insertions will not definitively predict if a reporter is stable across 
multiple culture conditions, we recommend generating control cultures in each condition, and directly evaluating 
reporter stability in the manner we described above. Indeed, we also demonstrate that luciferase-expressing cell 
populations driven by a suitable promoter can function as excellent reporter systems in mono and co-cultures. 
In Fig. 5 we show examples of three different breast and prostate cancer cell lines that express luciferase driven by 
different promoters that yield a stable reliable and signal in both mono-cultures and BMSC co-cultures. While the 
probability of having experiments confounded by an unstable reporter is low, we warrant caution in interpreting 
results when the experimental conditions may directly impact the biology of the reporter cell population.

In summary, we show that a number of promoter-luciferase and cell combinations can be used to generate 
a reliable reporter cell line for use in mono- and co-cultures. We also show that, in some instances, reporter cell 
lines can be unreliable. Reliability is likely proportional to the number of reporter insertion sites per genome. 
However, as it is expensive to sequence each reporter cell line and count the number of insertion sites, direct 
sequencing of reporter cell genomes is likely not a preferred way to predict reporter stability. Furthermore, 
greater-than-a-threshold-number of reporter insertion sites might not reliably equate to reporter stability. 
Instead, we recommend comparing reporter stability across a range of culture conditions before proceeding with 
the intended study. Luciferase reporter cells are powerful tools, but stability across culture conditions should 
never be assumed.
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