
Speed et al. Translational Psychiatry           (2019) 9:184 

https://doi.org/10.1038/s41398-019-0516-4 Translational Psychiatry

ART ICLE Open Ac ce s s

Investigating the association between
body fat and depression via Mendelian
randomization
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Abstract
Obesity and depression are major public health concerns that are both associated with substantial morbidity and
mortality. There is a considerable body of literature linking obesity to the development of depression. Recent studies
using Mendelian randomization indicate that this relationship is causal. Most studies of the obesity–depression
association have used body mass index as a measure of obesity. Body mass index is defined as weight (measured in
kilograms) divided by the square of height (meters) and therefore does not distinguish between the contributions of
fat and nonfat to body weight. To better understand the obesity–depression association, we conduct a Mendelian
randomization study of the relationship between fat mass, nonfat mass, height, and depression, using genome-wide
association study results from the UK Biobank (n= 332,000) and the Psychiatric Genomics Consortium (n= 480,000).
Our findings suggest that both fat mass and height (short stature) are causal risk factors for depression, while nonfat
mass is not. These results represent important new knowledge on the role of anthropometric measures in the etiology
of depression. They also suggest that reducing fat mass will decrease the risk of depression, which lends further
support to public health measures aimed at reducing the obesity epidemic.

Introduction
Obesity, defined as abnormal or excessive accumulation

of body fat, is a major public health concern1 as an
established risk factor for cardiovascular disease, type II
diabetes, certain cancers, and overall decreased life
expectancy2. Furthermore, observational studies have
shown an association between obesity and depression. For
example, Luppino et al.3 found that obese individuals
were 55% more likely to develop depression, while
depressed individuals were 58% more likely to become
obese.
To investigate the observed association between obesity

and depression, prior studies have performed Mendelian
randomization (MR), a method from genetic epidemiol-
ogy which uses data from genome-wide association

studies (GWAS) to determine whether a risk factor is
causal for an outcome4. MR studies have indicated that
there is a causal relationship going from obesity to
depression, but not vice versa5–8. These MR studies
measured obesity using body mass index (BMI), which is
calculated as weight (measured in kilograms) divided by
the square of height (meters).
Although BMI is the most common measure of obesity

(for example, an obese individual is generally defined as
someone with BMI ≥ 30), its use has been repeatedly cri-
ticized9–11. Most notably, BMI does not distinguish
between fat mass and nonfat mass. This distinction is very
important from a physiological perspective, due to the fact
that adipose tissue has very different properties compared
to muscle and bone, the other major tissues contributing
to body weight. In particular, adipose tissue is an endo-
crine organ that produces a range of adipokines and
inflammatory proteins, which have been associated with
negative systemic effects that may also affect the brain12.
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Furthermore, BMI does not capture body fat location, and
while upper-body and visceral fat, which are more com-
mon in men, contribute to the development of an
unhealthy cardiometabolic profile13, lower body fat, which
is more common in women, seems to be protective of
this14. In addition, how much of an individual’s BMI is
due to fat, and where this fat is located, might also be of
importance, as these factors can influence body satisfac-
tion and social stigma, with psychological consequences15.
The aim of this study was to increase the understanding

of the obesity–depression association by assessing the
relationship between specific and biologically informative
components of BMI (fat mass and nonfat mass, stratified
on limbs and trunk) and depression via a MR study using
results from large GWAS.

Materials and methods
In total, we consider 21 anthropometric measures: the

first six are BMI, weight, height, whole-body fat percen-
tage, whole-body fat mass, and whole-body nonfat mass;
the remaining 15 are fat percentage, fat mass and nonfat
mass for each of trunk, right arm, left arm, right leg, and
left leg. Supplementary Fig. 1 reports the genetic corre-
lations between the 21 measures. We use MR to test
whether each measure is a causal risk factor for depres-
sion, then to test whether depression is a causal risk factor
for each measure.
In order to use MR to test whether one phenotype is a

causal risk factor for another, we require GWAS summary
statistics for both phenotypes. For the anthropometric
traits, we use genome-wide summary statistics provided
by the Neale Lab (http://www.nealelab.is/uk-biobank/),
who performed association analyses for over 2000 phe-
notypes from the UK Biobank (http://www.ukbiobank.ac.uk/).
The UK Biobank is a population-based cohort of
approximately 500,000 individuals; 54% are female, the
average age is 57 (range 37–73), while 94% report as being
White British. For the anthropometric GWAS, the aver-
age sample size is 331,910 (see Table 1 for exact num-
bers); the analysis was performed using linear regression
including ten principal components and sex as covariates.
For depression, we use summary statistics from the

most recent GWAS of major depressive disorder (MDD)
by the Psychiatric Genomics Consortium (PGC)6, avail-
able at (https://www.med.unc.edu/pgc/results-and-
downloads). This study recruited individuals from seven
cohorts; they used a relatively liberal definition of MDD,
based on self-reporting, clinical assessment, and exam-
ination of medical records, with an estimated population
prevalence of 15%. The association analysis was per-
formed using logistic regression, including significantly-
associated principal components as covariates. The PGC
provides two sets of summary statistics: from their main
GWAS of 480,359 samples (135,458 cases, 344,901

controls) they report results for 10,000 of the most
strongly-associated SNPs; whereas from a “sub-GWAS” of
173,005 samples (59,851 cases and 113,154 controls), they
report results for all SNPs. Therefore, when testing whe-
ther depression is a causal risk factor for one of the
anthropometric measures (which requires only results for
significantly-associated SNPs), we use summary statistics
from the main GWAS, whereas when testing whether an
anthropometric measure is a causal risk factor for
depression (which requires genome-wide results), we use
summary statistics from the sub-GWAS.
In total, there are 6,568,396 SNPs common to the UK

Biobank and PGC GWAS (we excluded SNPs with alleles
A & T or C & G, or with info score < 0.9). We test whether
an anthropometric measure is causally associated with
depression using inverse-weighted regression, for which
we use the R package Mendelian randomization16. To
decide which SNPs to use in this regression, we first
identify which have P < 5e−8 for the measure, then thin
these until no pair remains within 3 cM with correlation
squared >0.05. We use the same strategy to test whether
depression is a causal risk factor for an anthropometric
measure, except now we identify a set of independent,
genome-wide significant SNPs for depression.
A key assumption of MR is no pleiotropy17. For exam-

ple, the SNPs we use when testing the relationship
between BMI and depression should be causal for BMI,
but not depression. This is difficult to test directly, so
instead we perform three sensitivity analyses. Firstly, we
repeat the inverse-weighted regression excluding SNPs
showing evidence for pleiotropy (P < 0.05/N, where N is
the number of independent, genome-wide significant
SNPs). Secondly, we instead assess causality using
weighted-median regression, which gives unbiased esti-
mates provided at least 50% of the information comes
from non-pleiotropic SNPs. Thirdly, we estimate the
intercept from Egger Regression; an intercept significantly
different to zero (P < 0.05) is an indication of directional
pleiotropy.
Our primary analysis focuses on BMI, weight, height,

whole-body fat mass, whole-body nonfat mass, and
whole-body fat percentage; our secondary analysis con-
siders the 15 location-specific measures of fat mass,
nonfat mass and fat percentage. As we are performing a
total of 42 tests, we set the (conservative) Bonferroni
corrected significance threshold at P < 0.05/42 (this is
satisfied when the regression slope is ≥3.0 SDs from zero).

Results
Table 1 reports the number of independent, genome-

wide significant SNPs for each of the 21 anthropometric
measures, and how much of the phenotypic variation each
set of SNPs explains. The results of our primary analysis
are displayed in Figs. 1 and 2 and Table 2. Our main
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conclusions are based on the results from inverse-
variance regression using all SNPs (the red lines in each
plot), while the remaining three regressions (the orange,
green and blue lines) are sensitivity analyses. We note that
each time the slope from inverse-variance regression
using all SNPs is statistically significant, this finding is
supported by the three sensitivity analyses (i.e., the slope
remains significant when SNPs showing evidence for
pleiotropy are excluded or when we use weighted-median
regression, and Egger regression does not find significant
directional pleiotropy).
Figure 1a confirms that BMI is a causal risk factor for

depression. The estimated slope from inverse-weighted
regression is 0.17 (SD 0.03), which is significantly greater
than zero (P= 1e−7) and indicates that a 1-SD increase in
BMI corresponds to a 0.17 increase in the log-odds ratio
(OR) for depression. Figure 1b indicates there is a causal
relationship between weight and depression; however, the
estimated slope (0.13, SD 0.03) is less than that for BMI,

which supports the current preference to measure obesity
using BMI rather than weight. Figure 1c suggests that
height (short stature) is a causal risk factor for depression;
the estimated slope is −0.06 (SD 0.02), indicating that a 1-
SD increase in height corresponds to a 0.06 decrease in
the log-odds ratio (OR) for depression.
Figure 1d and e shows that whole-body fat percentage

and whole-body fat mass are both causal risk factors for
depression; the estimated slopes are very similar (0.20, SD
0.04 and 0.19, SD 0.03, respectively) indicating that there
is no advantage to normalizing (i.e., measuring fat per-
centage instead of fat mass). The estimated slope in Fig. 1f
is 0.06 (SD 0.03), indicating that MR finds no evidence
that whole-body nonfat is a causal risk factor for
depression.
Figure 2 shows that, consistent with previous studies,

there is no significant evidence that depression is a causal
risk factor for any of the six anthropometric measures
investigated here.

Table 1 Sample characteristics for the traits of interest

Trait (UK Biobank Code) Mean (standard

deviation)

Sample size Independent genome-wide

significant SNPs

Approximate variance

explained (%)

Depression (N/A) 480,359 35 0.3

BMI (21,001) 27.4 kg/m2 (4.8) 336,107 420 6.4

Weight (21,002) 77.9 kg (15.9) 336,227 527 8.3

Height (50) 168.5 cm (9.3) 336,474 1304 29.2

Body fat percentage (23,099) 31.4% (8.5) 331,117 336 4.9

Body fat mass (23,100) 24.8 kg (9.6) 330,762 387 5.8

Body nonfat mass (23,101) 53.2 kg (11.5) 331,291 667 11.9

Trunk fat percentage (23,127) 31.2% (8.0) 331,113 312 4.6

Arm fat percentage (right) (23,119) 29.5% (10.2) 331,249 313 4.7

Arm fat percentage (left) (23,123) 30.4% (10.3) 331,198 323 4.8

Leg fat percentage (right) (23,111) 32.0% (10.7) 331,296 322 4.5

Leg fat percentage (left) (23,115) 32.0% (10.6) 331,278 315 4.4

Trunk fat mass (23,128) 13.7 kg (5.2) 331,093 384 5.8

Arm fat mass (right) (23,120) 1.2 kg (0.6) 331,226 373 5.7

Arm fat mass (left) (23,124) 1.3 kg (0.7) 331,164 378 5.7

Leg fat mass (right) (23,112) 4.3 kg (1.9) 331,293 363 5.5

Leg fat mass (left) (23,116) 4.2 kg (1.9) 331,275 372 5.6

Trunk nonfat mass (23,129) 29.6 kg (6.0) 331,030 659 12.1

Arm nonfat mass (right) (23,121) 2.9 kg (0.8) 331,221 577 9.8

Arm nonfat mass (left) (23,125) 2.9 kg (0.8) 331,159 565 9.6

Leg nonfat mass (right) (23,113) 9.0 kg (2.0) 331,285 575 9.9

Leg nonfat mass (left) (23,117) 8.9 kg (2.0) 331,258 558 9.6

Mean, standard deviation, sample size, number of independent genome-wide significant SNPs, and approximate proportion of variance these explain for depression
and the 21 anthropometric measures. #For depression the estimated variance is on the liability scale, assuming a prevalence of 15%
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Table 3 reports results from our secondary analysis. For
each of the 15 location-specific anthropometric measures,
the results are consistent with those from the whole-body
version; i.e., regardless of whether we consider trunk, right
arm, left arm, right leg, or left arm, we again find that fat
percentage and fat mass are causally associated with
depression, but that nonfat mass is not. For fat percentage

and fat mass, we are interested in comparing slope esti-
mates, as significant differences would indicate that risk of
developing depression depends on fat location. The lar-
gest difference is observed for fat percentage, where the
estimated slope for left leg (0.34, SD 0.06) is approxi-
mately twice that for trunk (0.16, SD 0.04); however,
although this difference is nominally significance

Fig. 1 Test of whether anthropometric measures are causal risk factors for depression. The panels plot per-allele effect sizes for a BMI, b
weight, c height, d body fat percentage, e body fat mass and f body fat-free mass (x-axes) against per-allele effect size for depression (y-axis) For the
anthropometric measures, effect sizes are measured in SDs, for depression the effect size is log-odds ratio. For each plot we estimate the slope using
inverse-variance regression (red solid line), inverse-variance regression after excluding SNPs showing evidence for pleiotropy (orange solid line),
weighted-median regression (green solid line) and Egger regression (blue solid line). The corresponding colored dashed lines represent the 95%
confidence intervals for the slopes, while the vertical blue segment marks a 95% confidence interval for the intercept from Egger regression. The
horizontal black solid line indicates no effect

Speed et al. Translational Psychiatry           (2019) 9:184 Page 4 of 9



(P= 0.01), it is not significant after correction for multiple
comparisons.

Discussion
We have used MR to investigate the causal relationship

between different anthropometric measures and depression.
We first confirmed that BMI is a causal risk factor for
depression, but found no significant evidence that depression

causes increased BMI. These results are in line with recent
MR studies reporting evidence that higher BMI causally
increases the risk of depression, but not the reverse5–8.
Our main finding is that body fat mass is a causal risk

factor for depression, but that body nonfat mass is not,
therefore indicating that the BMI-depression causality is
driven by fat. We note from Table 1 that the number of
genome-wide associated SNPs for whole-body nonfat

Fig. 2 Test of whether depression is causally associated with the anthropometric measures. The panels plot per-allele effect size for
depression (x-axis) against per-allele effect sizes for a BMI, b weight, c height, d body fat percentage, e body fat mass and f body fat-free mass (y-
axes). For the anthropometric measures, effect sizes are measured in SDs, for depression the effect size is log-odds ratio. For each plot we estimate
the slope using inverse-variance regression (red solid line), inverse-variance regression after excluding SNPs showing evidence for pleiotropy (orange
solid line), weighted-median regression (green solid line) and Egger regression (blue solid line). The corresponding colored dashed lines represent
the 95% confidence intervals for the slopes, while the vertical blue segment marks a 95% confidence interval for the intercept from Egger regression.
The horizontal black solid line indicates no effect

Speed et al. Translational Psychiatry           (2019) 9:184 Page 5 of 9



(n= 667) and the proportion of variance they explain
(11.9%) are higher than the corresponding values for fat
percentage (n= 336 and 4.9%) and for fat mass (n= 387
and 5.8%), indicating that MR finding no evidence for a
causal relationship was not simply a power issue.
We also investigated whether the strength of the causal

relationship between body fat and depression depended
on the location, but these results were inconclusive; while
the point estimates suggested that leg fat more strongly
affects risk of depression than either trunk fat or arm fat,
the difference was not significant after correcting for
multiple comparisons.
The causal relationship going from fat mass to depres-

sion is likely to have both psychological and biological
components. Psychologically, perceived weight dis-
crimination, stigmatization, and body image dissatisfac-
tion may mediate the causality;18–21 biologically, obesity is
associated with several endocrine and metabolic changes
that have been linked to depression, including altered
glucocorticoid, adipokine, insulin, leptin, and inflamma-
tory signaling22. Although our study was not aimed at
providing insight into how fat increases the risk of
depression, the finding that trunk fat mass was not more
strongly associated with depression risk than fat mass on
the limbs (rather we found a tendency towards the
opposite), seems to be in favor of a psychological
mechanism—since trunk fat is considered the more
metabolically adverse13.
Observational studies have attempted to separate the

psychological and physiological components in the rela-
tionship between obesity and depression. In support of a
physiological component, Jokela et al.23 found that the
risk of depressive symptoms associated with obesity
increased almost linearly with the number of metabolic
risk factors; in particular, obese individuals who were
metabolically unhealthy had a higher depression risk than
obese individuals who were metabolically healthy (OR=
1.23; 95% CI: 1.05, 1.45). However, the same study also
found that metabolically-healthy individuals who were
obese had a higher depression risk than metabolically-
healthy individuals who were not obese (OR= 1.29; 95%
CI: 1.12, 1.50), indicating that metabolic factors only
partially explain the increase in depression risk associated
with obesity. Similar results were found by the long-
itudinal study of Hamer et al.24.
A recent study by Tyrrell et al.8 also sought to separate

the psychological component of obesity from its adverse
metabolic consequences—and employed MR to do so.
Specifically, Tyrrell et al. used two genetic instruments,
that both represented BMI, but one with and one without
its adverse metabolic consequences. They found that both
instruments were associated with increased risk of
depression - suggesting that the causal association
between BMI and depression is primarily driven byTa
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psychological consequences of adiposity and not by its
adverse metabolic effects8. This conclusion resonates well
with the results of our study.
In addition to the results on the impact of body fat on

the risk of depression, we also found evidence suggesting
that height (short stature) is a causal risk factor for
depression. Several large observational studies have found
short stature to be associated with poorer mental health25,
lower health-related quality of life26, depressive symptoms
in adolescents27 and adults28,29, and suicide in men30.
Other studies have found no association between height
and depression or suicide31 or negligible effects of height
on mental health32. The association between short stature
and poor mental health may be explained by confounding
factors, such as socioeconomic status, prenatal develop-
ment, or childhood factors, or by a causal effect of height
on depression risk33,34. Our results indicate that at least
part of the association between short stature and
depression is indeed due to a direct causal effect.
Finally, we note some limitations of our work. Firstly, the

MR estimates rely on three key assumptions: (i) the SNPs
used as genetic predictors for a trait are causal for that
trait; (ii) these SNPs are not associated with confounders
of the trait-outcome association; (iii) these SNPs only
affect the outcome through the causal relationship (i.e.,
there is no pleiotropy). We can be confident of (i) because
our genetic predictors only used SNPs robustly-associated
(P < 5e−8) with the trait, while (ii) should be true due to
the fact an individual’s genotypes are randomly allocated
during gamete formation. It is hard to explicitly test (iii),
however, our sensitivity analyses indicate that our con-
clusions are not the consequence of pleiotropy.
Secondly, the UK Biobank measured fat and nonfat

mass via bioelectrical impedance analysis (using a Tanita
BC418MA body composition analyzer), which is con-
sidered less accurate than techniques such as dual-energy
x-ray absorptiometry. However, we would expect mea-
surement error to cause the estimates for fat and nonfat to
become more similar, so the fact that we observed a sig-
nificant difference indicates that the UK Biobank mea-
surements were sufficiently accurate for our purpose.
Thirdly, we note that some samples were common to

both the anthropometric and MDD GWAS (the PGC
GWAS used approximately 30,000 individuals from the UK
Biobank). Although this overlap is likely to have only a small
impact35, ideally, our analysis would be repeated using
summary statistics from completely independent GWAS.
Fourthly, while we found only suggestive evidence that

location of fat affects risk of depression, we recognize that
the high correlations between measurements taken in the
trunk, arms, and legs (Supplementary Fig. 1) would have
reduced our power to detect significant differences.
Fifthly, there may be sex-specific psychological and

physiological factors affecting the obesity–depression

relationship. While we were not able to test sex differ-
ences, because the PGC did not release results from male-
only and female-only GWAS of depression, this is worthy
of further study.
In conclusion, the present study provides evidence that

the causal relationship between BMI and depression is dri-
ven by fat mass and height, and not by nonfat mass. These
results represent important new knowledge on the role of
anthropometric measures in the etiology of depression.
They also suggest that reducing fat mass will decrease the
risk of depression, which lends further support to public
health measures aimed at reducing the obesity epidemic.

Acknowledgements
D.S. is supported by the European Unions Horizon 2020 Research and
Innovation Program under the Marie Skłodowska-Curie grant agreement
number 754513, by Aarhus University Research Foundation (AUFF) and the
Independent Research Fund Denmark (7025-00094B). A.D.B. is supported by
grants from The Lundbeck Foundation (R102-A9118 and R155-2014-1724).
Data handling and analysis on the GenomeDK HPC facility was supported by
NIMH (1U01MH109514-01 to Michael O’Donovan and A.D.B.). HPC capacity at
GenomeDK was provided by the iSEQ center and Center for Genomics and
Personalized Medicine, Aarhus, Denmark (grants to A.D.B.). S.D.Ø. is supported
by the Independent Research Fund Denmark (7016-00048).

Author details
1Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark.
2Department of Affective Disorders, Aarhus University, Aarhus, Denmark.
3Department of Clinical Medicine, Aarhus University, Aarhus, Denmark. 4The
Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH,
Aarhus, Denmark. 5Center for Genomics and Personalized Medicine, Aarhus,
Denmark. 6Department of Biomedicine and Center for Integrative Sequencing,
iSEQ, Aarhus University, Aarhus, Denmark. 7Aarhus Institute of Advanced
Studies, Aarhus University, Aarhus, Denmark

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41398-019-0516-4).

Received: 13 February 2019 Revised: 14 May 2019 Accepted: 20 June 2019

References
1. Swinburn, B. A. et al. The global obesity pandemic: shaped by global drivers

and local environments. Lancet 378, 804–814 (2011).
2. Haslam, D. W. & James, W. P. Obesity. Lancet 366, 1197–1209 (2005).
3. Luppino, F. S. et al. Overweight, obesity, and depression: a systematic review

and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 67, 220–229
(2010).

4. Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N. & Davey Smith, G.
Mendelian randomization: using genes as instruments for making causal
inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).

5. Hartwig, F. P. et al. Body mass index and psychiatric disorders: a Mendelian
randomization study. Sci. Rep. 6, 32730 (2016).

6. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants
and refine the genetic architecture of major depression. Nat. Genet. 50,
668–681 (2018).

Speed et al. Translational Psychiatry           (2019) 9:184 Page 8 of 9

https://doi.org/10.1038/s41398-019-0516-4
https://doi.org/10.1038/s41398-019-0516-4


7. van den Broek, N. et al. Causal associations between body mass index and
mental health: a Mendelian randomisation study. J. Epidemiol. Community
Health 72, 708–710 (2018).

8. Tyrrell, J. et al. Using genetics to understand the causal influence of higher BMI
on depression. Int. J. Epidemiol 48, 834–848 (2019).

9. Kopelman, P. G. Obesity as a medical problem. Nature 404, 635–643 (2000).
10. Nuttall, F. Q. Body mass index: obesity, BMI, and health: a critical review. Nutr.

Today 50, 117–128 (2015).
11. Wellens, R. I. et al. Relationships between the Body Mass Index and body

composition. Obes. Res. 4, 35–44 (1996).
12. Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and

metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).
13. Tchernof, A. & Despres, J. P. Pathophysiology of human visceral obesity: an

update. Physiol. Rev. 93, 359–404 (2013).
14. Karpe, F. & Pinnick, K. E. Biology of upper-body and lower-body adipose tissue-

link to whole-body phenotypes. Nat. Rev. Endocrinol. 11, 90–100 (2015).
15. Berner, L. A., Arigo, D., Mayer, L. E., Sarwer, D. B. & Lowe, M. R. Examination of

central body fat deposition as a risk factor for loss-of-control eating. Am. J. Clin.
Nutr. 102, 736–744 (2015).

16. Yavorska, O. O. & Burgess, S. Mendelian Randomization: an R package for
performing Mendelian randomization analyses using summarized data. Int. J.
Epidemiol. 46, 1734–1739 (2017).

17. Zheng, J. et al. Recent developments in Mendelian Randomization studies.
Curr. Epidemiol. Rep. 4, 330–345 (2017).

18. Levy, B. R. & Pilver, C. E. Residual stigma: psychological distress among the
formerly overweight. Soc. Sci. Med. (1982) 75, 297–299 (2012).

19. Hunger, J. M. & Major, B. Weight stigma mediates the association between
BMI and self-reported health. Health Psychol. 34, 172–175 (2015).

20. Robinson, E., Sutin, A. & Daly, M. Perceived weight discrimination mediates the
prospective relation between obesity and depressive symptoms in U.S. and U.
K. adults. Health Psychology 36, 112–121 (2017).

21. Stevens, S. D., Herbozo, S., Morrell, H. E., Schaefer, L. M. & Thompson, J. K. Adult
and childhood weight influence body image and depression through weight
stigmatization. J. Health Psychol. 22, 1084–1093 (2017).

22. Hryhorczuk, C., Sharma, S. & Fulton, S. E. Metabolic disturbances connecting
obesity and depression. Front. Neurosci. 7, 177 (2013).

23. Jokela, M., Hamer, M., Singh-Manoux, A., Batty, G. D. & Kivimaki, M. Association
of metabolically healthy obesity with depressive symptoms: pooled analysis of
eight studies. Mol. Psychiatry 19, 910–914 (2014).

24. Hamer, M., Batty, G. D. & Kivimaki, M. Risk of future depression in people who
are obese but metabolically healthy: the English longitudinal study of ageing.
Mol. Psychiatry 17, 940–945 (2012).

25. Cheung, Y. B. et al. Height and mental health and health utility among ethnic
Chinese in a polyclinic sample in Singapore. Ann. Acad. Med. 42, 73–79
(2013).

26. Christensen, T. L., Djurhuus, C. B., Clayton, P. & Christiansen, J. S. An evaluation
of the relationship between adult height and health-related quality of life in
the general UK population. Clin. Endocrinol. 67, 407–412 (2007).

27. Rees, D. I., Sabia, J. J. & Argys, L. M. A head above the rest: height and
adolescent psychological well-being. Econ. Hum. Biol. 7, 217–228 (2009).

28. Montgomery, S. M., Netuveli, G., Hildon, Z. & Blane, D. Does financial dis-
advantage at older ages eliminate the potential for better health? J. Epidemiol.
Community Health 61, 891–895 (2007).

29. Osika, W. & Montgomery, S. M. Economic disadvantage modifies the asso-
ciation of height with low mood in the US, 2004: the disappointment para-
dox. Econ. Hum. Biol. 6, 95–107 (2008).

30. Magnusson, P. K., Gunnell, D., Tynelius, P., Davey Smith, G. & Rasmussen, F.
Strong inverse association between height and suicide in a large cohort of
Swedish men: evidence of early life origins of suicidal behavior? Am. J. Psy-
chiatry 162, 1373–1375 (2005).

31. Bjerkeset, O., Romundstad, P., Evans, J. & Gunnell, D. Association of adult body
mass index and height with anxiety, depression, and suicide in the general
population: the HUNT study. Am. J. Epidemiol. 167, 193–202 (2008).

32. Coste, J., Pouchot, J. & Carel, J. C. Height and health-related quality of life: a
nationwide population study. J. Clin. Endocrinol. Metab. 97, 3231–3239
(2012).

33. Batty, G. D. et al. Height, wealth, and health: an overview with new data from
three longitudinal studies. Econ. Hum. Biol. 7, 137–152 (2009).

34. Perkins, J. M., Subramanian, S. V., Davey Smith, G. & Ozaltin, E. Adult height,
nutrition, and population health. Nutr. Rev. 74, 149–165 (2016).

35. Burgess, S., Davies, N. M. & Thompson, S. G. Bias due to participant overlap in
two-sample Mendelian randomization. Genet. Epidemiol. 40, 597–608 (2016).

Speed et al. Translational Psychiatry           (2019) 9:184 Page 9 of 9


	Investigating the association between body fat and depression via Mendelian randomization
	Introduction
	Materials and methods
	Results
	Discussion
	ACKNOWLEDGMENTS




