Table 1.
Provider # | Method | Accuracy, % |
1 | CfSa + SVMb [35] | 87.84 |
2 | Filtered + SVM [35] | 87.84 |
3 | CfS + logistic regression [35] | 95.95 |
4 | Filtered + logistic regression [35] | 96.62 |
5 | BPSOc-2Stage [36] | 92.98 |
6 | PSOd (4-2) [36] | 93.98 |
7 | KPe-SVM [37] | 97.55 |
8 | RFEf-SVM [37] | 95.25 |
9 | FSVg [37] | 95.23 |
10 | Fisher + SVM [38] | 94.70 |
11 | Self-training [38] | 85.12 |
12 | Random co-training [38] | 83.54 |
13 | Rough co-training [38] | 88.63 |
14 | LDAh [39] | 97.19 |
15 | C4.5 [39] | 94.06 |
16 | DIMLPi [39] | 96.92 |
17 | SIMj [39] | 98.26 |
18 | MLPk [39] | 97.43 |
19 | PSO-KDEl (1) [40] | 98.45 |
20 | PSO-KDE (2) [40] | 98.45 |
21 | GAm-KDE (2) [40] | 98.45 |
22 | Fisher + PFree Batn + LSo-SVM [41] | 100 |
aCfS: correlation-based feature selection.
bSVM: support vector machine.
cBPSO: binary particle swarm optimization.
dPSO: particle swarm optimization.
eKP: kernel-penalized SVM (KP-SVM).
fRFE: recursive feature elimination.
gFSV: feature selection concave.
hLDA: linear discriminant analysis.
iDIMLP: discretized interpretable multilayer perceptron.
jSIM: similarity classifier.
kMLP: multilayer perceptron.
lKDE: kernel density estimation.
mGA: genetic algorithm.
nPFree Bat: parameter-free bat optimization algorithm.
oLS: least square support vector machine.