Skip to main content
. 2019 Jul 23;21(7):e13767. doi: 10.2196/13767

Table 1.

Breast cancer diagnosis methods (providers).

Provider # Method Accuracy, %
1 CfSa + SVMb [35] 87.84
2 Filtered + SVM [35] 87.84
3 CfS + logistic regression [35] 95.95
4 Filtered + logistic regression [35] 96.62
5 BPSOc-2Stage [36] 92.98
6 PSOd (4-2) [36] 93.98
7 KPe-SVM [37] 97.55
8 RFEf-SVM [37] 95.25
9 FSVg [37] 95.23
10 Fisher + SVM [38] 94.70
11 Self-training [38] 85.12
12 Random co-training [38] 83.54
13 Rough co-training [38] 88.63
14 LDAh [39] 97.19
15 C4.5 [39] 94.06
16 DIMLPi [39] 96.92
17 SIMj [39] 98.26
18 MLPk [39] 97.43
19 PSO-KDEl (1) [40] 98.45
20 PSO-KDE (2) [40] 98.45
21 GAm-KDE (2) [40] 98.45
22 Fisher + PFree Batn + LSo-SVM [41] 100

aCfS: correlation-based feature selection.

bSVM: support vector machine.

cBPSO: binary particle swarm optimization.

dPSO: particle swarm optimization.

eKP: kernel-penalized SVM (KP-SVM). 

fRFE: recursive feature elimination.

gFSV: feature selection concave.

hLDA: linear discriminant analysis.

iDIMLP: discretized interpretable multilayer perceptron. 

jSIM: similarity classifier.

kMLP: multilayer perceptron. 

lKDE: kernel density estimation. 

mGA: genetic algorithm.

nPFree Bat: parameter-free bat optimization algorithm.

oLS: least square support vector machine.