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Extracellular vesicles (EV's) are a heterogeneous group of membrane-bounded vesicles that are believed to be produced and secreted
by presumably all cell types under physiological and pathological conditions, including tumors. EVs are very important vehicles in
intercellular communications for both shorter and longer distances and are able to deliver a wide range of cargos including proteins,
lipids, and various species of nucleic acids effectively. EVs have been emerging as a novel biotherapeutic platform to efficiently
deliver therapeutic cargos to treat a broad range of diseases including cancer. This vast potential of drug delivery lies in their
abilities to carry a variety of cargos and their ease in crossing the biological membranes. Similarly, their presence in a variety of
body fluids makes them a potential biomarker for early diagnosis, prognostication, and surveillance of cancer. Here, we discuss
the relatively least and understudied aspects of EV biology and tried to highlight the obstacles and limitations in their clinical
applications and also described most of the new warfronts to beat cancer at multiple stages. However, much more challenges
still remain to evaluate EV-based therapeutics, and we are very much hopeful that the current work prompts further discovery.

1. Introduction

A bidirectional communication exists between cells and their
immediate surroundings that ensures the survival of cells and
is an essential factor for both normal and pathophysiological
circumstances. Traditionally, such crosstalk was believed to
occur via the release of soluble cellular factors (i.e., chemo-
kines, cytokines, and growth factors) [1-3] or via direct
cell-cell contact; however, involvement of the extracellular
vesicle (EV) in cellular communication has changed the
notion over the past decade [4, 5]. Various eukaryotic cell
types secrete these EVs in vitro, and their presence has been

reported in a variety of body fluids including blood, bile,
milk, and urine as well as in fecal matter [6]. A number of
factors can induce the release of EVs, ie., change in pH,
stress, damage, irradiation, lack of oxygen, exposure to com-
plement proteins, and also as a result of cell activation (i.e.,
platelet activation) [7, 8]. Secretion of EVs by plants and
numerous pathogens including bacteria, Archaea, mycobac-
teria, and fungi is suggestive of an efficient evolutionarily
conserved intercellular communication mechanism [9, 10].
Intercellular communication is an important phenome-
non in multicellular organisms and usually mediated via
direct contacts between the cells or via transfer of secretory
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molecules. Some of these secretory molecules are packaged
into small lipid bilayer vesicles, known as extracellular vesi-
cles (EVs), identified as a new means of intercellular commu-
nication. These EV's are major players in tumor progression
and have shown a greater potential in therapeutic applica-
tions [11]. These diverse collections of vesicles are secreted
by almost every type of cells [12]. Wolf identified these EVs
for the first time in 1967 [13]. They successfully isolated min-
ute particulate material from plasma free of platelets via
ultracentrifugation. They originally named it as “platelet
dust” [13] which was later on replaced by the currently
known term “extracellular vesicles.” Afterward in 1981, cul-
tured normal and neoplastic cells were found to secrete
membranous vesicles which were suspected to take part in
physiological processes [14]. In the following few years, a
similar kind of small vesicles, named “exosomes,” was also
found to be produced and secreted by reticulocytes in vitro
[15]. Though only a little work was done in the early years
following their discovery, recent rediscovery of EVs by cancer
scientists has thrown the research into gear, and now, EV
study is an exciting and rapidly growing field. The present
term “EVs” was assigned by the International Society of
Extracellular Vesicles (ISEV).

EVs play significant roles in multiple physiological pro-
cesses including stem cell differentiation [16], autophagy
[17], blood clotting [18], angiogenesis [19], immunity (innate
and acquired) and immunomodulation [20, 21], pregnancy
[22], embryo implantation [23], reproduction, placental
physiology, semen regulatory function [24], and tissue regen-
eration [19]. Furthermore, the role of EVs in neuronal regen-
eration and in the development and functioning of the
nervous system has also been anticipated as novel arbitrators
of communication between the cells [25, 26]. Besides their
contribution in normal physiology, EVs are also the key
components in various pathologies like cancer [27-29] and
development of multiple neurodegenerative diseases [30].
EVs mediate a variety of processes involved in cancer pro-
gression including inflammation, lymphogenesis, cell prolif-
eration, epithelial-to-mesenchymal transition, angiogenesis,
migration, suppression of the immune system, and metasta-
sis—all of which are the so called “hallmarks of cancer”
[31]. These extraordinary organelles have been associated
with a number of aspects of cancer development and progres-
sion [32, 33], hence have a great potential to be used as
biomarkers and ideal targets for novel future therapies for
cancer treatment.

2. EV Diversity and Classification

EVs are currently classified as exosomes, microvesicles,
microparticles, ectosomes, oncosomes, and apoptotic bodies
[34] on the basis of their size, origin, and characteristics
[35] (Figures 1 and 2). However, this classification is consid-
ered insufficient to cover the heterogeneity that lies in cargo
and their uncountable roles [36]. Exosomes are the best char-
acterized and are less variable in size (ranging 40-150 nm)
than other subtypes. Exosomes are produced as a result of
membrane invaginations of endosomes resulting in the for-
mation of multivesicular bodies (MVBs) and are stored as
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intraluminal vesicles (ILVs) that are secreted out of the cell
once MVB fused with the plasma membrane at a certain
point [37-39] (Figure 1).

Microvesicles (MVs), sometimes also referred to as
ectosomes or microparticles or membrane particles, are
larger and more heterogeneous in size (ranging from
100 nm to several microns) than exosomes [40, 41]. These
cell surface-derived EVs are produced as a result of bulging
of the plasma membrane and are ultimately shed from the
cell surface as these blebs undergo fission upon proper stim-
ulation [40, 41]. MVs are known to be full of phosphatidyl-
serine and have several other lipid components [42]. MV
were firstly identified to be released from RBCs [43] and acti-
vated blood platelets [44] and were thought to contribute in
the regulation of coagulation cascade [45]. Their formation
is endorsed by increased Ca®" levels that do so by altering
the phospholipid distribution within the plasma membrane.
A steady state or classical asymmetric lipid composition
exists along the plasma membrane and is characterized by
the existence of aminophospholipids towards the cytoplas-
mic side while phospholipids are on the side facing extracel-
lular environment [46]. A variety of membrane enzymes
including floppase, flippase, translocase, and scramblase help
in the maintenance of this intricate balance. Increased intra-
cellular Ca®" in association with cytoskeleton modification
[44] and recruitment of scramblase (a Ca®"-dependent
enzyme) [47] relocate phosphatidylserine from the inner side
to the outer side [48] in an ATP-dependent manner [49].
ADP-ribosylation factor 6- (ARF6-) mediated invasion and
cytoskeletal remodeling in prostate and breast cancers are
accused of the shedding MVs and all other classes of EVs
[50] (Figure 1). Considering the heterogeneity in the size of
MVs, the presence of numerous subpopulations can be spec-
ulated within this subdivision of EVs. The term “oncosomes”
was coined to describe the MVs or EVs secreted by cancer
cells [51]. It is noteworthy that the term “large oncosomes
(LO)” is referred to as a specific class of EVs and used to
describe a comparatively larger size (1-10 pum) of subtype
MVs, which originate directly from the plasma membrane,
produced by cancer cells [52, 53].

Apoptotic bodies, range in size from 800 to 5000 nm, are
produced during cellular blebbing and released by cells
undergoing programmed cell death [41]. However, how they
affect other cells is not well-studied yet.

EVs are usually classified on the basis of their origin;
however, this classification and the current techniques
employed for the identification of these EVs are insufficient
to distinguish clearly each type of EV separately [54]. Some
vesicles also originated from the nanotubular projections
present on plasma membranes [55]. Recently, the presence
of very small nanovesicles (8-12nm) has been reported in
peripheral blood [56] that was errantly separated along with
exosomes. It would not be wrong to say that the current
nomenclature has not been without debate, and size attri-
butes of EV subtypes are ambiguous to fully distinguish them
separately [6, 57]. As a matter of fact, the isolation techniques
and protocols are still in the development process, and
consensus best practices have not yet been achieved resulting
in differences in EV subpopulations being evaluated between
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FIGURE 1: Biogenesis of exosomes and microvesicles: a schematic representation of endosome formation by internalizing the extracellular
substances by invagination and pinching of the plasma membrane via endocytosis. These endosomes are transformed to multivesicular
bodies (MVBs) by taking up a variety of cytosolic contents (proteins, nucleic acids, and various metabolites) via inward budding of late
endosomes. Later, these MVBs may fuse with the plasma membrane at certain points to release the internal vesicles named as “exosomes.”
In contrast, microvesicles are formed due to outward protrusion/blebbing of the plasma membrane. A diverse array of cargos is packed
into these protrusions which pinched off the parent cell giving rise to microvesicles.

investigations [36, 58]. Therefore, the mode of biogenesis and
cargo within EVs may prove crucial in establishing a more
proper criterion for their classification. In line with this
speculation, EV subpopulations have been characterized
recently on the basis of their size, density, cargo, and their
effects on target cells [36, 59, 60]. Therefore, new EV classes
and modifications in the current classification criteria are
expected to emerge as the field progresses. Additional vesicle
types used to study lipid and protein behavior have also been
reported, however not classified along with the above given
vesicles. For instance, a number of stimuli, i.e., some chemi-
cals (paraformaldehyde and dithiothreitol), salts, and laser
treatment may result in the formation of giant plasma
membrane vesicles (GPMV35) in live cells [61-63]. These ves-
icles are large sized and help in understanding the lipid and

protein organization existing along the plasma membrane
[62, 64, 65]. There are many other additional vesicle types
including small, large, and giant uni- and multilamellar lipid
vesicles [66] along with artificial plasma membrane vesicles
[67] that are exclusively synthesized in vitro. These extraordi-
nary vesicle species are employed therapeutically to enhance
the stability and uptake of drugs and other biological mole-
cules probably via the same mechanism adapted by natural
EVs [68, 69]. Currently, most, if not all, cell types are believed
to produce EVs [70, 71]; however, diseased states and stress
not only upregulate their production but also alter the cargo
contained within [72].

Considering the unexpected pace in the growth of EV-
related information, Minimal Information for Studies of
Extracellular Vesicles (“MISEV”) guidelines were proposed
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FIGURE 2: Therapeutic strategies to target EVs for cancer treatment. There are a number of potential ways to target the EV-mediated
intercellular communication. (A) EV biogenesis or release can be targeted via interfering the specific components involved in EV
production or surface shedding. (B) EVs can be targeted and specifically removed from the circulation using different substances, i.e.,
specific antibodies. (C) EV uptake/internalization by the recipient cells can be interrupted by targeting the EV ligands or cell surface receptors.

by ISEV five years ago and have been updated last year on
the basis of evolution of the collective knowledge of the
field in these past four years. These guidelines equipped
the EV biologist with a collection of standardized proto-
cols and procedures for a better documenting of EV-
associated functions [34].

3. Therapeutic Approaches to Target EVs

As described before, EVs are major players in tumor progres-
sion via the transfer of cargo within them. As a matter of fact,
the pathways targeted by EVs differ largely from conven-
tional methods, i.e., chemotherapy or molecular targeting
drugs. Therefore, three potential therapeutic approaches are
proposed in this regard: (i) inhibition of EV formation, (ii)
eradication of circulating EVs, and (iii) ablation of EV
absorption [73] (Figure 2). A large number of investigations
both in vivo and in vitro have stressed the efficacy of
inhibiting EV production in cancer reduction. For instance,
blockade of EV secretion and miR-210-3p transfer and sub-
sequently suppression of angiogenesis and metastasis were
observed, in a xenograft mouse model, as a result of
nSMase2-knockdown [74]. In another study, repression of
ovarian cancer dissemination, as a result of inhibition of
EV production, was observed upon nSMase2-knockdown
[75]. In addition to it, to date, a large number of other mole-

cules involved in EV production, i.e., RAB27A, RAB27B, and
TSG101, have been exploited to reduce the production of
cancer-derived EVs [76, 77]. Although suppression of EV
production seems quite an efficient strategy in cancer treat-
ment, targeting genes involved in this pathway will affect
many of the important biological activities of normal cells
as they are the mode of intercellular communication [73].
For instance, nSMase2 has been found to express in normal
neural cells [78]. Furthermore, downregulation of these genes
showed different extent of their inhibitory effects on EV pro-
duction among different cancer types. For example, there was
no effect on EV production upon ablation of nSMase2 in the
prostate cancer cell line [79]. Therefore, it is the need of the
current time and would be a future challenge to identify
genes associated with cancer type-specific EV production.

A novel therapeutic strategy to remove the circulating
EVs was devised by Marleau and coworkers in 2012. A hemo-
filtration system was developed that was able to specifically
trap the circulating cancer cell-derived HER2-expressing
EVs [80]. These HER2-positive EVs hinder the available
therapies and subsequently promote cancer development
[81]; therefore, selectively targeting the HER-2-expressing
EVs may prove a better approach in breast cancer treatment.
In line with it, the circulating EVs have also been found to
establish a premetastatic niche and subsequently promote
cancer metastasis [33]. Hence, it can be speculated easily that
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elimination of these circulating EVs may help in the preven-
tion of cancer metastasis. Recently, a new idea has been
adapted to target circulating EVs in a human breast cancer
xenograft mouse model [82]. In this study, a pronounced
decrease in metastatic activity was observed upon the admin-
istration of anti-CD9 and CD63 (two of the most enriched
receptors on the EV surface) antibodies [82]. However, there
were found no prominent effects on primary site growth.
Moreover, macrophages were utilized to internalize the EVs
tagged by anti-CD9 and CD63 and were not allowed to
promote cancer progression. Furthermore, more in-depth
studies are required as anti-CD9 and CD63 antibodies are
unable to selectively target the cancer-derived EVs in
humans. However, identification of cancer-specific mole-
cules on the EV surface and development of specific antibod-
ies against them can likely help in eliminating the circulating
EVs and subsequently prove effective in cancer treatment.
Therefore, that investigation was believed to devise a novel
treatment strategy for cancer.

Microvesicle cargo is simply internalized directly into the
cytoplasm via plasma membrane-EV fusion while intact
vesicles are taken up via several ways for transferring to the
lysosomal or endosomal pathway [83-85]. The multiple ways
of EV internalization include micropinocytosis [86, 87], cla-
thrin and caveolin-mediated endocytosis, phagocytosis, and
lipid raft endocytosis [88, 89]. In addition to it, another key
factor that favors the fusion of EV. membranes with the recip-
ient cells is the low pH conditions produced by the tumor
microenvironment [88]. Therefore, disruption of EV inter-
nalization may help in the formulation of new and better
therapeutic approaches to prevent tumor progression and
in cancer treatment. Recently, heparan sulfate proteoglycans
(HSPGs) were found to act as a receptor of GBM-derived
EVs [89]. A dose-dependent inhibition of EV uptake and a
clear suppression of EV-dependent cell migration were seen
in GBM in the presence of an HS mimetic, heparin. A num-
ber of molecules capable of EV internalization have been
described to date, and many more are expected to be reported
in the near future [84, 90, 91]. Despite the identification of
several molecules responsible for EV internalization, the
mechanism involved in this internalization is not very clear.
However, caveolin-dependent endocytosis has been reported
as a primary route for internalization of multiple myeloma
cell-derived exosomes while some of the exosomes were
taken up via macropinocytosis and membrane fusion [92].
Glycans are involved in energy storage and also serve as
structural components that have been recently described to
play an important role in several molecular recognition
events. Glycans not only modulate recognition at the cell
level but also regulate the intracellular traffic and folding of
individual proteins [93, 94]. Abnormal glycosylation usually
interrupts these crucial recognition events and may lead to
cancer or other disorders like lysosomal storage diseases
[94]. Although we are not familiar with the function of glyco-
conjugates in EV biology at present, several novel strategies
that utilize EV glycosylation have already been emerging.
Indeed, an extraordinary interest has been emerging recently
in studying the effects of glycosylation modulation of EVs
and their cargo. Glycoengineering is a promising field that

is highly exploited to optimize the stability and alter the phar-
macokinetics of protein-based drugs [95, 96]. This concept
was proved for EVs by engineering Lamp2b protein (exoso-
mal membrane protein) [97]. Furthermore, N-glycosylation
was found to protect the peptides from lysosomal proteolysis
[97]. In fact, a twofold increase in the efficiency of exosome
delivery was found in the nervous system upon glycosylation
of the desired peptides. Therefore, this strategy can be
speculated the best choice to improve the uptake efficiency
of peptide-targeted vesicles. Neuroblastoma-derived exo-
somes were found highly enriched in glycosphingolipids,
and these glycans showed a huge therapeutic potential
against Alzheimer’s disease as they were capable of scaveng-
ing the B-amyloid [98]. The formation of hybrid exosomes
having unique lipid components with the liposomes [99]
has shown an enormous therapeutic potential of the glyco-
lipid cargoes. These few experiments are the EV glycoengi-
neering efforts that advocate a promising platform and
future directions. Briefly, glycosylation can be exploited in
manipulating the cargo protein recruitment and offers novel
therapeutic targeting approaches [100, 101]. One more
aspect that can be utilized to modulate the physicochemical
characteristics of EVs is the sialylation status as it is capable
of altering the vesicle charge [102]. This approach is yet to
be achieved, but the availability of massive information on
glycoengineering can be applied to EVs [103].

Unluckily, currently, there are no data available about the
effects of inhibition of EV internalization under in vivo con-
ditions. One of the prime reasons behind this insufficiency of
investigations is that the cancer cell-associated EV uptake
pathway is not quite clear yet. To ensure the integrity of nor-
mal cell homeostasis, it is necessary to fully understand the
cancer-specific EV uptake pathways by the cancer biologists
for therapeutic development. The presence of different EV
protein markers has been recently described in different frac-
tions of EVs; furthermore, these fractions were found to have
different molecular and biological characteristics [36]. Like-
wise, immature dendritic cells have been found to release
two EV subpopulations (small and large EVs) that were fur-
ther found to affect the T helper cell in a different manner
[104]. Therefore, identifying the EV subpopulations, their
effects on target cells, and specific internalization pathway
would be the best approach for better future therapies. On
the basis of the above given contexts, inhibition of EV trans-
fer could be speculated to be employed as a novel therapeutic
approach in suppressing the tumor progression. Despite a
great number of challenges, outstanding advances and pace
in understanding of EV's are promising a better future [11].

4. EVs as Potent Novel Drug Delivery Systems

EVs have been emerging as attractive novel entities for drug
delivery because of their structural analogy with liposomes
[105]. Liposomes have proven their efficiency as a novel drug
carrier and have been widely employed for drug delivery as
they are very similar in composition with the plasma mem-
branes [106]. Since that time, multiple commercialized
liposome-based products like Myocet (an approved nonpe-
gylated liposomal doxorubicin highly practiced against



metastatic breast cancer), DaunoXome (an approved lipo-
some employed against advanced HIV-associated Kaposi’s
sarcoma to deliver daunorubicin (DNR)), and Depocyt
(approved against lymphomatous meningitis) have been
introduced for therapeutic purposes [107]. Liposomal
research has laid down the foundation to explore their phys-
icochemical properties and stability for their employment as
novel drug delivery agents [108-110]. Exploiting EVs is a
better choice and more advantageous than liposomes as they
are naturally produced by the cells and can easily transfer the
desired drugs. These properties make EVs the best choice to
be utilized as drug delivery agents even across the blood-
brain barrier (BBB) [111]. Some of the potential EVs that
have been used recently as drug delivery vehicles in different
types of cancer are summarized in Table 1.

5. EVs in Cancer Treatment

A huge number of studies have provided the evidences of the
use of these EV's as a splendid tool to deliver small interfering
RNAs and other synthetic molecules for therapeutic pur-
poses [123]. EVs have been employed in a number of animal
model studies developed for different diseases as potent ther-
apeutic DDSs [124]. Moreover, they are splendid antitumor
DDSs as EVs are capable of passively targeting tumors
because of their enhanced permeation and retention [125].
It is of great interest that genetically engineered EVs as tar-
geted DDSs offer a dynamic and handy platform for specific
and target-oriented drug delivery with better therapeutic
outcomes. Recently, an efficient DDS was developed for the
successful transfer of siRNA to the CNS via modified den-
dritic cell- (DC-) derived EVs [111]. The DCs, isolated from
mice, were transected with a plasmid expressing EV surface
protein, lysosome-associated membrane glycoprotein 2b
(Lamp2b), along with rabies viral glycoprotein (RVG) that
helps in binding with acetylcholine receptor. An efficient
brain-targeting gene knockdown was observed by GAPDH
siRNA-loaded DC-derived EVs, signifying their prospect as
effective targeted DDSs. Effective delivery of both genes and
proteins represents the potential of these extraordinary EVs
to be served as cell-derived liposome-like nanoplatforms to
cure various diseases including cancer [5, 40, 41, 126, 127].
Moreover, a zip code-like 25-nt sequence has been found to
enhance the packaging of miRNAs into EVs and has pushed
the research one step forward by guaranteeing high-yielding
EVs loaded with various RNAs [128]. Amazingly, siRNA
have also been utilized as therapeutics against tumors via
bacterial outer membrane vesicles (OMVs). This study has
highlighted the significance of bacteria in the production of
biological nanovesicles and their application in drug delivery
[129]. Furthermore, they are also being employed to transfer
chemotherapeutic agents in addition to biomolecule-based
drugs to enhance their efficiency and to minimize the possi-
ble side effects associated with them. For instance, an effec-
tive inhibition and successful reduction of breast and colon
cancers have been achieved by encapsulation of the EVs with
doxorubicin and curcumin [130, 131]. The outcomes of these
investigations suggest that EVs offer an effective way to
suppress cancerous tumors by delivering a wide range of
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the chemotherapeutics drugs. Recently, doxorubicin (chemo-
therapeutic drug) have been successfully delivered, via an i.v.
injection, to av integrin-positive breast cancer cells via
exosomes isolated from Lamp2b-iRGD peptide expressing
engineered immature mouse DCs (imDCs), and a remark-
able suppression in tumor growth was observed [130]. More-
over, these therapeutic exosomes were less toxic and very
effectual in cancer inhibition. Furthermore, their effective-
ness in delivering the therapeutic cargo has also been authen-
ticated employing multiple tumor models [132] including
hepatocarcinoma [133], lymphocytic leukemia [134], and
pancreas [135] and prostate [136] cancers.

Some of the potent EV's that have been utilized recently in
different types of cancer are summarized in Table 2.

6. EV-Associated Antitumor ncRNAs

A number of attributes, including their release from the
parent cells, delivery via the circulatory system, targeted
cell uptake, and selective cargo transport, make them a
promising and sizzling object for the selective drug delivery
carrier [73, 144]. Therefore, investigators are proposing
innovative and dynamic approaches for the modification of
EVs specifically exosomes to cope with the current clinical
challenges and therapeutic needs [145-147]. One of such
approaches involves the direct modification of the contents
of isolated exosomes. For instance, siRNAs and shRNAs
have been incorporated into fibroblast-like mesenchymal
stem cell-derived exosomes via electroporation to target
KRASS'*P mutation of pancreatic cancer [143]. Therapeu-
tic use of natural exosomes is highly advantageous for
several reasons compared to synthetic liposomes. For
instance, exosomes are prevented from being phagocytosed
by monocytes and macrophages due to the presence of
CD47 on the exosomal membrane. Furthermore, the accu-
mulation and uptake of exosomes by cancerous tissues are
facilitated by some yet unknown native proteins present
on the exosomal surface. Consequently, these “chimeric”
exosomes were found to effectively execute an enhanced
survival and reduced metastasis [143]. Another approach
is to stimulate the parental cells to release modified exo-
somes. For example, exosomes containing miR-143 were
obtained from MSCs pretreated with medium containing
synthetic miR-143 and were found to successfully deliver
these miRNAs to osteosarcoma cells to hamper their met-
astatic activity in vitro [148].

7. Application of EVs as Cancer Vaccines

Considering their production by every cell and their
immune-modulatory effects, they can be employed for diag-
nostic purposes. Similarly, exosomes have shown antigen-
presenting and immune-stimulatory potential and are being
utilized for triggering antitumor responses. Moreover, release
of exosomes from tumor cells is suggestive of their involve-
ment in tumor microenvironments [149]. Cancer- and
immune cell-derived EVs are capable of inducing immunos-
timulation to recipient cells. This prospect can presume the
use of EVs as cancer vaccines, either derived from APCs or
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derived by tumors themselves [150]. These cancer-derived
EVs are believed as potential proimmune elements because
of the presence of several stimulatory molecules, i.e., heat
shock proteins [151, 152] and numerous tumor antigens on
their surface [151, 153, 154]. There is an ample amount of
data available in favor of EVs as potent immune-
suppressive agents [150, 155, 156]. Therefore, an encounter
between the immune system and tumor EVs takes place in
an immune-stimulatory vs. an immune-suppressive context
[150], and by considering their immune-stimulatory fea-
tures, these tumor EVs have been employed clinically as
cancer vaccines [157]. In addition to a previous report of
Kunigelis and Graner [150], another trial is also available
on “clinicaltrials.gov” (NCT01550523). This trial was per-
formed on patients who had resected the tumors and failed
the prior therapies; an antisense construct against IGFIR
was used to induce apoptotic cell death in autologous tumor
cells. The cells were positioned in a biodiffusion chamber,
and soluble ingredients, for the induction of immune
response, were allowed to be released. Next, the chamber
was inserted in the rectus sheath and was detached after 24
hours. Some of the subjects were found to develop deep vein
thrombosis and were subjected to enoxaparin treatment to
get rid of this problem. Except this minor trouble, the therapy
was believed to be safe as some subjects were found to show
complete response and some were found to show partial
response under two (2) to twenty-seven- (27-) week time-
span [158]. In the second phase I trial, the glioma cell-
derived exosomes were referred to as immune stimulators
by the authors [159]. The tumor-challenged mice were safe-
guarded via implanting chamber-based vaccine in this case
probably due to the formation and release of antigen-
bearing immunostimulatory exosomes. In line with these
investigations, DC-derived EVs/exosomes (also referred to
as dexosomes/DEX) have also been subjected to phase II
trials [150]. For this purpose, multiple types of antigens (pep-
tides, proteins, and tumor lysate) are loaded to DCs isolated
from patients. Subsequently, the exosomes produced by the
cells in the culture supernatants are utilized as cell-free can-
cer vaccines. Recently, inoperable non-small-cell lung cancer
patients were subjected to chemotherapy followed by DEX-
based immunotherapy for maintenance. For this purpose,
MAGE/NY ESO/MART1 peptides were introduced in DCs
via the pulse and cultured with gamma interferon (IFNG).
Subsequently, DEX were isolated, and 1-27 injections of
DEX were given to the patients. A median overall survival
of fifteen (15) months along with median progression-free
survival (PFS) of 2.2 months was found in the treated
patients. An increased number of NK cells and an enhanced
activity associated with NKp30 (NK surface ligand) were
found in subjects with >2.2 month PFS [160]. It is of great
interest that NK cell activation was found in an earlier trial
[161]; in addition, an improvement of T cell responses but
no induction of tumor-specific T cells was found upon IFNG
addition. Upon cessation of chemotherapy, about 50% of the
patients with PFS did not reach primary endpoint at 4
months with this trial; however, large-scale DEX production
could be adapted to treat very advanced cancer. The updates
about the use of either tumor-derived or immune cell-

derived EVs to promote antitumor responses and cancer sup-
pression are continuing to grow. A huge number of investiga-
tions are available in favor of tumor EV-driven immune
suppression [150, 156, 162-164]. Inflammation is a major
contributor in immune-mediated progression and tumor
suppression [165], and nucleotide receptors are common
mediators of inflammatory reaction [166] and cancer [167].
One of such receptor families is the purinoreceptor family
that participates in immune responses mediated by EVs in
immunity, inflammation, and cancer settings [168].

Radiotherapy is a new choice in enhancing the immuno-
therapy effects; however, radiations led to the oxidation,
degradation, and accumulation of the DNA in the cytosol.
This accumulation of DNA encourages the release of
interferon-b from tumor cells via activation of the cGAS/ST-
ING-mediated DNA-sensing pathway. STING is a key sig-
naling component that responds to pathogen-derived DNA
by inducing the production of a variety of cytokines and
type-I IFNs upon activation by its ligand, cyclic GMP-AMP
(cGAMP). Cyclic GMP-AMP synthase (cGAS) associates
with the pathogenic DNA and led to the formation of
c¢GAMP from GTP and ATP. The resultant cGAS-STING
axis stimulates the production of inflammatory cytokines
and type-I IFNs via activating the NF-«B and IRF3, respec-
tively [169]. Interestingly, tumor growth was augmented dur-
ing radiotherapy in the mouse model lacking STING because
of the attenuation of antitumor T-cell activation [170, 171].
In addition to it, tumoral growth was restricted in a murine
melanoma model upon intratumoral administration of
c¢GAMP [172]. Therefore, the cGAS/STING signaling path-
way is an attractive therapeutic approach in inducing the
efficient immune responses against tumors.

In another study, tumor cell-derived microparticles (T-
MPs) were described to be used as cell-free tumor vaccine
recently. T-MP-based vaccinations were found effective
against several tumor types, and T-MP-loaded dendritic cells
(DC) were also found very fruitful in a number of tumor
models [173, 174]. In these models, T-MPs efhiciently deliv-
ered the DNA fragments to DCs that subsequently induced
the expression of type I IFN via activating the cGAS/STING
signaling pathway. Furthermore, the subsequent increase in
the IFN level enhanced the antitumor immunity by promot-
ing the presentation of tumor antigens to T-cells and matura-
tion of DC. Indeed, this study represents a novel tumor cell-
free vaccine strategy of high therapeutic potential [173].

8. EVs as Cancer Biomarkers

A substantial interest has been growing, in the past few years,
in investigating the potential of tumor-associated EVs for
diagnostic purposes and their exploitation for disease moni-
toring. EVs derived from a number of tumor types are
believed to contain specific cargo including nucleic acid and
various proteins [175]. The presence of tumor-derived EVs
in circulating bodily fluids including cerebrospinal fluid
(CSF), urine, and blood makes them an easy and readily
accessible battery of biomarkers. Therefore, these tumor-
derived EVs are speculated to be specifically served for longi-
tudinal disease monitoring and early relapse detection [176].
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A few of EV-associated cargo (particularly nucleic acid and
proteins) are also capable of predicting the therapeutic
response of a specific treatment. Collectively, EVs have been
proven by a growing body of evidence as a new representative
class of rich and readily accessible cancer biomarkers. Their
potential as a cancer biomarker was explored for the very first
time by comparing the contents of EVs derived from glio-
blastoma and from the cells of origin [32]. In this report,
authors found tumor-specific RNA and protein species,
reflective of the parental cell, enriched in the released EVs
[32]. Accordingly, a vast assortment of tumor-specific species
including various nucleic acid species such as IncRNA [177],
miRNA [178], and mRNA [32, 179] and multiple posttrans-
lational protein modifications [179] have been well recog-
nized. The diagnostic and predictive values of these EVs
have been utilized in multiple studies with different cancer
types and further strengthened recently by the massive profil-
ing of sixty cancer cell lines [175]. EV proteome, from all the
tested samples, was reported to reflect the cellular proteome
and transcriptome. EV proteomic data helps in their exem-
plification by hierarchical clustering and categorization of
the basis of the originating cell [175]. This correlation
between tumor-associated EVs and contents of secreting cells
is highly important for brain and CNS-associated tumors
where conducting a tissue biopsy is a limitation. For instance,
an upregulation of miR21 was observed in glioblastoma
multiforme-associated EVs in CSF compared to healthy con-
trols [180, 181]. Moreover, a positive correlation was noted
between the level of EV-miR21 and tumor burden. Conse-
quently, a huge number of tumor-derived EV-miRNA hav-
ing prognostic and diagnostic values have been described in
other types of cancer including pancreatic [182], colorectal
[183], and non-small-cell lung [184] cancers. In line with it,
several candidate mRNAs (C-MYC, BCL-6, and PTEN),
characterized with diagnostic value to predict progression-
free survival, have been found in plasma-derived EVs from
patients of non-Hodgkin’s lymphoma [185]. Therefore, these
reports have opened a new potential of tumor-associated EV's
for noninvasive longitudinal disease monitoring [186]. The
cancer-related EVs may also be helpful in early disease detec-
tion. For instance, it was shown in an in vivo pancreatic can-
cer model that particular EVs expressing a marker protein
were upregulated even at the time when the tumor cannot
be detected by conventional imaging techniques [187]. In
addition to it, AML-EVs can be detected in the blood of acute
myeloid leukemia (AML) patients even prior to the release of
leukemic blasts in the blood [176]. Moreover, tumor-
associated EVs have also been employed in the prediction
of response to a specific treatment. Interestingly, tumor-
associated EVs are capable of transferring resistance from
drug-resistant to drug-sensitive cells via specific miRNAs
and various protein species carried by them. Several therapies
for a number of cancer types including pazopanib (chemo-
therapy) in soft tissue sarcoma [188], tamoxifen (antiestro-
gen) in breast cancer [189], and cetuximab (anti-EGFR)
therapy in colon cancer [190] have been found to show the
same resistance transfer phenomenon. Surprisingly, in all of
these investigations, disruption of sensitivity to a specific
drug and development of resistance were observed upon

Oxidative Medicine and Cellular Longevity

exposure to EVs from the resistant cells. Moreover, authors
also illustrated a possible mechanism for Trastuzumab
(anti-HER2) therapy in breast cancer [81]. Astonishingly,
EV-associated HER2 was found to reduce the therapeutic
effects of this drug as it is able to bind and decrease the avail-
able concentration of Trastuzumab [81]. Collectively, the
above cited literature is suggestive of the prognostic, diagnos-
tic, and predictive values of tumor-associated EVs [191].

Some of the potent EVs that have been recently found as
potent biomarkers in different types of cancer are summa-
rized in Table 3.

9. Conclusion and Future Perspectives

EVs are the potent carriers of cargo molecules including
functional RNA species, many therapeutic agents like miR-
NAs, mRNAs, proteins, and peptides, and synthetic drugs.
These small vesicles loaded with therapeutic agents are highly
advantageous in terms of their biocompatibility, low immu-
nogenicity, and innate ability to interact with target cells.
Many futuristic approaches can be implicated from ex vivo
and in vivo studies. However, due to complexity of EVs,
many questions must be addressed prior to opting these mol-
ecules in clinics.

Advances in isolation and characterization techniques
will allow more insight understanding and hence will provide
a platform to develop EV-based therapeutic and diagnostic
tools. An inexpensive, reliable method of isolations must be
recognized and implemented to ensure that the optimal yield
of EVs is being obtained in a safe and repeatable manner.
Ultimately, a preferred method of isolating intact EVs must
be identified and scaled so that EV-based options can be
developed into a clinically viable therapy.

Upcoming research would completely get benefit of exo-
somes’ ubiquitous occurrence in eukaryotic cells as they
appear to provide an excess for anticancer therapy. Exosomes
have been in attention for their role in the TME, and TDEs,
in particular, provide a hopeful way for cancer remedies as
mechanisms for superior drug delivery, tumor suppression,
and immune regulation due to their appropriate dimension,
composition, and homing capabilities. The progress of can-
cer encompasses the difficult and intricate communication
of cells and signaling molecules in the TME, and exosomes
have been shown to advance tumor growth through the inhi-
bition of antitumor immunity and the development of
angiogenesis.

Existing investigations in EVs are inadequate to the
in vitro system. More in vivo studies must be conducted, like
transgenic models of the breast cancer system, which helps us
to have a better understanding of breast cancer cell-derived
EVs. By in vivo imaging, we can know the source of EVs, their
kinetics, numbers, the recipient cell types, and the even
relationship between EVs and soluble factors. Efforts in this
area to understand the biodistribution and bioavailability
in vivo include elaborating the type and nature of interactions
between EVs and the extracellular matrix and more pro-
nounced in vivo models to test the relevance of in vitro obser-
vations. Improvement is being made here also, with growing
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in vivo imaging techniques enabling visualization of EV pro-
duction and distribution in vivo.

To develop EV-mediated therapeutic, efficient, and
scalable bioengineering solutions are required; again, prog-
ress is being made, but there remain technical challenges.
Given the pace of advances in the EV field over the past
decade, it is likely that rapid progress will be made in address-
ing these challenges, and the promise of EV clinical transla-
tion will begin to become a reality. We hope that in the
forthcoming years, research and trials can make available
more efficient EV-based therapeutic options.
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