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Abstract

Decellularized extracellular matrix (dECM) derived from myocardium has been widely explored as
a nature scaffold for cardiac tissue engineering applications. Cardiac dECM offers many unique
advantages such as preservation of organ-specific ECM microstructure and composition, demon-
stration of tissue-mimetic mechanical properties and retention of biochemical cues in favor of
subsequent recellularization. However, current processes of dECM decellularization and recellulari-
zation still face many challenges including the need for balance between cell removal and extracel-
lular matrix preservation, efficient recellularization of dECM for obtaining homogenous cell
distribution, tailoring material properties of dECM for enhancing bioactivity and prevascularization
of thick dECM. This review summarizes the recent progresses of using dECM scaffold for cardiac
repair and discusses its major advantages and challenges for producing biomimetic cardiac patch.
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Milestones of cardiac decellularized extracellular
matrix research

The decellularization strategies and their applications in regenera-
tive medicine have been gradually explored since late 1940s. The
first pioneer study of tissue decellularization with quantitative mea-
surement was conducted by William E. Poel in 1948 [1]. In this
study, acellular homogenate was generated from muscles through
complete pulverization of tissue at =70°C by pounding followed by
homogenization of pulverized and thawed tissue sample in water us-
ing a cylinder and a closely fitting rotating plunger [2]. Following
this work, decellularization strategies have been used on tissue biop-
sies for isolation of tissue-specific extracellular matrix (ECM) using
various approaches including chemical treatments (e.g. acids and
bases, detergents, alcohols), biological treatments (e.g. enzymes,
chelating agents) and physical treatments (e.g. pressure, mechanical,
freezing and thawing and electroporation) [3-7]. In 1995,
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decellularization research entered into another phase of development
when Badylak et al. reported the application of using decellularized
porcine small intestinal submucosa (SIS) graft for Achilles tendon re-
pair. When implanted in a dog model with an Achilles tendon defect,
acellular porcine SIS graft has shown to accelerate the wound healing
by forming new connective tissues [8]. Subsequently, porcine SIS graft
has been explored to treat many other injured tissues such as abdo-
men, skin, trachea, cornea and myocardium [9-13]. The promising
results from these studies led to numerous investigations to assess the
feasibility of using tissue-derived ECM after decellularization as a nat-
ural scaffold for tissue repair and regeneration.

The application of decellularization in cardiac tissue engineering
has rapidly progressed in the past 10years (Fig. 1). In 2008, Ott
et al. first reported the development of an acellular rat whole heart
(WH) via coronary perfusion using the solution containing 1% so-
dium dodecyl sulfate (SDS) and 1% Triton X-100 in deionized water
[14]. The decellularized rat WH preserved the complex ECM
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First report to demonstrate the fabrication of an acellular rat whole heart by decellularization via coronary perfusion

Generation of cardiac decellularized extracellular matrix (dECM) slices for in vitro and in vive studies

2010 Decellularization of porcine whole heart
2013
2015 Decellularization of human whole heart

First report for recellularization of the decellularized mouse whole heart using hiPSC-derived cardiovascular progenitor cells

Recellularization of the decellularized human whole heart and thin dECM slices using hiPSC-derived cardiomyocytes

Figure 1. Timeline of major milestones using dECM scaffold for myocardial repair. hiPSC, human induced pluripotent stem cell; dECM, decellularized extracellu-

lar matrix

composition as well as retained intact chamber geometry and perfus-
able vascular architecture. When reseeded the acellular rat WH with
cardiac and endothelial cells using a perfusion bioreactor culture
system, the recellularized WH resulted macroscopic contractions,
leading to generate 2% of adult and 25% of 16-week fetal heart
physiological functions [14]. In the subsequent years, whole-organ
decellularization approaches have been extended to the larger hearts
from porcine and human origin to realize human-size functional car-
diac grafts [15-24]. For example, Wainwright et al. conducted the
first study to generate acellular porcine WH via a retrograde coro-
nary perfusion using successive treatments with 0.02% trypsin/
0.05% EDTA/0.05% sodium azide solution, 3% Triton X-100/
0.05% EDTA/0.05% sodium azide solution, followed by 4% deox-
ycholic acid solution. The decellularized porcine heart preserved
ECM composition (e.g. collagen, elastin and glycosaminoglycans),
retained mechanical integrity and supported cardiac cells in vitro
[25]. Compared to porcine heart, decellularization method has been
applied to a limited number of human WH to obtain dECM scaf-
fold. Sanchez et al. produced first acellular human WH scaffold by
perfusion decellularization using a detergent solution containing 1%
SDS in deionized water. After decellularization, the human WH pre-
served the three-dimensional (3D) architecture, chamber geometry,
vascularity and mechanical anisotropy. When reseeded with paren-
chymal and vascular cells, the human WH promoted cardiocyte
gene expression and electrical coupling [24]. In addition to produce
acellular organ, decellularization has also been exploited to derive
cardiac dECM slices. Various groups have fabricated cardiac dECM
slices through decellularization using native cardiac tissues from
multiple species including rat, mouse, pig and human [26-29].
Moreover, the acellular WHs or cardiac dECM slices have been ex-
plored for many in vitro and in vivo studies to thoroughly investi-
gate the dECM properties and cell-matrix interaction (e.g. cell
adhesion, proliferation and differentiation) using various cell types

including mesenchymal stem cells (MSCs), embryonic stem cells
(ESCs) and induced pluripotent stem cells (iPSCs) [30-34]. For in-
stance, Lu and Lin et al. reported for the first time of seeding human
iPSC-derived cardiovascular progenitor cells on decellularized
mouse WH via perfusion through the cannula that was connected to
the aorta. After seeding, the recellularized WH promoted differenti-
ation and maturation of iPSC-derived cardiovascular progenitor
cells toward cardiomyocytes (CMs), smooth muscle cells and endo-
thelial cells that resulted the engineered myocardium with vessel-like
structures, spontaneous contraction, intracellular Ca®" transients
and drug response [35]. Similarly, Guyette et al. recently reported
the repopulation of decellularized human WH and decellularized
human myocardial slices (200 pm thick) with human iPSC-derived
CMs. When grown under biomimetic culture conditions, the seeded
dECM scaffolds developed force-generating myocardial tissue with
spontaneous contraction and showed electrical conductivity as well
as metabolic function [36]. These studies have proved the great po-
tential of using cardiac decellularized ECM as a natural platform for
cardiac tissue engineering applications.

Advantages of cardiac decellularized
extracellular matrix

Decellularized extracellular matrix (dECM) achieved from myocar-
dium tissues have been widely used in tissue engineering and regen-
erative medicine because of the many benefits that cardiac dECM
offers to develop strategies for myocardial repair (Fig. 2). After
decellularization, the cardiac dECM scaffold has shown to provide a
complex combination of biochemical and mechanical cues retained
from native myocardium tissue that favors the cell attachment, pro-
liferation and cardiovascular differentiation during subsequent
recellularization [55, 56]. Recently, heart tissues obtained from
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Figure 2. Advantages of using cardiac tissue-derived decellularized extracellular matrix for myocardial repair. (A) Perfusion decellularization of rat WHs using
poly ethylene glycol (PEG), Triton X-100 and SDS. Corresponding H&E staining of dECM showed complete decellularization of rat heart perfused with SDS and in-
complete decellularization in PEG and Triton X-100-treated hearts. Scale bar. 200 um. Source: Adapted with permission from Ott et al. [14]. (B) Measurement of to-
tal proteins obtained from injectable human cardiac dECM using ECM-targeted quantitative conCATamers (QconCAT) by liquid chromatography-selected
reaction monitoring (LC-SRM). Source: Adapted with permission from Johnson and Hill et al. [37]. (C) In vivo assessment of cardiac dECM generated by seeding
adipose-derived stem cells (ASCs) in a rat myocardial infarction (Ml) model. Vessel formation was demonstrated as shown by immunofluorescence staining with
vascular markers o-SMA and vVWF. Source: Adapted with permission from Shah et al. through open access policy [38]

multiple species (e.g. rat, pig and human) have been used to produce
3D dECM slices or acellular WH for biomedical applications, which
has resulted the cardiac-specific functionality in vitro as well as
in vivo after transplantation [34, 57, 58]. The importance of dECM
bioactivity as therapeutics has been highlighted in many studies [135,
53]. Comparatively, very little is known about the contributions
from dECM structure and composition. Several of recent studies in-
dicated the important role of cardiac ECM composition on stem cell
differentiation and cardiac development [59, 60]. Mechanical prop-
erties of biomaterial scaffolds have also been gradually recognized
in determining the efficacy in tissue repair [61, 62]. Therefore, in ad-
dition to the witnessed importance of dECM bioactivity in cardiac
repair, we believe that future studies that aim to investigate dJECM
composition and mechanical properties will help complement our
understanding of cardiac dECM therapeutic mechanisms and move
the clinical applications forward. In this review, we focused to pro-
vide an overview of recent progresses and emerging challenges using
cardiac dECM scaffolds. The recent studies that have reported the
use of cardiac dECM scaffolds for heart infarction treatment are
summarized in Tables 1 and 2.

Preserved organ-specific structure and physical
properties

Cardiac tissue-derived dECM offers many unique advantages for
biomedical applications due to preservation of organ-specific micro-
vasculature, mechanical scaffold

structure, integrity and

degradability that promotes cell attachment, growth and cel-ECM
interaction [63-65]. Several studies have reported that, after proper
decellularization, cardiac dECM could retain intact geometry and
vasculature tree of native heart which makes it suitable nature plat-
form for fabricating engineered construct for cardiac repair [66—69].
For example, by coronary perfusion with detergent solution contain-
ing 1% SDS and 1% Triton X-100, Ott et al. reported the first decel-
lularization of a rat WH into an acellular ECM with perfusable
vascular architecture, competent acellular valves and four-chamber
geometry. The obtained acellular rat WH also showed the retention
of both larger cardiac vessels and smaller third-level and fourth-level
branches. The left main coronary artery and the aortic root architec-
ture were preserved within the decellularized WH. In addition, the
equibiaxial mechanical testing demonstrated the retained mechani-
cal properties after decellularization as indicated by anisotropic
stress—strain behavior, high tangential modulus and similar mem-
brane stiffness compared to native heart [14]. Similarly, Wang et al.
reported the retention of vasculature and ultrastructure after decel-
lularization of porcine myocardium tissue using a frame-pin sup-
porting system in a rotating bioreactor containing 0.1% SDS and
0.01% trypsin solution [45-47]. Masson’s trichrome staining and
SEM images were used to show the removal of cells and preserva-
tion of the interconnected 3D cardiomyocytes lacunae. The presence
of cardiac elastin ultrastructure and vascular elastin distribution/
alignment within the porcine myocardium dECM was demonstrated
by Movat’s pentachrome staining. Compared to native myocardium
tissue, both uniaxial and biaxial mechanical testing along fiber-
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preferred direction and cross-preferred direction showed a stiffer
mechanical response of dECM scaffold as confirmed by stress—strain
curve, which were found to be recovered after recellularization due
to increased cellular content [45-47]. These reports have shown the
potential of decellularization for removing cellular components
from the native myocardium tissue while maintaining the mechani-
cal properties and vascular networks critical for subsequent recellu-
larization. It also needs to be noted that dECM are degradable and
serves as a temporary scaffold when implanted as a cardiac patch.
The preservation of structural and mechanical characteristics of
dECM after implantation could bring many benefits for assisting
cardiac repair and regeneration. First, dECM could provide the in-
jured myocardium with effective mechanical compensation. Tissue
mechanical properties are mainly determined by ECM. Therefore,
cardiac dECM, when applied as a cardiac patch, could withstand
the continuous contraction/relaxation of the heart and mechanically
stabilize the infarcted region to prevent or slow down the negative
remodeling process. Animal studies have shown that the initial
dECM degradation after implantation could lead to the decreased
scaffold mechanical properties [70, 71]. However, once the infil-
trated cells start producing new ECM, the scaffold undergo rapid
remodeling that helps recovering the mechanical strength [65].
Second, the structural and mechanical characteristics of dECM
could serve as physical cues to the delivered stem cells or infiltrated
host progenitor cells to facilitate cardiovascular differentiation and
heart regeneration. Last, the degradation of dECM would eliminate
any possible long-term side effects associated with dECM implanta-
tion such as chronic inflammation.

Retained cardiac ECM chemical components and
composition

Decellularization of cardiac tissue has shown to maintain major car-
diac ECM components and composition which contains unique
combination of chemical and biological cues for mimicking native
microenvironment. Such preservation of biochemical cues within
dECM could be beneficial for cell attachment, growth and stem cell
differentiation as demonstrated in many previous studies [72-74].
For example, Johnson and Hill ez al. performed a thorough study to
confirm the retention of ECM proteins after decellularization using
human myocardium tissue via proteomic approaches. Decellularized
human myocardium tissue, when analysed by polyacrylamide gel
electrophoresis (PAGE) and liquid chromatography tandem mass
spectroscopy (LC-MS/MS), has shown to consist over 200 distinct
cardiac ECM proteins including collagen, laminin, elastin and glyco-
saminoglycans (GAGs) [37]. Similarly, our group has also examined
and confirmed the presence of complex mixture of ECM compo-
nents (e.g. collagen and GAGs) within the decellularized tissue from
porcine myocardium [75]. In addition, several studies have reported
that cardiac decellularized ECM also retained the soluble matrix-
bound growth factors after decellularization process [15, 53].
For instance, Methe et al. demonstrated the presence of various
matrix-bound growth factors and cytokines within the decellular-
ized porcine myocardium tissue that involved in angiogenesis (e.g.
vascular endothelial growth factor family and fibroblast growth fac-
tor), cardiac homeostasis and remodeling (e.g. leptin, endothelin
and angiotensin), and mitogenic cardiokines (e.g. hepatocyte growth
factor, endoglin and bone morphogenetic protein-9). Furthermore,
the authors also found several proteins that induce proliferation,
survival, differentiation and recruitment of cells in response to in-
flammation (e.g. granulocyte colony-stimulating factor and
interleukin-8) in the decellularized porcine myocardium tissue [15].

The cumulative results of these studies have confirmed the preserva-
tion of tissue-specific ECM components and composition within
cardiac dECM after decellularization, which has significant role to
maintain biomechanical properties of scaffold, promote cell-matrix
interaction and modulate cell behavior during recellularization
[76-78]. In terms of above reports, the component types and
amounts in dECM are much more important than their ultrastruc-
ture for dECM patches as well as injectable ECM hydrogel. Thus,
developing a mild decellularization technique to maximally main-
tain bioactive components and completely removing cells and im-
mune agents are the keys to achieve excellent dECM materials.

Served as cardiac microenvironment for cells

The development of effective decellularization strategies has greatly
facilitated the use of cardiac dECM as an in vitro platform by pro-
viding biomimetic microenvironment which has shown to influence
the cell behavior [79-81]. Increasing evidence has demonstrated that
cardiac dECM could be used to direct robust cardiovascular differ-
entiation and maturation of stem cells when used as a substrate for
in vitro and in vivo studies [26, 40, 54]. Because of these advantages,
cardiac dECM derived from multiple species (e.g. rat, porcine and
human) have been explored to investigate the recellularization and
differentiation potential by reseeding the scaffold with various stem
cells. For example, the thin slice of decellularized human myocar-
dium tissue (300 pm thick), when reseeded with murine ESCs or mu-
rine iPSCs or murine mesenchymal stromal cells, has shown to
support cell attachment, viability, proliferation and CM differentia-
tion of ESCs and iPSCs as indicated by significant increase of
mRNA expressions for cardiac alpha myosin heavy chain 6, cardiac
Troponin T2 and NK2 homeobox 5 (Nkx 2.5) as well as positive
immunohistochemistry staining for cardiac troponin T and cardiac
myosin heavy chain. Murine mesenchymal stromal cells showed no
evidence of differentiation toward cardiac lineage [32]. Similarly, by
injecting rat MSCs on decellularized porcine myocardial tissue
(3000 um thick), Wang et al. reported the differentiation of MSCs
into CM-like phenotype using differentiation induction medium
containing S-azacytidine, as revealed by positive expression of sar-
comeric o-actinin, myosin heavy chain, cardiac troponin T, con-
nexin-43 and N-cadherin. When applied combined mechanical and
electrical stimulations (20% strain; 5V and 1 Hz) simultaneously us-
ing a multistimulation bioreactor system, the seeded cells demon-
strated enhanced CM differentiation, high cell density and tissue
remodeling within the scaffold compared to the static control group
[47]. In our previous study, we also demonstrated the accelerated
vascular differentiation of human mesenchymal stem cells (hMSCs)
and rat adipose-derived stem cells (rASCs) when cultured on dECM
slices as evidenced by positive immunofluorescence staining for early
and late endothelial cell markers including CD31, von Willebrand
factor, VE cadherin and alpha smooth muscle actin [52]. In the re-
cent years, dECM tissue has also been used to facilitate maturation
of differentiated stem cells to engineer functional cardiac patches for
therapeutic outcomes. For instance, mouse ESC-derived progenitor
cells, when used to reseed on dECM scaffold obtained from mouse
embryonic myocardium tissue, has resulted to promote cardiac dif-
ferentiation and maturation as evidenced by low expressions of
stage-specific embryonic antigen-1, smooth muscle actin and CD31
markers and high expression of a-actinin, leading to produce beat-
ing cardiac tissue construct within 20 days of culture [27]. Similarly,
Wang et al. generated functional cardiac patches using rat decellu-
larized myocardium tissue and human iPSC-derived cardiac cells
which exhibited normal contractile and electrophysiological
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properties 7z vitro. When used to patch on the rat heart with acute
MI, the recellularized patches improved heart function as indicated
by reduced infract size and recovery of left-ventricular ejection frac-
tion, compared to acellular ECM patch group or MI control group
[26]. In addition to cardiovascular stem cell differentiation and mat-
uration, cardiac dECM have successfully exhibited its potential to
recruit stem or progenitor cells from endogenous sources through
several mechanisms including the release of matrix-bound growth
factors and pro-angiogenic factors [28, 82, 83]. These findings have
demonstrated the feasibility of cardiac dECM scaffold for providing
suitable microenvironment during recellularization, stem cell differ-
entiation and maturation, and cell recruitment toward the fabrica-
tion of functional patch for cardiac repair.

Challenges of cardiac decellularized extracellular
matrix and future directions

The optimal decellularization of cardiac tissue requires the complete
removal of cellular components without affecting the structural char-
acteristics, biochemical cues and mechanical integrity of the 3D ECM
[65, 84]. Many groups have explored various decellularization and
recellularization strategies that aim to obtain biomimetic myocardium
tissue using cardiac dECM scaffold and have shown great promises in
myocardial repair. However, the dECM derived from myocardium
tissue still possesses many challenges for completely recapitulating the
native heart. Some of the major issues that need to be addressed in-
clude the variations caused by different decellularization methods, in-
sufficient preservation of vasculature and ECM composition,
inhomogeneous recellularization within the scaffold compartments
and diffusion limitation of thick cardiac dECM [6, 34, 84].

Balance between cell removal and extracellular matrix
preservation

Various approaches have been explored to investigate the optimal
decellularization parameters for cardiac tissue including the use of
different decellularization methods (e.g. perfusion and agitation),
agents (e.g. chemical treatments, biological treatments and physical
treatments) and treatment duration [56, 85, 86]. The common decel-
lularization methods that have been widely used for the cardiac tis-
sue are perfusion and agitation [17, 50, 53, 87]. Perfusion employs
the continuous infusion of the decellularization solution through the
vasculature of heart using a bioreactor system. This technique could
greatly facilitate homogeneous exposure of the decellularization per-
fusates across the WH for removing the cellular components.
However, the perfusion pressure and force used during the decellula-
rization process could damage ECM and affect mechanical proper-
ties of the obtained dECM [81]. Agitation utilizes immersion of
cardiac tissue into the decellularization solution with gentle mechan-
ical shaking. It can be used for decellularizing small tissue sections
when the access to the vasculature is difficult. However, compared
to perfusion method, it requires longer exposure time to the decellu-
larization agents that could disrupt ECM due to excessive treatment
and agitation [81]. Similarly, the chemical detergent such as SDS,
when used for tissue decellularization, has shown to effectively re-
move cellular components but also damaged collagen, GAG content
and growth factors leading to disrupt ECM ultrastructure [88-90].
The prolonged use of trypsin (biological enzyme) for decellularizing
heart tissues has demonstrated to reduce major ECM components
(e.g. collagen, laminin, fibronectin, elastin and GAG content) after
the decellularization procedure [5]. In addition, the exposure

duration of tissue to the decellularizing solution also plays a key role
for maintaining the structural and functional proteins. For instance,
when used the shorter treatment time, the obtained dECM has shown
the incomplete removal of cell debris but better retention of ECM
components. However, the dECM has shown to suffer low mainte-
nance of ECM proteins and mechanical strength when decellularized
using the longer treatment time [5, 6, 56]. Therefore, the current decel-
lularization strategies require further optimization for the experiment
parameters by finding the appropriate complexity and duration of the
decellularization treatments to produce the optimal cardiac dECM.

The therapeutic outcomes of using dECM in cardiac repair are
largely determined by the quality of the dECM. The balance between
cell removal and preservation of cardiac ECM properties (e.g. struc-
tural, biochemical and biomechanical cues) is crucial to achieve an
optimal dECM scaffold that will minimize the immunogenicity upon
implantation and achieve desired cell-ECM interaction. In vivo stud-
ies have proved that the remnant genetic materials (e.g. DNA, RNA
and antigens) within dECM could trigger an inflammatory response
leading to immune-mediated rejection after implantation [91, 92].
For example, Brown et al. evaluated the host response of cellular por-
cine bladder tissue and acellular porcine bladder ECM using a rat ab-
dominal wall defect model. When implanted the porcine bladder
tissue containing xenogeneic cells in rats, the scaffold showed a classic
cascade of inflammatory reaction as indicated by presence of mono-
nuclear cells including macrophages predominately of M1 phenotype,
leading to scar tissue formation. In contrast, the acellular porcine
bladder ECM resulted the shift in macrophage phenotype from M1 to
M2 that promoted constructive tissue remodeling [93]. To reduce im-
munogenicity in decellularized tissues, Crapo et al. recommended the
minimum criteria for effective removal of cellular materials from
dECM by maintaining <50 ng dsDNA per mg dry weight of dECM,
<200bp DNA fragment length, and lack of nuclei in tissue sections
stained with 4°, 6-diamidino-2-phenylindole (DAPI) and hemotoxylin
and eosin (H&E) [5]. However, it remains a hurdle to completely re-
move the cellular materials and maintain the intact 3D ECM integrity
using the current decellularization strategies. Increasing evidence has
suggested that the treatment methods and agents could alter the struc-
ture and composition of ECM and affect the decellularization effi-
ciency [5, 94]. For example, Akhyari et al. performed a direct
comparison by decellularizing the rat WH via perfusion using four
decellularization protocols consisting of different treatment agents,
concentration, and duration. When compared the decellularization ef-
ficiency of decellularized whole heart (dWH), the tested protocols
have shown to produce distinct dECM scaffold in terms of cell re-
moval, ECM microstructure and biochemical conservation.
Moreover, the decellularization procedures that resulted better preser-
vation of ECM proteins (e.g. laminin, elastin, and GAGs) could not
completely remove residual DNA from the tissue. Conversely, when
significant reduction of cell debris was achieved, the dECM scaffold
suffered from low retention of ECM proteins [95]. Similarly, by decel-
lularizing human cardiac tissue (350 um thick) using five different
decellularization methods in an orbital shaker with gentle agitation,
Meglio et al. generated human dECM scaffold that differed in archi-
tecture, composition, and ability to support engraftment, survival,
and differentiation of cardiac primitive cells [53]. In addition to ge-
netic materials, the excess remaining of residual detergents and endo-
toxins in decellularized tissues and change in ECM fiber structure
within the scaffold could also contribute to induce inflammation [2].
These findings have proved the variations of decellularization effi-
ciency within dECM based on the decellularization strategies which
could have potential impact for their downstream applications.
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In the future, the protocol could be tailored specific for cardiac
tissue to obtain an ideal dECM by minimizing the undesirable
effects associated with the decellularization procedure. Specifically,
the decellularization protocol should be standardized for cardiac tis-
sue by (i) optimizing the parameters such as concentration for decel-
lularizing agents, decellularization mode (e.g. agitation vs.
perfusion), exposure time and the right combination of decellulari-
zation strategies (e.g. chemical, biological and mechanical treat-
ments) and (ii) establishing the common criteria to evaluate the
effectiveness of decellularization including removal of cells and
DNA content, quantification of residual detergents, preservation of
ECM components, and biomechanical properties and maintenance
of 3D architecture and vascular integrity.

Recellularization of cardiac decellularized extracellular
matrix

The full recellularization is required to enable the construction of a
functional cardiac tissue using dECM. The cardiac dECM scaffold
must be recellularized by precise positioning of specific cell types
(e.g. endothelial cells for vasculature network) to mimic the natural
heart functions including contractility, electrical conduction and
drug response [34, 81, 96]. Previous reports have demonstrated that
the recellularized cardiac dECM could improve heart function when
implanted in the acute and chronic MI animal models. For example,
when patched on the acute rat MI model, the cardiac dECM gener-
ated by seeding a mixture of human iPSC-derived CMs and iPSC-
derived CD90™ cells, has shown to reduce infract size, increase wall
thickness and promote vascularization as indicated by positive stain-
ing of vWF and a-SMA, leading to improve the heart function com-
pared to the control group [26]. Similarly, when used to deliver
rASCs on a rat MI model, recellularized cardiac dECM resulted in
the presence of higher number of transplanted cells at the infracted
area compared to direct injection seeding method, leading to in-
creased vascular formation within the patch [38]. These findings
demonstrated the importance of recellularization for therapeutic bene-
fits of cardiac dECM. However, efficient recellularization of cardiac
dECM has not been achieved which has compromised the advantages
of scaffold when used to treat the cardiovascular diseases. Some of the
key limiting factors in the current recellularization strategies for car-
diac dECM scaffold include inhomogeneous cell distribution, poor
long-term cell survival and the need for right combination of multiple
cell types for recapitulating the native heart function [97].

Many groups have explored various approaches to optimize the
recellularization strategies for cardiac dECM including the use of
different cell types and seeding methods [82, 98, 99]. The most com-
monly employed seeding methods for recellularization of cardiac
dECM include static seeding, cell injection and perfusion seeding.
The static cell seeding method employs the cell suspension to pas-
sively introduce on top of the cardiac dECM scaffold. This seeding
strategy has shown to form a cell monolayer on surface of the
dECM scaffold or exhibit low seeding efficiency when successful in
penetrating the dECM scaffold. For instance, decellularized porcine
myocardial slices (APMSs) (300 um thick), when seeded with neona-
tal rat ventricular cells (NRVCs) on top of the scaffold using static
seeding method, has resulted inhomogeneous distribution of
NRVCs as indicated by the presence of high cell density near the sur-
face (~3pum below periphery) compared to the core of dECM
(~30 um below periphery) [43]. When seeded on top of dPMSs us-
ing static seeding technique, our previous studies have also shown
limited infiltration of hMSCs and rASCs on 300, 600 and 900 um
scaffolds [38, 52]. Cell injection seeding method involves seeding of

cells with a small gauge needle by multiple injections throughout the
different regions of dECM scaffold [47]. It can deliver correct type
of cells at the specific site of dECM scaffold. However, cell injection
seeding method can lead to inhomogeneous distribution of cells
within the scaffold. Similarly, perfusion seeding method uses a bio-
reactor system to perfuse cell suspension back and forth within the
dECM scaffold. It can distribute cells throughout the scaffold and
transport necessary nutrients and oxygen to promote cell survival.
However, the seeding of cells by perfusion could compromise
the initial seeding efficiency. For example, decellularized porcine
WH, when infused with human umbilical vein endothelial cells
(HUVEC:) into coronary arteries via aorta followed by seeding of
neonatal rat CMs through five intramural injections, has led to in-
complete recellularization of HUVECs due to loss of cells during
perfusion and achieved 50% cellularity of CMs at the injection sites
while less cells in the distal sites [22]. Therefore, efficient strategies
must be developed to enable thorough recellularization and take full
advantages of dECM for cardiac tissue engineering applications.

The development of optimal recellularization strategies may im-
prove seeding efficiency, cell distribution and survival within the
cardiac dECM. The effective seeding method and culture condition
could potentially improve the cell retention and infiltration within
the dECM scaffold. For instance, the recellularization of dWH was
improved by multiple seeding routes and cell infusions using
perfusion-based seeding of cells through the vascular tree followed
by continuing culture in a bioreactor system [83]. Similarly, our pre-
vious study has demonstrated that the bilateral cell seeding method
(cells seeded from both sides of scaffold) could be used to achieve
uniform cell distribution within 600 pm thick decellularized porcine
myocardial slice [52]. Also, the cardiac dECM scaffold could be
functionalized with different pro-angiogenic factors and ECM pro-
teins to enhance initial cell attachment and vasculogenesis [100-
105]. The cardiac dECM could be combined with cell sheet during
the recellularization process to improve cell seeding efficiency and
culture using a perfusion-based bioreactor culture system to pro-
mote cell infiltration. In addition, the bioreactor culture system
could be designed for providing electrical and mechanical stimula-
tions to mimic i vivo conditions and facilitate i vitro stem cell dif-
ferentiation and maturation. On the other hand, through pepsin
digestion and neutralization, the dECM has been processed into an
injectable hydrogel, which has been directly delivered into the
infracted heart to restore heart function [37, 72-74, 76]. The cells
can be easily mixed with the pre-hydrogel solution, and then form a
recellularized construct [106, 107].

Tailoring material properties of cardiac decellularized
extracellular matrix

The extent of ECM preservation after decellularization influences
the material properties (e.g. mechanical strength, bioactivity and
scaffold degradation) of cardiac dECM scaffold. After decellulariza-
tion of cardiac tissue, the maximum retention of ECM components
and structure is beneficial to regulate cell behavior in vitro and tissue
regeneration in vivo [108, 109]. Emerging studies have demon-
strated that decellularization procedure alters ECM composition
and affects mechanical properties of the obtained cardiac dECM.
For example, compared with native myocardium tissue, the decellu-
larized myocardium tissue showed stiffer mechanical response as in-
dicated by biaxial and uniaxial mechanical testing and reduced
angiogenic growth factors as evidenced by Luminex technology [15,
45, 46]. By tuning the scaffold properties, the cardiac dECM could
improve the mechanical strength, bioactivity, and degradation
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kinetics and therefore better mimic native tissue microenvironment.
Moreover, the ability to control the material properties of cardiac
dECM could enhance cell-ECM interaction after reseeding and fa-
cilitate cell growth, migration and differentiation.

Decellularized ECM derived from myocardium tissue could be
modified through various biochemical treatments such as growth
factors and bioactive molecules to tune scaffold properties, optimize
degradation rate, enhance the bioactivity and promote vasculariza-
tion. Recently, a few groups have already begun to explore various
strategies to demonstrate the feasibility of composite cardiac dECM
through scaffold modification and have shown encouraging in vivo
results after implantation (Table 2). For example, by treating human
mesenchymal progenitor cells and human cardiac dECM with trans-
forming growth factor beta (TGF-B), Godier-Furnémont et al. pro-
duced composite scaffold that promoted the formation of vascular
networks when used to treat injured heart using a rat MI model,
leading to functional recovery of left ventricular systolic dimensions
and contractile properties [105]. Similarly, the porcine cardiac
dECM, when prepared by rehydrating with RAD16-1 peptide hydro-
gel followed by seeding of porcine adipose tissue MSCs in a suspen-
sion containing 10% sucrose solution, has resulted to restore
ventricular cardiac function in a pig MI model by reducing infract
size and promoting neovascularization within the ischemic myocar-
dium [102-104]. It is rarely found to combine heart tissue-derived
dECM with other polymer materials as a cardiac patch. Many
groups have explored the feasibility of fabricating 3D scaffolds by
combining other types of dECM with synthetic/natural polymers
[110-113]. Recently, Pok et al. constructed cardiac scaffold by
mixing powered porcine myocardial matrix solution with chitosan
followed by lyophilization to form 3D scaffold. The obtained
dECM-chitosan scaffold, when seeded with neonatal rat ventricular
myocytes, has demonstrated to improve the contractile and electro-
physiological functions [114]. In another study, by combining
dECM obtained from bovine pericardium tissue with poly(propyl-
ene fumarate) (PPF), Bracaglia et al. developed PPF-pericardium hy-
brid that supported cellular infiltration with improved inflammatory
response when tested in rat in vivo model [115]. Additionally, sev-
eral studies have also examined composite hydrogels by combining
the heart ECM hydrogel with synthetic or natural hydrogel for car-
diac repair such as dECM/collagen hydrogel and dECM/polyethyl-
ene glycol (PEG) hydrogel, which has shown improved mechanical
properties and degradation rate [107, 116]. These studies showed
that the combination of dECM with other biomaterials would be a
promising way to improve dECM properties for cardiac repair.
Combining decellularized ECM and bioactive molecules to generate
composite scaffold is relatively new technique in cardiac tissue engineer-
ing. There are still many questions that need to be thoroughly investi-
gated using composite dECM scaffold such as the effect of composite
scaffold on cell behavior, mechanical properties and degradation rates.

Recently, dECM derived from cardiac tissue has also been ex-
plored to be used for biofabrication technologies such as electrospin-
ning and 3D bioprinting [117-125]. Cardiac constructs have been
prepared by electrospinning of dECM in conjunction with synthetic
polymers for cardiac repair applications. For example, Schoen et al.
demonstrated the fabrication of electrospun scaffold using porcine
cardiac tissue-derived dECM and poly(ethylene oxide) with well-
defined microstructures that supported the growth and survival of
hMSCs and neonatal CMs [126]. In addition, dECM has shown
great potentials to serve as a nature bioink for 3D bioprinting. Using
porcine myocardium tissue-derived dECM bioink, rat myoblast cells
and polycaprolactone (PCL) framework, Pati et al. constructed car-

diac tissue blocks with the 3D bioprinting technique that maintained
high cell viability and myoblast cells maturation [122].
Photocrosslinkable dECM bioinks have been developed for fabricat-
ing patient-specific tissues with high control over complex micro-
architecture and mechanical properties [119]. Cardiac patches have
been 3D printed with bioinks composed of cardiac dECM, human
progenitor cells, and gelatin methacrylate (GelMA) and tested
in vivo for myocardium repair [120]. These studies have demon-
strated the promises of applying dECM in biofabrication strategies.
We envision in the future that the composite scaffold based on
chemically modified dECM and biofabrication strategies could be
used to address some of the current challenges associated with decel-
lularization and recellularization of cardiac dECM. The ability to
tune ECM properties can provide powerful platform to optimize the
culture conditions for constructing prevascularized and functional
3D myocardium tissue. For instance, the prevascularization of car-
diac dECM scaffold could be achieved through scaffold functionali-
zation with pro-angiogenic factors (e.g. vascular endothelial growth
factor and basic fibroblast growth factor) and appropriate cell sour-
ces (e.g. endothelial cells and MSCs). The composite scaffold could
also be tailored to guide stem cell differentiation and maturation to-
ward the fabrication of functional cardiac tissue.

Conclusions and perspectives

dECM derived from myocardium tissue has gained significant atten-
tion for cardiac repair and regeneration. The use of decellularization
and recellularization strategies have enabled to produce cardiac
dECM scaffold that mimic tissue properties (e.g. ECM architecture,
biochemical cues and mechanical integrity) similar to native heart
which favors cell attachment, growth, infiltration and differentia-
tion. Because of these attractive advantages, cardiac dECM scaffold
has potential to provide microenvironment and biological signals
for damaged heart that could promote tissue reconstruction upon
implantation. However, there are several issues that need to be re-
solved prior to clinical applications of cardiac dECM which includes
finding optimal decellularization method, preservation of vascula-
ture and ECM composition, recellularization strategies to properly
reintroduce cells into the specific compartment of the scaffold and
prevascularization of thick cardiac dECM. The thorough optimiza-
tion of decellularization parameters and recellularization techniques
will lead to further improve the engineered patch for myocardial
repair. Recently, dECM has been commercialized and tested in
clinical trials for myocardium regeneration [68, 127]. However,
most studies used dECM derived from noncardiac tissues such as
CorMatrix that is made of decellularized SIS [128-132]. It was
reported that heart ECM-derived hydrogel (Vetrigel, Ventrix, Inc.)
has been used for post infarction treatment in clinical trial (Phase 1)
(ClinicalTrials.gov Identifier: NCT02305602). However, limited
clinical results have been reported using decellularized cardiac ECM
patch. Compared to the SIS-derived dECM, cardiac dECM would
be more promising for future clinical applications in treating cardiac
diseases. However, scaling-up and batch-to-batch variations are the
two major concerns for commercialization. Currently, there are no
good approaches to avoid batch-to-batch variations caused by the
individual differences. Furthermore, the safety and efficacy of the
dECM as cardiac patch needs to be evaluated. The dECM patches
were investigated in small rodent animal models, but very few stud-
ies have been conducted to test decellularized heart ECM patches in
large animal models [28, 51]. In addition, long-term investigation af-
ter implantation still needs to be executed prior to commercialization
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and clinical trial. Nevertheless, it is undoubted that the decellular-
ized heart ECM scaffolds will be attractive candidates for clinical

trial once they can be further characterized in detail.
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