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Abstract

Model-based phylodynamic approaches recently employed generalized linear models

(GLMs) to uncover potential predictors of viral spread. Very recently some of these models

have allowed both the predictors and their coefficients to be time-dependent. However,

these studies mainly focused on predictors that are assumed to be constant through time.

Here we inferred the phylodynamics of avian influenza A virus H9N2 isolated in 12 Asian

countries and regions under both discrete trait analysis (DTA) and structured coalescent

(MASCOT) approaches. Using MASCOT we applied a new time-dependent GLM to

uncover the underlying factors behind H9N2 spread. We curated a rich set of time-series

predictors including annual international live poultry trade and national poultry production

figures. This time-dependent phylodynamic prediction model was compared to commonly

employed time-independent alternatives. Additionally the time-dependent MASCOT model

allowed for the estimation of viral effective sub-population sizes and their changes through

time, and these effective population dynamics within each country were predicted by a

GLM. International annual poultry trade is a strongly supported predictor of virus migration

rates. There was also strong support for geographic proximity as a predictor of migration

rate in all GLMs investigated. In time-dependent MASCOT models, national poultry produc-

tion was also identified as a predictor of virus genetic diversity through time and this signal

was obvious in mainland China. Our application of a recently introduced time-dependent

GLM predictors integrated rich time-series data in Bayesian phylodynamic prediction. We

demonstrated the contribution of poultry trade and geographic proximity (potentially unher-

alded wild bird movements) to avian influenza spread in Asia. To gain a better understand-

ing of the drivers of H9N2 spread, we suggest increased surveillance of the H9N2 virus in

countries that are currently under-sampled as well as in wild bird populations in the most

affected countries.
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Author summary

What drives the geographic dispersal and genetic diversity of avian influenza A virus

H9N2 in Asia? We used two model-based approaches, DTA and MASCOT, to reconstruct

the phylogeographic dynamics of the virus genetic sequence and predictor data. To do so,

we compiled multiple potential predictors to inform migration rates and effective popula-

tion size in a generalized linear model framework. This allowed us to quantify which of

these predictors most likely predicts the spread of avian influenza A/H9N2 in Asia. We

found a positive association of international poultry trade and national poultry produc-

tion time-series with virus migration rates and effective population sizes respectively. We

also identified geographic proximity as a strongly supported driver to virus migration

rates and this points to the potential role of wild bird populations in virus dispersal across

countries. Our study is a practical example of the use of temporal information in predic-

tors to model heterogeneous spatial diffusion and population dynamic processes and pro-

vides direction to H9N2 control efforts in Asia.

Introduction

Phylogeographic models and their extended GLMs

Phylogeographic methods can infer the migration history of sampled lineages based on genetic

data. The discrete trait analysis (DTA) and structured coalescent model are commonly used

probabilistic model-based phylogeographic methods. The DTA model treats the migration of

lineages between different geographic locations as a per-lineage continuous-time Markov pro-

cess, analogous to the DNA substitution process [1]. This approach achieves computational

efficiency by integrating over all possible migration histories using the efficient tree pruning

algorithm for computing phylogenetic likelihoods [2]. One drawback of this approach is the

assumption of independence of the tree generating process and the migration process, which

can lead to underuse of the data [3]. Another drawback is the potential biases in migration

rates estimates when sampling is biased across sub-populations, since such a model assumes

that the sample sizes across sub-populations are proportional to the subpopulation sizes (sub-

populations refer to different geographic locations in this study) [3].

The structured coalescent on the other explicitly models how lineages coalesce within and

migrate between sub-populations [4]. Additionally, the structured coalescent conditions on

sampling and only assumes that the samples are drawn at random from a large population.

This makes the structured coalescent more robust to sampling bias [3, 6]. Exact inference

under the structured coalescent is challenging [5]. Thus, approximations to the structured coa-

lescent model by approximately integrating over all ancestral migration histories were pro-

posed [3, 6]. The marginal approximation of the structured coalescent (MASCOT) currently

provides the closest approximation to the structured coalescent while being computationally

efficient. This allows to analyse datasets with many different sub-populations [6, 7] and cur-

rently enables to analyse datasets of up to 500 sequences and up to 14 different states [8].

The generalized linear models (GLMs) can be employed as an extension of phylogeographic

inference to inform the pathogen migration rates between distinct geographical locations by

predictor data [9]. Some authors used GLMs in both discrete and continuous phylogeographic

models to investigate the impact of underlying environmental variables on the dispersal fre-

quencies and velocity of a virus respectively [10]. But only univariate models can be considered

in the current GLM implementation in continuous phylogeographic inference. The GLM
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model incorporating multiple predictors in DTA [9] gained popularity for its computational

efficiency and user-friendly implementation in BEAST 1.10 [11]. Recently, DTA GLM models

were also applied to inform the potential factors shaping the spatial dispersal of influenza A

virus [9, 12], the Ebola virus [13], the Foot-and-Mouth disease virus [14] and dengue virus

[15], and the underlying predictors contributing to host transmission dynamics of rabies virus

[16]. But it unrealistically assumes time-homogeneous substitution processes between sub-

populations. The epoch GLM has already allowed for time-dependence in both coefficients

and predictors data to model the heterogeneous spatial diffusion processes through time in

DTA [13, 17]. However, a recent phylodynamic GLM only considered time-dependent coeffi-

cients (rather than time-dependent predictors) to inform the temporal dynamics in the spread

of Ebola virus [13]. Very recently the GLM model with both time-dependent predictors and

coefficients were proposed in MASCOT [8]. This allows, for the first time, the ability to quan-

tify the contribution of both time-series and constant predictors to both migration rates and

effective population sizes jointly in a structured population.

Avian influenza A virus H9N2 in Asia

H9N2 avian influenza viruses (AIVs) have spread into multiple Asian countries and became

endemic in domestic poultry populations in some of these countries [18, 19, 20]. Its transna-

tional geographic dispersal and exchange of genetic segments with other subtypes in poultry

increase their potential for zoonotic threat to public health [18, 21, 22]. Of note, the multi-seg-

mented H9N2 virus provided its internal gene materials to facilitate the genesis of the novel

H7N9 AIVs that caused multiple outbreaks and high mortality in humans since 2013 in China

[21]. Hereafter the underlying mechanism behind evolution and spread of the “donator”

H9N2 virus raises wide concerns [23].

Poultry trade network is a potential source of avian influenza virus mobility in Asia and

may help to explain the multiple introductions of H9N2 AIVs from the same genetic group

into different countries [24, 25]. Additionally, free-living birds played a limited role in dis-

semination of poultry-adapted AIVs for the specific host adaption [26]. The G1-like H9N2

virus isolated in middle eastern countries shares a common ancestor with the virus from

China [27], and the genetically related H9N2 viruses in geographic regions separated by

long distances suggest a role for migration by poultry trade [28]. Further, the international

poultry trade increased in recent decades to meet human demand on the cheap protein from

poultry. The asymptomatic poultry carrying this low pathogenetic virus could be neglected

during transportation process. Poultry transportation can bring together various host spe-

cies from different regions in a high-density setting and provides an ideal environment for

interspecies virus transmission and theretofore the reassortment of different viral segments

[29].

Another potential source of AIV mobility is wild bird movements [30, 31, 32]. In 2005, the

outbreak of highly pathogenic AIV H5N1 in wild birds in Qinghai Lake, China and its subse-

quent rapid dissemination from Asia to Europe and Africa led to a great concern about the

role of migratory birds played in virus dispersal [33, 34]. Wild aquatic birds can act as natural

reservoirs of influenza A viruses, since infection is often asymptomatic or mild, allowing them

to migrate while carrying the virus [35]. The virus from wild bird can spread into the free-

ranging poultry by frequent contacts in their sharing areas [36]. Viral transmission between

domestic and wild birds commonly occurred within a region while mobile and migratory wild

birds could transmit viruses between regions [24]. Although poultry trade may play a major

role in H9N2 virus spread, the contribution of bird migration to the long-distance virus dis-

persal between poultry populations should therefore not be neglected. Nevertheless, we here
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focus on assessing the role of poultry trade and production in the prevalence and spread of

H9N2 AIVs.

By elucidating the evolutionary dynamics and the underlying factors that drive virus spread,

we aim to better understand the ecology and spread mechanism of the viruses in Asia. In this

study, we also described the spatial distribution and temporal dynamic of H9N2 virus isolates.

The migration dynamics and their underlying mechanism of H9N2 AIVs between 12 Asian

countries and regions were inferred by using two phylogeographic methods DTA and MAS-

COT in a Bayesian Markov chain Monte Carlo (MCMC) inference framework. Under MAS-

COT, we also jointly inferred predictors of the effective population size of the virus in each

location, which is not possible in DTA. To do so, we used a GLM approach to parameterize

migration rates and effective population sizes of H9N2 viruses by potential predictors, includ-

ing time-dependent predictors (annual live poultry trade, annual national poultry production,

yearly mean temperature, yearly total rainfall, annual seasonality of temperature and rainfall,

and yearly virus sample size) and time-independent predictors (e.g. geographic distance). The

underlying mechanisms of virus migration and genetic diversity were evaluated and the sensi-

tivity of our results was investigated by comparing models that included different predictors,

different sub-sampling strategies of genetic data and alternative phylogeographic modelling

assumptions.

Materials and methods

Sequence data

We obtained all full-length haemagglutinin (HA) segment nucleotide sequences of avian-ori-

gin H9N2 from Asian countries and regions that were available in the GenBank Influenza

Virus Database (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) hosted by the

National Center for Biotechnology Information (NCBI). Identical sequences caused by dupli-

cated submissions in the database (i.e. same sequence and same isolate name), were reduced to

a single sequence to avoid bias in rate estimates. Sequences without explicit isolation date or

country information were excluded. These HA sequences from 1976 to 2014 were geocoded

and pooled into groups according to their geographic location, host type (chicken, duck, quail,

turkey, wild bird, and others), and isolation date (S5 Table).

The virus sequences were aligned in MAFFT v7 software with default parameters [37]. We

evaluated the temporal signal of the remaining heterochronous sequences with TempEst [38]

and removed sequences that we identified as outliers. To get a more even distribution of sam-

ples through time and between different locations, we randomly sub-sampled the H9N2

sequences to keep at most 10 isolates per country/region per year. In order to avoid over-

parameterization we discarded locations with less than 10 isolates in total. Finally, we added

commonly used representative HA gene sequences to help the phylogenetic clade classification

(A/quail/Hong Kong/G1/97 represents the G1 lineage; A/chicken/Hong Kong/G9/97 or A/

duck/Hong Kong/Y280/97 or A/chicken/Beijing/1/94 represents the G9 lineage; and A/

chicken/Korea/38349-p96323/96 or A/duck/Hong Kong/Y439/97 represents the Korea line-

age) [39]. The final data set contained 526 HA sequences from 12 Asian countries/regions. We

defined distinct locations on the country/region level as Bangladesh, mainland China, Hong

Kong, South Korea, Japan, Vietnam, India, Pakistan, Iran, Israel, Saudi Arabia, and the United

Arab Emirates. A dataset of this size is currently an upper limit of what can be analysed by

using structured coalescent methods. In order to test the impact of sub-sampling strategy on

our inferences, we additionally sub-sampled this dataset by randomly sampling at most 5 iso-

lates per country/region per year, which resulted in a dataset of 385 HA sequences. More detail

information on the viral sequences is provided in S5 Table.
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Empirical predictors

To inform the spread and genetic diversity of H9N2 viruses across the 12 locations, we chose

several potential predictors. These are similar to ones previously used to describe the spread

of H3N2 [9] or Ebola [13, 8]. We used annual live poultry trade, annual poultry production,

gross domestic product values (GDP), geographic distance, a predictor describing if countries

share a continental border, temperature, temperature seasonality, rainfall, rainfall seasonality,

virus sample size and the latitude of centroid point of each country. All the country-level pre-

dictors were available from 1986 to 2013.

We downloaded live poultry trade and poultry production data (including data related to

chicken, duck, and turkey) from FAOSTAT (http://faostat3.fao.org). Typically, poultry move-

ments are driven by variation in the supply and demand for poultry, which are in turn com-

monly affected by economic, ecological and climatic conditions [40]. These, as well as practical

considerations led us to chose the set of potential predictors used in this study.

GDP statistics were collected to describe the economic level of each country. Annual mean

temperature and annual total rainfall were gathered to describe the climatic condition in each

country through time. Further, the annual variation of temperature and rainfall were described

by temperature seasonality and rainfall seasonality respectively. Temperature seasonality is the

standard deviation of the monthly mean temperatures in each year. Rainfall seasonality (RS)

for year t is the ratio of the standard deviation of the monthly total precipitation (sp) over one

plus the mean monthly precipitation (pm): RS(t) = sp(t)/(1 + pm(t)). GDP, temperature, and

rainfall data were collected from the World Bank database (http://data.worldbank.org/).

The H9N2 isolates sampled from the same region commonly tended to gather in a phyloge-

netic group inferred by the Bayesian or maximum likelihood inference [23, 28, 41]. The geo-

graphic distance between each pair of locations was considered a potential factor of virus

spread and calculated by the great circle distance based on the central latitude and longitude of

each location. We also used a predictor with 1 or 0 to describe if two locations share their bor-

der on the continent or not, respectively. To test the impact of sampling effects, the number of

H9N2 sequences in both origin and destination location was considered as two separate pre-

dictors. Finally the geographic central latitudes of locations were considered as a predictor to

investigate latitude as a potential driver of H9N2 spread.

To avoid excessive co-linearity among explanatory predictors, we removed the GDP,

temperature seasonality and the latitude variables, since the Pearson correlation coefficients

between temperature variable and each of them exceeded 0.7. To eliminate the effect of the

magnitude of different predictors, all predictors (except binary predictors) were transformed

into log space and standardized so that their means are equal to 0 and standard deviation

equals to 1. This is standard practice when using generalize linear models to inform viral

migration rates and effective population size (e.g. [9]). More detail information on predictors

is supplied in S2 Table.

The DTA model

The DTA model treats movement of viral genes across discrete geographic locations as a con-

tinuous time Markov process in which the state space consists of the sampled locations [1, 42].

This model treats the spread of viruses as statistically equivalent to the evolution of molecular

substitutions at a site. The posterior probability distribution of parameters given data in the

DTA model is shown in Eq 1 [1]. Here, the aligned sequences S and the sampling locations L
are treated as observations, whereas the isolation dates of the sequence t are treated as bound-

ary conditions. The phylogenetic tree T, the nucleotide substitution rate matrix μ, the for-

wards-in-time migration rate matrix f and the effective population size θ of the whole meta-
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population are random variables estimated in this model. The first term on the right is the

likelihood of the sequences. This likelihood is calculated by integrating over all possible substi-

tution histories using the pruning algorithm [2]. The second term is the likelihood of the

sampling locations given the time-stamped genealogy and the instantaneous migration rate

matrix. It is calculated by the same pruning algorithm, but using a migration rate matrix rather

than a substitution matrix. The third term describes the probability density of the genealogy

across the entire meta-population, approximated by a standard neutral coalescent prior for a

well-mixed and unstructured population. The fourth term represents the prior distribution of

three independent random variables. It should be noted that to the extent that θ can be inter-

preted in this model, it represents the effective population size for the entire meta-population

across all locations in the dataset.

PðT; m; f ; yjS; LÞ / Pr ðSjT; mÞPr ðLjT; f ÞPðTjyÞPðm; f ; yÞ ð1Þ

The structured coalescent model

The structured coalescent jointly models how lineages coalesce within locations and migration

between them. The posterior distribution of the parameters given the data in a structured

coalescent phylogeographic inference is described in Eq 2. Here, the meaning of parameters is

the same as in the DTA model. However, migration is parameterized as a backwards-in-time

migration rate matrix (m) and the effective population size~y is modelled separately for each

sub-population. The first term is the likelihood of sequences given genealogy and substitution

model, which is computed using the pruning algorithm [2]. The second term is the probability

density of the genealogy and migration history of lineages under the structured coalescent

assumption given the migration rate matrix and effective population sizes. The third term rep-

resents the prior distribution of the model parameters.

PðT;M; m;m;~yjS; LÞ / PðSjT; mÞPðT;MjL;m;~yÞPðm;m;~yÞ ð2Þ

The structured coalescent likelihood can be computed analytically only when conditioned

on a migration history (M). Thus standard approaches have required augmenting the tree with

a random-dimensional migration history which has restricted the application of this model to

datasets with a small number of demes/locations [5]. However, when the details of the migra-

tion history are not of particular interest, the MASCOT model [7] can be used to approximate

the integrated likelihood (i.e. formally integrating over every possible migration history for

each tree in the MCMC chain). This approximation is closely related to the exact structured

coalescent, but still allows us to analyse a dataset with many different sub-populations. Since

we seek to investigate the spread of H9N2 between 12 different countries/regions, we used

MASCOT in our analyses.

Migration rate GLMs

DTA and MASCOT have both been extended such that constant migration rates and time-

series migration rates can be described using GLMs [7, 9, 17]. This allows us to infer the con-

tribution of explanatory factors to migration rates between different sub-populations, and

through time. We examined different sub-sampling scheme on our genetic data, and the effect

of including and excluding isolate sample size as a predictor separately in our GLM models.

We used a prior probability distribution on the number of active predictors such that 50% of

the probability mass is no predictors being included in the GLM. Four variants were consid-

ered in GLM under DTA model to investigate the contribution of drivers to the constant
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migration rates among these unstructured sub-populations; both time-dependent and time-

independent predictors were considered to model viral migration rates between different sub-

populations in six GLMs using MASCOT (S1 Table).

Migration rates between locations are defined as log-linear combinations of coefficients,

indicators, and predictors. Eqs 3 and 4 describe the time-independent and time-dependent

parameterizations of the migration rates respectively. Here, mij represents the migration rates

between location i and j; pkmfijg represents the k-th predictor between location i and j; Ikm repre-

sents the indicator and b
k
m represents the coefficient of the kth predictor. The indicator and

coefficient describe if and to what degree each predictor contributes to explain the migration

rates. Indicators are estimated by a Bayesian stochastic search variable selection (BSSVS)

algorithm to describe the posterior inclusion probability for each predictor and use the priors

on the number of active predictors to reduce over-fitting [43]. Further, mij(t), pkmfijgðtÞ, b
k
mðtÞ

and IkmðtÞ represent the time-dependent version of corresponding parameters in this model.

Because more than 10 predictors were chosen to model the migration rates, we removed the

error terms in the GLM model to avoid having to infer too many parameters.

logmij ¼
Xn

k¼1

Ikmb
k
m log p

k
mfijg ð3Þ

logmijðtÞ ¼
Xn

k¼1

Ikmb
k
m log p

k
mfijgðtÞ ð4Þ

In contrast to DTA, the structured coalescent models a process from the present backwards

in time to the past. Therefore, all parameters of the model are backwards in time parameters,

including the migration rates. To compute backwards in time migration rate mb
jiðtÞ from for-

wards in time migration rates, we scale the forwards in time rates using the effective popula-

tion sizes of the source and sink populations:

mb
jiðtÞ �

NeiðtÞ
NejðtÞ

mf
ijðtÞ ð5Þ

Effective population size GLMs

Effective population sizes within different sub-populations were modelled by both time-inde-

pendent (Eq 6) and time-dependent (Eq 7) GLM models in MASCOT. Here, Nei represents

the viral effective population size of location i; pkNefig represents the kth (time-independent)

predictor at location i; bk
Ne and IkNe represent the coefficient and inclusion probability of the kth

predictor respectively. αi represents the extra part of viral effective population size that could

not be explained by the predictors in region i. Further, Nei(t), pkNefigðtÞ, b
k
NeðtÞ and IkNeðtÞ repre-

sent the time-dependent version of corresponding parameters from 1986 to 2013 in the model.

Eq 8 describes a specific instance of the model in Eq 7. The first part of Eq 8 describes the

relationship between viral effective population size and poultry production in each region

jointly. Here, the number of predictors n is equal to the number of locations in the analysis.

Pi
NefigðtÞ represents the poultry production in region i from 1986 to 2013. In order to model the

time before 1986 as a structured coalescent process with constant rates, we introduce predic-

tors that are 1 for any of the locations before 1986 and 0 otherwise. One predictor therefore

only predicts the Ne after 1986 and for only one location. This we do in order to avoid events

that happened more than 28 years ago for which we do not have predictor information to bias
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our inference.

logNei ¼
Xn

k¼1

ðIkNeb
k
Ne log p

k
Nefig þ aiÞ ð6Þ

logNeiðtÞ ¼
Xn

k¼1

ðIkNeb
k
Ne log p

k
NefigðtÞ þ aiÞ ð7Þ

logNeiðtÞ ¼

Pn
i¼1

IiNeb
i
Ne logP

i
NefigðtÞ þ ai t ¼ 1; . . . ; 27;

Pn
i¼1
aNefig t ¼ 28:

8
<

:
ð8Þ

Parameter inference

Bayesian analyses of H9N2 AIVs using the DTA and DTA GLM models were conducted using

BEAST v1.10.0 [11]. The MASCOT GLM analyses on the same data were conducted using

BEAST v2.5.2 [44] and Coupled MCMC [45]. An HKY nucleotide substitution model with

gamma site heterogeneity using 4 rate categories and a strict molecular clock model were

employed to model sequence evolution in all analyses. The discrete phylogeographic analysis

using DTA with asymmetric trait substitution model and Bayesian skyline tree prior was per-

formed in 5 parallel runs. The convergence and mixing of MCMC chains in these runs were

diagnosed by the RWTY package in R v3.4.3 [46]. DTA and MASCOT GLM models were

used to estimate the contribution of potential predictors to the migration rates between each

pair of locations. Further, the MASCOT analyses included population dynamic GLMs to

identify the underlying factors driving virus population diversity in each sub-population. We

performed at least 5 runs with 10-100 million iterations (based on the convergence time of dif-

ferent analyses) of different analyses to estimate the phylogenetic tree with location informa-

tion and GLM parameters. We used Tracer v1.7 [47] to remove an appropriate burn-in (10%-

20% of samples in most cases) to achieve an adequate effective sample size (ESS, at least 100).

The time scaled phylogenetic tree with the maximum probable location in each lineage was

annotated and visualized in FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) and the

ggtree package in R v3.4.3 [48].

Results

H9N2 was endemic in domestic poultry in Asian countries

H9N2 viruses spread to at least 22 countries in Asia between 1976 and 2014 (Fig 1a). These 22

countries are mostly located in tropic and temperate zones with lower latitudes, where the cli-

matic conditions are suitable for poultry rearing. H9N2 viruses have been isolated from a wide

variety of different hosts, including the major poultry species: chickens and ducks. Compared

to the number of isolates from wild birds, H9N2 viruses were predominantly isolated from

domestic poultry populations in Asia, especially from chicken. Since 1996, H9N2 viruses have

been isolated in more Asian countries and then persisted in birds in some of these countries

for several years (Fig 1b). The number of isolates shows an increasing trend and most were

sampled from mainland China since the late 1990s, which is likely in part driven by a larger

surveillance effort. The estimated effective population size of the virus however also substan-

tially increased since 1996 (Fig 1c).
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Viral phylogeny and dynamics of spread

The evolutionary relationships and the migration history of lineages reconstructed using the

two phylogeographic methods are shown in Fig 2. As mentioned previously, the genealogies

can be grouped into three lineages: G9-like, G1-like and Korea-like lineage [39]. These three

lineages were established in the 1990s and continue to be isolated to date. Most isolates used

in this study were found to be G9- or G1-like. Isolates from countries close by to each other

were often genetically related (Fig 2). G9-like H9N2 viruses were mainly isolated in mainland

China, Hong Kong, Japan, and Vietnam. G1-like viruses were mainly isolated in the Middle

East and the Indian subcontinent. Korea-like viruses were predominantly isolated in South

Korea, Japan, and Hong Kong.

Hong Kong was inferred as the most likely source of H9N2 viruses circulating in Asia by

both DTA (98% posterior probability) and MASCOT (97% posterior probability) (Fig 2). This

is however likely driven by a lack of samples from other regions, for example mainland China,

in this era. DTA inferred H9N2 to have spread from Hong Kong to East Asia in the 1980s.

After, one part of the viral population continued to spread in countries in the East and

Fig 1. Spatio-temporal distribution of avian-origin H9N2 influenza viruses in Asia between 1976 and 2014. (a)

Spatial distribution where the size of circle represents the number of virus isolates obtained in the affected countries/

locations. The value of circle indicates double square roots of virus isolate quantity in each location. Colors in the circle

represent different fraction of virus hosts. Most of the isolates originate from chickens and from China. The source of

map is http://www.naturalearthdata.com. (b) The number of H9N2 HA isolates that are deposited in NCBI through

time. The bars represent the annual number of H9N2 isolates sampled in each region. (c) Inferred effective population

sizes of H9N2 in Asia by using Bayesian skyline plot. The effective population size of H9N2 viruses increased in 1996

when more isolates began to be sampled in more countries representing multiple outbreaks.

https://doi.org/10.1371/journal.pcbi.1007189.g001
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Fig 2. Time scaled phylogenetic trees of H9N2 influenza viruses in Asia. (a) estimated using DTA model and (b)

using MASCOT model. The colour of tree branches indicates location (see legend) with the maximum probability. A

colour change on a branch indicates a virus migration event. Numbers on branches represent posterior probability of

displayed location. Numbers in parentheses represent 95% highest posterior density interval of divergence time of the

nearest node. A black asterisk represents a virus sequence isolated from wild bird. UAE is short for the United Arab

Emirates. Both methods place the origin of H9N2 in Hong Kong, from where it spread to East Asia. This is likely driven

by a lack of samples from other locations in the 1970s and 80s. DTA and MASCOT differ in the details on how it spread

to West and South Asia. Bars on the right indicate three established lineages based on the phylogenetic relationship

between the virus and the representative strains in Asia. The phylogenetic cluster of isolates from domestic poultry in

nearby regions indicates their roles in virus spread among neighbouring locations; whereas the dispersal distribution of

isolates from wild birds on the phylogeny questions their roles in virus spread across countries and genetic groups.

https://doi.org/10.1371/journal.pcbi.1007189.g002
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Southeast Asia; Another part of the population was transmitted to several countries in the

West and South Asia. MASCOT inferred that H9N2 viruses were directly transmitted into

countries in the West and South Asia from Hong Kong, and via multiple introductions from

Hong Kong to East Asia.

Viral migration rates among Asian countries and regions were inferred by using DTA

with asymmetric migration rates (Fig 3). The highest migration rates with the strongest sup-

port were inferred from Pakistan to Iran, between Hong Kong and mainland China, from

Hong Kong to Vietnam, from Pakistan to the United Arab Emirates, from mainland China

to Japan, from Pakistan to India, and from India to Bangladesh. All these pairs are locations

within close geographic proximity. The migration rates among these pairs are 0.91 or

higher, which means� 1 or more migration event occurred between these locations per

lineage per year. Additionally, the phylodynamic reconstructions on root state, location

transition dynamics in evolutionary history, and migration rates of H9N2 are broadly con-

sistent when we employed the sub-sampling pattern including 385 or 526 HA sequences(S1

and S2 Figs).

Fig 3. Asymmetric migration rate matrix of H9N2 influenza viruses between each pair of locations in Asia. The migration rate matrix was estimated using DTA,

and it describes the virus migration rates between each pair of locations. Unit is the number of migration events per lineage per year. Bayes factors on migration rate

over 3 and 20 are labeled by a yellow and a red asterisk at the bottom right of the cell respectively. UAE is short for the United Arab Emirates. The largest and most

well-supported rates are between neighbouring locations, suggesting the underlying factors related to geographic proximity can contribute to virus spread.

https://doi.org/10.1371/journal.pcbi.1007189.g003
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The mechanisms of virus spatial spread

We next investigated the factors driving the spread of H9N2 viruses across several locations in

Asia by using a GLM to model the relationship between potential predictors and viral migra-

tion rates (Fig 4, S3 and S4 Figs). A total of 10 different GLMs were used (S1, S3 and S4 Tables).

We used both DTA and MASCOT and included time-dependent and time-independent pre-

dictors; 385 or 525 HA sequences. Further, we ran analyses with and without considering the

number of isolates as a distinct predictor. Bayes factors (BFs) on inclusion probability of each

predictor were calculated to explain how much the data informed the inclusion of a predictor

[49]. BF is calculated as a ratio of the posterior odds for a predictor inclusion to the corre-

sponding prior odds. A BF over 3 is typically considered suggestive and a BF over 20 is typi-

cally used as strongly supporting a predictor to be included into the GLM model [50]. In

addition, we also evaluate the robustness and support of a predictor can inform virus migra-

tion rates by counting times each predictor was selected as a supportive one in all migration

rate GLMs investigated. If a predictor was always selected as supportive regardless of the het-

erogeneous sampling intensity and model assumption, it can robustly inform virus spread.

Geographic distance was identified as a strongly supported driver in all migration rate

GLMs investigated and it consistently made a negative contribution to the virus spread (S4

Table), meaning that migration is inferred to be stronger between closer countries. We

inferred poultry trade to strongly predict viral migration in all GLMs except the time-indepen-

dent ones under MASCOT. Predictors related to rainfall seasonality in destination location

and boarder sharing were also inferred in more than half of all GLMs investigated to be

strongly supported. Additionally, we inferred migration to be weaker into locations with

strong seasonality in rainfall. Further, our time-dependent GLM of MASCOT was more sensi-

tive as identified by predictor poultry production in origin and rainfall seasonality. These

results were consistent and robust when we included viral sample size as a distinct predictor or

when we used fewer samples (S4 Table).

Predictors of viral effective population sizes through time

In MASCOT, we also jointly inferred predictors of effective population sizes of H9N2 virus in

the different locations and their changes through time. The effective population sizes in the

different locations were modelled by multiple time-independent and time-dependent predic-

tors in GLMs (Fig 5, S5 and S6 Figs). Poultry production was selected as a supportive predictor

for the effective population size of H9N2 virus in GLM model with time-dependent predictors

(Fig 5). This implies that the higher the poultry production in a country is, the larger the

genetic diversity of H9N2 virus in that country. Furthermore, virus sample size was also con-

sidered as a positive and supportive predictor, and the inclusion of virus sample size into the

GLM model lowered the contribution of poultry production to virus population diversity.

This suggests that the number of viral samples through time was roughly proportional to the

effective population sizes. No potential predictors of effective population sizes were supported

when we assumed that the effective population sizes are constant through time (S6 Fig). Addi-

tionally, we applied a GLM that used time-dependent poultry production data in 12 Asian

countries or regions to model the virus population dynamics in each sub-population jointly

(S7 Fig). Poultry production in mainland China was strongly supported as a positive predictor

of the local viral effective population size, but not in any other location.

Discussion

In Asia, H9N2 viruses have spread into multiple countries which did not previously have doc-

umented viral isolation in the 1990s and persist in domestic poultry in some of these countries
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Fig 4. Predictors of migration rates of H9N2 influenza viruses between 12 countries/locations in Asia. The estimated coefficients and inclusion probabilities for

potential predictors of migration rates in the DTA model: (a) without and (b) with isolate sample sizes included as potential predictors; in the time-dependent

MASCOT GLMs: (c) without and (d) with isolate sample sizes considered as a predictor. The 50% prior mass was specified on no predictors being included.

Coefficients represent the contribution of each predictor to the migration rates of H9N2 AIVs when the corresponding predictor was included in the model.

Inclusion probabilities are calculated by proportion of the posterior samples in which each predictor was included in the model. Bayes factor support values of 3 and
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[18, 19, 20]. To reduce the cost and maximize the profit, poultry farms are often built in close

proximity to one another and rearing facilities tend to be overcrowded [51]. Viruses can there-

fore spread easily and outbreaks in poultry pose great economic threats to some of these coun-

tries. Further, most of these countries are low- and middle-income countries with poor bio-

security. Low sanitary standards and high density of poultry in farms and markets can addi-

tionally facilitate the transmission of viruses [52]. Multiple influenza subtypes simultaneously

circulate in birds in these countries [28, 54], which increases the probability of reassortment of

influenza segments.

In this work, we investigated the evolutionary dynamics and the spread of avian influenza

H9N2 in Asia and attempted to uncover factors that potentially predict this spread by using a

GLM in two phylogeographic frameworks, DTA and MASCOT [9, 8]. Alongside estimating

the factors driving migration rates, we also jointly investigated potential drivers of virus effec-

tive population sizes in MASCOT. To do so, we used H9N2 viral HA sequences isolated from

avian hosts and 12 locations in Asia between 1976 and 2014. We used different predictor data

to inform the viral migration rates between 12 countries/locations. These predictors however

ignore other potential drivers of migration, such as wild bird migration, and different sanita-

tion levels among countries. Typically, predictors adopted to explain the virus spread and

diversity were scale-dependent. In the future, more exact and more high-resolution predictors

could be included to test more detailed hypotheses and model influenza movements in a

smaller and confined geographical region [9].

20 are represented by a thin and thick vertical line respectively in the inclusion probabilities plot. Geographic distance, poultry trade and rainfall seasonality in

destination are the most strongly supported factors to virus spread in Asia under cross-validation in these models. Sample size at origin has an effect, but it doesn’t

change the support of other predictors.

https://doi.org/10.1371/journal.pcbi.1007189.g004

Fig 5. Predictors of time-dependent population dynamics of H9N2 influenza viruses within 12 countries/locations in Asia. Coefficients

and indicators as in Fig 4 when estimating the effective population size of H9N2 AIVs (a) without and (b) with considering the effect of virus

sample size included as a distinct predictor. The 50% prior mass was specified on no predictors being included. Bayes factor support values of

3 and 20 are represented by a thin and thick vertical line respectively in the indicator plot. Poultry production positively contributes to virus

population size. When the number of samples through time in each location is also used as a predictor, the effect of poultry production is

much less pronounced for the virus sampling may have been approximately proportional to effective population sizes.

https://doi.org/10.1371/journal.pcbi.1007189.g005
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Since rate estimates of DTA are likely to be sensitive to the number of sequences sampled

in each location [3], we repeated analyses under two sub-sampling strategies. Additionally, we

performed the GLM analyses with and without considering the viral isolate sample size in each

country or region as a distinctive predictor to test the impact of heterogeneous sampling inten-

sity. The results were mostly robust and consistent whether this predictor was included or not

in DTA using 385 or 526 HA sequences. But the inclusion of isolate sample size in the model

did reduce the support of the predictor rainfall seasonality in the destination location, which is

negatively related to virus migration rates. Further, sharing a border was included as a sugges-

tive predictor in the DTA GLMs with 385 sequences. These slight exceptions can result from

the heterogeneous samples across locations or different information variance provided by two

genetic data sets.

We found geographic proximity between locations to be a strong driver of H9N2 migration

rates in all GLM models investigated. Additionally, we found that whether two locations are

neighbouring each other to be a strong predictor of migration. The contribution of geographic

proximity to viral spread was intuitively recorded in the close evolutionary relationship

among viruses sampled from nearby countries. Further, a consistent role for poultry trade

was inferred in both a GLM with time-independent predictors in DTA and a GLM with time-

dependent predictors in MASCOT. This suggests that poultry trade is probably a driver of the

spread of avian influenza H9N2 viruses. Infected poultry, especially chicken, without strong

clinical symptoms can easily be missed during the process of transportation. H9N2 viruses

can therefore spread into native poultry. Increased surveillance of imported poultry and their

products could decrease the spread of H9N2 across locations [53]. Illegal poultry trade across

borders is another potential factor contributing to the spread of H9N2 [54]. However, even

when controlling for poultry trade volumes and other potential predictors, we still found geo-

graphic proximity to be a key driver to migration rates. This may point to some factors directly

linked to geographical distance to contribute to the viral spread of H9N2 across countries.

Contact between domestic and wild birds is inevitable in the intensive and outdoor-reared

livestock farms and two-way virus transmission has been documented between them [24, 55].

Wild birds could therefore spread H9N2, as they can easily cross borders and then transmit

the viruses. The dispersal distribution of H9N2 isolates from wild birds on the phylogenetic

tree supports the possibility of their movement facilitating virus spread across countries and

across genetic groups (Fig 2). Future studies will however have to investigate if wild bird

migration is really associated with the spread of H9N2 viruses. Further, the region with less

monthly variance in rainfall volumes could provide stable feeding and habitat areas for birds

and attract the birds carrying viruses. Active surveillance of migratory birds could therefore

help to monitor the dispersal of H9N2 virus.

Inferences of migration rate GLM variants we investigated can be divergent such that poul-

try trade has strong support in all GLM models except ones with time-independent predictors

in MASCOT. This divergence shows that including time dependence can be important to

identify predictors to inform the heterogeneous spatial diffusion the processes through time.

In addition, different inferences of GLMs via DTA and MASCOT can result from diverse

migration rate definitions and model assumptions. The DTA models migration rate as the fre-

quency of migration events, while the structured coalescent model describes it by virus genetic

diversity spreading among different locations [1, 7].

To improve our understanding of what potentially drives genetic diversity of H9N2, we also

used a GLM approach to inform effective population sizes of H9N2 virus in each location and

through time by using MASCOT [8]. Time-dependent poultry production was identified as a

positive driver to virus divergence within each sub-population. When including the number

of samples through time, the support for poultry production as an effective population size
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predictor decreased. This can be caused by a proportional relationship between the annual

number of viral samples and the viral effective population size in a location over time. Main-

land China was likely the main driver of poultry production being an effective population size

predictor. Approximately 78% of H9N2 samples were isolated from China based on the HA

gene sequences recorded in NCBI [56]. The positive correlation between an increasing poultry

production and an increasing effective population size of the virus suggests that virus control

measures in local poultry may not currently be sufficient.

Surveillance of high pathogenic H5N1 AIVs in ducks has been actively carried out in several

Asian countries [57]. Samples from chickens, wild bird, and the environment could also be

collected to investigate the prevalence of H9N2 and other subtypes. If there are H9N2 cases in

humans, having such samples readily available can help to track possible origins of these cases.

Additionally, making surveillance of both high pathogenic and low pathogenic AIVs in poultry

and humans routine can potentially help to improve our understanding of how these viruses

jump into humans. Overall, the integration of temporal predictors into phylodynamics pro-

vides a powerful tool to test how disease spread within and between populations.

Supporting information

S1 Fig. Time scaled phylogenetic trees of H9N2 influenza viruses in Asia estimated by 385

HA sequences. (a) estimated using DTA model and (b) using MASCOT model. The colour of

tree branches indicates location (see legend) with the maximum probability. A colour change

on a branch indicates a virus migration event. Numbers on branches represent posterior prob-

ability of displayed location. A black asterisk represents a virus sequence isolated from a wild

bird. UAE is short for the United Arab Emirates. Both models place the source of H9N2 in

Hong Kong, from where it spread to East Asia. DTA and MASCOT differ in the details on

how it spread to West and South Asia. Bars on the right indicate three established lineages

based on the phylogenetic relationship between H9N2 viruses and their representative strains.

(PDF)

S2 Fig. Asymmetric migration rate matrix of H9N2 influenza viruses between countries/

regions in Asia estimated by 385 sequences. The migration rate matrix was estimated using

DTA, and it describes the virus migration rates between each pair of locations. Unit is the

number of migration events per lineage per year. Bayes factors on migration rate over 3 and

20 are labeled by a yellow and a red asterisk at the bottom right of the cell respectively. UAE

is short for the United Arab Emirates. The largest and most well-supported rates are between

neighbouring locations, suggesting the underlying factors related to geographic proximity can

contribute to virus spread.

(PDF)

S3 Fig. Predictors of migration rates of H9N2 influenza viruses between 12 countries/

regions in Asia estimated by 385 sequences. Estimated coefficients and inclusion probabili-

ties for potential predictors of migration rates in DTA GLMs: (a) without and (b) with isolate

sample size included as a predictor; in the time-dependent MASCOT GLMs: (c) without and

(d) with isolate quantity considered as a predictor. The 50% prior mass was specified on no

predictors being included. Coefficients represent the contribution of each predictor to H9N2

migration rates of when the corresponding predictor was included in the model. Inclusion

probabilities are calculated by proportion of the posterior samples in which each predictor was

included in the model. Bayes factor support values of 3 and 20 are represented by a thin and

thick vertical line respectively in the inclusion probabilities plot. Geographic distance and

poultry trade are identified as strongly supported factors to virus spread in all four GLMs.
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Including predictor sample size at origin slightly changes the support of some predictors.

(PDF)

S4 Fig. Time-independent predictors of migration rates of H9N2 between 12 locations in

Asia inferred by 526 sequences under MASCOT. The 50% prior mass was specified on no pre-

dictors being included in the GLM. Parameters and figure elements are the same as in S3 Fig.

(PDF)

S5 Fig. Time-dependent predictors of effective population dynamics of H9N2 influenza

viruses within 12 countries/regions in Asia estimated by 385 sequences. The GLM (a) with-

out and (b) with including virus sample size as a distinctive predictor. The 50% prior mass was

specified on no predictors being included in the GLMs. Parameters and figure elements are

the same as in S3 Fig. Poultry production and sample size positively contribute to virus effec-

tive population size.

(PDF)

S6 Fig. Time-independent predictors of effective population dynamics of H9N2 influenza

viruses in 12 countries/regions in Asia estimated by 526 sequences. The GLM (a) without

and (b) with including virus isolate size as a distinctive predictor. The 50% prior mass was

specified on no predictors being included in the GLMs. Parameters and figure elements here

are the same as in S3 Fig. No supportive predictor can inform the virus migration rates in

these models.

(PDF)

S7 Fig. Time-dependent predictor poultry production of effective population dynamics of

H9N2 influenza viruses in 12 countries/regions in Asia estimated by 526 sequences. The

50% prior mass was specified on no predictors being included in the GLM. Parameters and

figure elements here are the same as in S3 Fig. National poultry production is a strongly sup-

ported driver to virus genetic diversity through time in mainland China.

(PDF)

S1 Table. Different scenarios of the 10 migration rate GLMs.

(PDF)

S2 Table. Predictors considered to inform H9N2 migration rates in GLMs.

(PDF)

S3 Table. Times each predictor was selected with suggestive support in 10 migration rate

GLMs. The predictor with BF over 3 was considered as a suggestive support one. The column

names except the first two columns showed the name of different migration rates GLM models

in this study. In these columns, value 1 in each cell represents the predictor is a suggestive sup-

port one in the corresponding model; 0 represents the predictor is not suggestively supported.

The total column represents the total times of each predictor was chosen as suggestive support

in the 10 GLMs investigated.

(PDF)

S4 Table. Times each predictor was selected with strong support in 10 migration rate

GLMs. The predictor with BF over 20 was considered as strong support. Parameters here are

the same as in S3 Table.

(PDF)

S5 Table. Details about H9N2 HA nucleotide sequences used in our analyses. In the column

“Label”, D1 points to sequences exclusively in the data set with 526 HA genes; D2 points to
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sequences simultaneously in both data sets with 526 and 385 HA genes; G1, G9, and Korea

represent the representative sequences; C represents outliers in sequences detected by clock

test in TempEst; S represents the removed sequences from phylogeographic inference by

down-sampling; L represents the removed sequences from phylogeographic inferences in

countries with less than 10 isolates in total; P represents the sequences with partial length. All

sequences shown here were used in spatiotemporal analysis of H9N2 virus; Sequences labeled

by D1, D2 and the representatives were used in phylogeographic reconstructions.

(PDF)
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