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Abstract

Background: The Gail model and the model developed by Tyrer and Cuzick are two 

questionnaire–based approaches with demonstrated ability to predict development of breast cancer 

in a general population.

Methods: We compared calibration, discrimination and net-reclassification of these models, 

using data from questionnaires sent every 2 years to 76,922 participants in the Nurses’ Health 

Study between 1980 and 2006, with 4,384 incident invasive breast cancers identified by 2008 

(median follow-up 24 years; range 1–28 years). In a random one-third sample of women, we also 

compared the performance of these models with predictions from the Rosner-Colditz model 

estimated from the remaining participants.

Results: Both the Gail and Tyrer-Cuzick models showed evidence of mis-calibration (Hosmer-

Lemeshow P<0.001 for each) with notable (P<0.01) over-prediction in higher risk women (2-year 

risk above about 1%) and under-prediction in lower risk women (risk below about .25%). The 

Tyrer-Cuzick model had slightly higher C-statistics both overall (P<0.001) and in age-specific 
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comparisons than the Gail model (overall C 0.63 for Tyrer-Cuzick versus 0.61 for the Gail model). 

Evaluation of net reclassification did not favor either model. In the one-third sample, the Rosner-

Colditz model had better calibration and discrimination than the other two models. All models had 

C-statistics <0.60 among women age ≥70.

Conclusion: Both the Gail and Tyrer-Cuzick models had some ability to discriminate breast 

cancer cases and non-cases, but have limitations in their model fit.

Impact: Refinements may be needed to questionnaire-based approaches to predict breast cancer 

in older and higher risk women.

Breast cancer prediction rules, based solely on questionnaire information without data from 

biomarkers or mammograms, can be implemented non-invasively and at minimal cost in 

large populations. While these prediction rules have limitations in their overall ability to 

distinguish women who will and will not develop breast cancer (1–3), they have been 

utilized for risk stratification for chemoprevention and screening protocols (4–6).

Information on the relative performance of the alternative risk models in general populations 

is still somewhat limited, with available evidence indicating modest concordance in risk 

classification and limited discrimination in external validation (3, 7). Perhaps the two most 

widely evaluated models that do not require biomarker or mammographic data are the Breast 

Cancer Risk Assessment Tool (BCRAT) developed by Gail and colleagues (8–12) and the 

International Breast Cancer Intervention Study (IBIS) risk score developed by Tyrer and 

Cuzick (13). Explicit comparisons of discrimination, calibration, and classification 

performance between these two models have used selected populations of higher risk 

women enriched for family history or risk factors such as high rates of delayed childbirth (1, 

14, 15). Further, these studies included relatively small numbers of breast cancer cases (<250 

in each study), limiting the ability to evaluate the accuracy of classification of women across 

a wide range of clinical risk categories. All three found better calibration and discrimination 

with the Tyrer-Cuzick model relative to the Gail model. The impact of enrichment of the 

study populations with women who have a positive family history is unclear.

In this paper, we compare metrics of model performance, including calibration, 

discrimination, and ability to re-classify cases into higher clinical risk categories and non-

cases into lower risk categories (net-reclassification indices) between the Gail and Tyrer-

Cuzick models in the broad population of US nurses participating in the Nurses’ Health 

Study, including a higher percentage of women at average risk. Also, we compare the 

performance of these models with that of an updated version of the alternative Rosner-

Colditz risk prediction model, as developed in a sample of participants in the Nurses’ Health 

Study, and evaluated in an independent sample (16–19).

Materials and Methods

The Nurses’ Health Study cohort was established in 1976 when 121,701 female registered 

nurses aged 30–55 years responded to a mailed questionnaire inquiring about risk factors for 

breast cancer, including reproductive factors, menopausal hormone therapy use, 

anthropometric variables, benign breast disease, and family history of breast cancer. The risk 
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factor data have been updated by means of repeat questionnaires sent every 2 years up to the 

present time (20).

Alcohol consumption, both current and at age 18 years, was ascertained in 1980, with 

information updated in 1984, and then every 4 years from 1986 to 2006. Measures of family 

history of breast and ovarian cancer, utilized in the Tyrer-Cuzick model, were assessed at 

several times during follow-up (21). Information on breast cancer in a woman’s mother and 

the number of her sisters with breast cancer was collected first in 1976, then updated in 

1982, 1988, 1992, 1996, 2000, and 2004, with updates on age at diagnosis for each in 1996, 

2000, and 2004. Women were asked about breast cancer in their maternal and paternal 

grandmothers in 1988; in their daughters in 2000 and 2004; and about ovarian cancer in their 

mothers and sisters in 1992, 1996, and 2000, and in their daughters in 2004.

Identification of breast cancer cases

On each questionnaire, women were asked whether breast cancer had been diagnosed and, if 

so, the date of diagnosis. All women (or their next of kin, if deceased) were contacted for 

permission to review their medical records so as to confirm the diagnosis. Cases of invasive 

breast cancer from 1980 to 2008 for which we had a pathology report were included in these 

analyses. We excluded women with types of menopause other than natural menopause or 

bilateral oophorectomy because of the inability to determine the true age at menopause and 

menopausal status, prevalent cancer (other than nonmelanoma skin cancer) in 1980, or 

missing data for weight at age 18 years, age at first birth, parity, age at menarche, age at 

menopause, or menopausal hormone therapy use.

During follow-up of 76,922 (768,948 2-year intervals) women with complete data on 

baseline risk factors from 1980 to 2006, 4,384 women developed invasive breast cancer. We 

censored women who developed another type of cancer (except non-melanoma skin cancer) 

at their diagnosis date.

Analysis

All estimates of risk from the Gail, Tyrer-Cuzick, and Rosner-Colditz models used 2-year 

risk windows. This was expected to maximize predictive performance, as all models used 

time-varying covariates which were updated at 2-year intervals. Thus, for a woman still 

cancer free at the beginning of a follow-up interval, her risk over the subsequent 2 years was 

estimated based on her risk factor profile at that time. For variables not updated at each 

questionnaire, including family history and alcohol use information, we carried forward 

responses from prior questionaires. This approach parallels previous strategies used to 

evaluate time-varying risk (22–24).

Rockhill et al (25) previously evaluated the fit and discriminatory ability of the BCRAT 

model in the Nurses’ Health Study, based on data from 1992 through 1997. We used the 

BRCa_RAM SAS macro developed by the Division of Cancer Epidemiology and Genetics 

at the National Cancer Institute (http://dceg.cancer.gov/tools/risk-assessment/bcrasasmacro) 

to estimate a woman’s Gail-model risk of developing breast cancer over a 2-year period, 

separately for every 2-year interval with updated risk factor information, beginning in 1980 
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and continuing as long as a woman was alive, reporting risk factor information, and free of 

breast cancer and other cancer types except nonmelanoma skin cancer. The variables in the 

Gail model and their assessment in the Nurses’ Health Study are described in Supplemental 

Table 1. As in Rockhill et al (25), presence of hyperplasia was coded as missing because this 

variable was only assessed in a small group of participants in the Nurses’ Health Study. 

While imputation of hyperplasia status can be useful, we chose not to apply models that 

include the outcome (breast cancer development) in the imputation of hyperplasia status and 

have been found to have a small impact on the C-statistic for prediction (26). Also, we were 

able to classify women at the beginning of an interval only with regard to ever/never history 

of previous benign breast biopsy, rather than 0, 1, or greater than or equal to two biopsies as 

specified in the Gail model.

We also estimated a woman’s 2-year risk of breast cancer, separately for each of the time 

intervals she contributed to the analysis based on her updated information from the Tyrer-

Cuzick model, as implemented from a command line version downloaded from http://

www.ems-trials.org/riskevaluator/software/v7/winBatch/IBIS_RiskEvaluator_CL_v8.zip, as 

directed by a personal communication from the authors. Variables included in the Tyrer-

Cuzick and Gail models and their assessment in the Nurses’ Health Study are described in 

Supplemental Table 1. As for the Gail model, we set to missing the indicators of hyperplasia 

status and also did not have information on a woman’s Ashkenazi heritage, her expected 

future duration of hormone therapy, bilaterality of breast cancer in relatives, or on her 

genetic testing or that of her relatives. We also invoked the model’s missing data option for 

family history variables in a woman’s second or third degree relatives (except for available 

information on grandmothers which was utilized).

Evaluation of calibration of the models compared observed and expected risks within deciles 

of predicted risks for each of the Tyrer-Cuzick and Gail models. The unit of analysis for 

these comparisons was the observed and predicted outcome within a 2-year interval. We 

used the large sample confidence interval for the ratio of expected to observed events based 

on log transformation of this ratio and the delta method, as previously applied by Park et al 

(27). Consistent with this confidence interval, we used the Z-statistic defined as log(E/O)/

sqrt(1/O) to test the null hypothesis that the expected to observed ratio (E/O) was equal to 1 

within a decile of predicted risk. In addition to decile-specific ratios and confidence intervals 

of observed to expected event ratios, we used the Hosmer-Lemeshow test statistic as an 

indicator of calibration. Graphical display of the observed versus expected numbers of cases 

within each decile of risk included 95% confidence intervals for the observed count, with 

use of a log transformation for variance stabilization, as above. Subgroup analyses evaluated 

calibration for each model separately using intervals in women age <50, 50–59, 60–69, and 

≥70 when the interval started.

We also compared discrimination between the two models, both overall and within age 

groups with age defined at the beginning of each 2-year interval. Estimates of standard 

errors of overall, age-adjusted, and age-specific C-statistics between models used the 

approach of Rosner and Glynn (28).
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To evaluate risk re-classification based on alternative models, we used four a priori chosen 

absolute 2-year risk categories suggested by Tice et al (29): 0-<.4%; .4-<.67%; .67-<1.0%; 

and ≥1.0%. Following recommendations of Kerr et al (30), we report reclassification 

percentages separately for breast cancer cases and non-cases, again with 2-year time 

windows as the unit of analysis. Additional subgroup analyses considered risk 

reclassification separately among intervals in each of the four age groups defined above. As 

additional subgroup analyses, we considered calibration, discrimination, and reclassification 

in intervals among women with a family history of breast cancer in a first degree relative.

We also compared calibration and discrimination of the Gail and Tyrer-Cuzick models to 

that of the Rosner-Colditz model. Estimates of the parameters of the Rosner-Colditz model 

were obtained using all available study time in a two-thirds random sample of study 

participants, and its calibration and discrimination were evaluated in the other third of the 

study population over the same time period from 1980 until 2008 (19). Herein, we also use 

this one third sample of the study population to compare calibration and discrimination of 

the Gail and Tyrer-Cuzick models with that of the Rosner-Colditz model.

Results

In the 768,948 2-year intervals during the time period from 1980 to 2008, 4,384 women 

developed incident, invasive breast cancer for an average 2-year risk of 0.57%. Supplemental 

Table 2 compares distributions of characteristics at the beginning of intervals among all 

women, those with a history of breast cancer in a first degree relative, and those who 

developed breast cancer during that interval.

Overall, both the Gail model and the Tyrer-Cuzick model slightly overestimated the number 

of incident breast cancer cases in the Nurses’ Health Study. Specifically, the average 2-year 

predicted risk from the Gail model was 0.60%, and this model predicted 5% more cases than 

observed (95% CI: 2%−8%) (Table 1). The average 2-year predicted risk from the Tyrer-

Cuzick model was 0.62% and this model predicted 9% more cases than observed (95% CI: 

5%−12%) (Table 1). However, agreement between observed and predicted numbers of cases 

varied substantially according to predicted risk. Both models substantially underestimated 

the number of cases in the lowest decile of their predicted risk (24% fewer expected cases 

than observed for the Gail model and 19% fewer expected cases than observed for the Tyrer-

Cuzick model). Conversely, both models substantially overestimated the number of cases in 

the highest decile of their predicted risk (40% more expected than observed for the Gail 

model and 34% more expected than observed for the Tyrer-Cuzick model). Graphical 

comparisons of observed versus expected counts illustrated these differences but showed 

good agreement for predictions within deciles 2–9 of each model (Figure 1a and b). For both 

models, the Hosmer-Lemeshow test of the null hypothesis that the model is adequately 

calibrated was highly significant, suggesting some miscalibration.

Separate analyses of calibration for the two models restricted to women within each of four 

age groups (<50, 50–59, 60–69, and ≥70) found evidence for misclassification of each 

model within each age group (Supplemental Tables 3–6). In particular, under-prediction of 
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risk was noted for both models among lower risk women younger than 50, and over-

prediction of risk was seen in higher risk women in the two age groups age 60 or above.

Discrimination, as measured by the C-statistic, was better for the Tyrer-Cuzick model 

(0.629) than for the Gail model (0.608) (Table 2). When discrimination was examined 

separately in each of four age groups, discrimination was slightly better by the Tyrer-Cuzick 

model in each age-group. A weighted average of the age-specific C-statistics, which 

somewhat adjusts for age, found lower C-statistics from each model (0.600 for the Tyrer-

Cuzick model and 0.574 for the Gail model).

A comparison of the ability to reclassify cases into meaningfully higher risk groups and non-

cases into meaningfully lower risk groups found different conclusions for these two 

comparisons (Table 3). The Tyrer-Cuzick model reclassified 27.3% of incident cases into a 

higher risk category than the Gail model, while the Gail model reclassified 15.1% of cases 

into a higher risk category than the Tyrer-Cuzick model, for a net reclassification of cases of 

12.2%. Conversely, the Gail model reclassified 22.4% of non-cases into a lower risk 

category than the Tyrer-Cuzick model, while the Tyrer-Cuzick model reclassified 16.2% of 

non-cases into a lower risk category, for a net reclassification of non-cases of 6.2%. Some 

heterogeneity in this reclassification pattern was observed when reclassification was 

evaluated separately in each of four age groups (Supplemental Tables 7–10). Specifically, 

while in the three younger age groups (women under age 70), the Tyrer-Cuzick model 

reclassified a higher percentage of cases to a higher risk category and the Gail model 

reclassified a higher percentage of non-cases to a lower risk category, for women age ≥ 70 

the Gail model reclassified a higher percentage of cases to a higher risk category and the 

Tyrer-Cuzick model reclassified a higher percentage of non-cases to a lower risk category.

In addiditional subgroup analyses of intervals in women who had a family history of breast 

cancer (Supplemental Tables 11–13), risk remained over-estimated among women in the 

highest risk groups for both models. The magnitude of over-estimation was greater in this 

subgroup than observed in the whole population (Supplemental Table 11 and Supplemental 

Figures 1a and 1b). Discrimination remained better for the Tyrer-Cuzick model relative to 

the Gail model, but it was overall weaker for both models in this restricted population 

relative to the results in the entire cohort. As for the overall analyses, the Tyrer-Cuzick 

model reclassified more cases to higher risk categories while the Gail model reclassified 

more non-cases to lower risk categories among women with a family history.

In the one third sample of women set aside for validation of the re-fitted Rosner-Colditz 

model, 1,418 incident breast cancer cases occurred in 254,767 2-year intervals for a 2-year 

risk of 0.56%. In this validation sample, the Rosner-Colditz model had an average 2-year 

risk of 0.58% (Table 4), which yielded an overall ratio of expected to predicted numbers of 

events of 1.04 (95% CI: 0.98–1.09). Overall, calibration of the Rosner-Colditz model was 

adequate in this independent sample (Hosmer-Lemeshow Chi square P=0.18). Both the Gail 

and Tyrer-Cuzick models showed the same patterns seen in the entire dataset of fewer 

predicted than observed events in the lowest risk decile and more predicted than observed 

events in the highest risk decile within this valildation sample (Table 4).
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Comparisons of model discrimination within the one-third validation sample showed that the 

Rosner-Colditz model had higher overall C-statistic than the Gail model (0.65 versus 0.60) 

and also higher than the Tyrer-Cuzick model (0.65 versus 0.63, Table 5). As seen for the 

other two models in the entire dataset, the Rosner-Colditz model also had the weakest age-

group specific discrimination among women age 70 years or older (0.59).

Discussion

We used data from 26 years of experience in the Nurses’ Health Study to compare the 

performance of alternative simple models, based only on information obtained from 

questionnaires, to predict the occurrence of invasive breast cancer. Overall, we confirmed 

that each of the Gail, Tyrer-Cuzick, and Rosner-Colditz models has only moderate ability to 

predict breast cancer (1–3, 13–15). New findings from our study include evidence of mis-

calibration in the Gail and Tyrer-Cuzick models, especially among women in the lowest and 

highest risk groups, better re-classification of cases to higher risk categories by the Tyrer-

Cuzick model relative to the Gail model, and better re-classification of non-cases to lower 

risk categories by the Gail model relative to the Tyrer-Cuzick model.

Additional testing, including measures of mammographic density and testing for relevant 

genetic variation can somewhat improve model discrimination (29, 31–34). Addition of 

mammographic density and risk factor-based prediction models could be easily 

accommodated with appropriate referral of women according to level of risk – to consider 

chemoprevention or lifestyle changes (weight loss/physical activity, etc.). SNP assessment 

and polygene score generation is not yet routine and still has hurdles to overcome before 

integration into a routine breast cancer risk assessment at first screening mammogram. Other 

costly and logistically complex measures such as endogenous hormones improve prediction 

(measured by the C-statistic) in the Rosner-Colditz model by about 5%, but only in analyses 

restricted to postmenopausal women not using postmenopausal hormones at blood collection 

(35). Also, while models including only information from questionnaire are probably not 

sensitive enough to excuse a woman from screening on the basis of a low predicted risk, they 

are explicitly used in cross-national guidelines to direct clinical decisions (4–6, 36).

Three previous studies made direct comparisons of predictions from the Gail and Tyrer-

Cuzick models, each conducted in study populations enriched for family history or risk 

factors such as delayed childbirth (1, 14, 15). In all three, the Gail model was found to 

underestimate risk (as indexed by a ratio of expected to observed events significantly below 

1), whereas the confidence interval for the expected to observed ratio from the Tyrer-Cuzick 

model included 1 for each. Further, each of these comparisons found better discrimination 

(as indexed by higher C-statistics) from the Tyrer-Cuzick relative to the Gail model. 

However, the relatively small number of incident cases included in each of these studies 

(<250) limited the power to detect deviations between observed and expected event counts, 

especially within deciles of risk such as the lowest and highest risk women. Further, over-

sampling of high risk women, and particularly those with a positive family history, may have 

favored the performance of the Tyrer-Cuzick model which particularly focuses on this 

component of risk.
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Our study among a larger population spanning all levels of risk agreed with this previous 

literature in finding slightly better discrimination with the Tyrer-Cuzick relative to the Gail 

model, and extended the previous work by showing the discrimination under the Tyrer-

Cuzick model was slightly better within each of four age groups. We also extended previous 

work by finding decreased discrimination under both models in older women. In contrast to 

previous studies, we found evidence for mis-calibration of both models, and that predicted 

risks differed from observed risks particularly in the lowest and highest risk women. 

Specifically, both models under-estimated risk among women in their lowest predicted 

decile of risk, and over-estimated risk among women in their highest predicted decile of risk, 

particularly among women with a family history of breast cancer. With respect to risk re-

classification across established categories of clinical risk, we found that the Tyrer-Cuzick 

model more likely re-classified women who developed breast cancer during the 2-year 

interval to a higher risk category, but the Gail model more likely re-classified women who 

did not develop breast cancer to a lower risk category. These overall patterns of risk re-

classification were different among women age 70 or older. Even when re-classification is 

separately considered among cases and non-cases, interpretation of these indices is 

problematic when models exhibit some level of miscalibration (37).

Relative to an evaluation of a previous version of the Gail model performed within the 

Nurses’ Health Study at a time when no women were age 75 or older, and hence average 

breast cancer risk was lower (25), we found a slightly higher level of discrimination (C 

statistic 0.61 [95% CI: 0.60–0.62], compared with 0.58 [95% CI: 0.56–0.60] in Rockhill et 

al (25)). Consistent with that report, we found the ratio of expected to observed cases under 

the Gail model to be less than 1 for lower risk women and greater than 1 for higher risk 

women, but the magnitude of this heterogeneity was greater in our updated analysis (ranging 

from 0.76 in the lowest decile to 1.40 in the highest decile of predicted risk, as seen in Table 

1). Also, while Rockhill et al observed that the risk among women in the highest decile of 

estimated risk was 2.83 times that of women in the lowest decile, the corresponding relative 

risk in the current analysis was 3.95 (Table 1). These trends likely reflect the greater range of 

risks corresponding to the wider age range in our updated data.

Our comparison of the Tyrer-Cuzick and Gail models with the Rosner-Colditz model in a 

separate sample of Nurses’ Health Study participants found better discrimination and 

calibration in the Rosner-Colditz model. These three models include several common 

variables, but also involve different parameterizations of some of these variables, including 

interactions involving menopausal status in the Rosner-Colditz model. The models also 

include some different variables, such as extended family history information in the Tyrer-

Cuzick model and consideration of alcohol consumption history and more details on 

postmenopausal hormone therapy in the Rosner-Colditz model. Although the Nurses’ Health 

Study has maintained a focus on risk factors for breast cancer since its inception, several 

components of the Gail and Tyrer-Cuzick model were not measured. Also, key variables 

including measures of family history were not updated at each questionnaire. While the 

unmeasured components were not highly prevalent characteristics, their unavailability 

somewhat limited our comparisons. It is likely that a small group of women had their risk of 

breast cancer under-estimated because of this missing information, but overall risk in the 

entire study population was slightly but significantly over-estimated by both the Tyrer-
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Cuzick and Gail models. A future question is whether simpler models are possible that 

would attain nearly equivalent performance in prediction and be more easily integrated into 

routine breast health services. Considerable effort is currently underway to improve simple 

models, while limiting the burden of data collection to maximize participation and enhance 

generalizability (38–40).

In summary, our comparison of three readily implemented risk prediction rules for breast 

cancer found somewhat better discrimination in the Rosner-Colditz model. We also saw 

evidence for mis-calibration of the Gail and Tyrer-Cuzick models, particularly among the 

highest and lowest risk women in the Nurses’ Health Study. The Rosner-Colditz model 

includes more variables which take longer for their assessment. For women in the extreme 

deciles of risk, prediction from the Rosner-Colditz model is somewhat more accurate than 

prediction in the Tyrer-Cuzick and Gail models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a. Scatterplot of observed versus expected counts over deciles of risk based on the Gail 

model with 45 degree line*

*higl and logl denote the upper and lower 95% confidence interval limits for the observed 

count

b. Scatterplot of observed versus expected counts over deciles of risk based on the Tyrer-

Cuzick model with 45 degree line*

*hitc and lotc denote the upper and lower 95% confidence interval limits for the observed 

count
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