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SUMMARY

Direct cellular reprogramming provides a powerful platform to study cell plasticity and dissect 

mechanisms underlying cell fate determination. Here we report a single cell transcriptomic study 

of human cardiac (hiCM) reprogramming that utilizes an analysis pipeline incorporating current 

data normalization methods, multiple trajectory prediction algorithms, and a Cell Fate Index 

calculation we developed to measure reprogramming progression. These analyses revealed hiCM 

reprogramming-specific features and a decision point at which cells either embark on 

reprogramming or regress toward their original fibroblast state. In combination with functional 

screening, we found immune response-associated DNA methylation is required for hiCM 

induction and validated several downstream targets of reprogramming factors as necessary for 
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productive hiCM reprograming. Collectively this single cell transcriptomics study provides 

detailed datasets that reveal molecular features underlying hiCM determination and rigorous 

analytical pipelines for predicting cell fate conversion.

In brief:

Zhou et al. performed single-cell RNA-seq to unravel molecular features of human cardiac 

reprogramming. They identified a “decision” point where cells either reprogram or regress to 

initial fate. Further, progression of reprogramming was quantitatively assessed by their developed 

“cell fate index”, which could be used for studying other biological processes.

Graphical Abstract

INTRODUCTION

Cardiac reprogramming that converts cardiac fibroblasts into induced cardiomyocytes 

(iCMs) has emerged as a promising avenue to regenerate damaged hearts (Ieda et al., 2010; 

Qian et al., 2012; Song et al., 2012). Despite many recent advances in mouse iCM (miCM) 

reprogramming (see reviews Kojima and Ieda, 2017; Vaseghi et al., 2017), human iCM 

(hiCM) reprogramming remains a great challenge. hiCM reprogramming could only be 

achieved with more complex cocktails, suffers from lower efficiency and requires longer 

reprogramming time (Christoforou et al., 2017; Fu et al., 2013; Mohamed et al., 2016; Nam 

et al., 2013; Wada et al., 2013). The difficulties in hiCM generation suggest species 
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differences in the gene regulatory networks in controlling CM fate and fibroblast plasticity, 

understanding of which might be the key for next step clinical application.

Single-cell RNA sequencing (scRNA-seq) has become a powerful technology to dissect 

cellular dynamics, uncover differential cellular responses to stimuli and delineate molecular 

state transitions in biological processes (Lein et al., 2017; Stubbington et al., 2017). scRNA-

seq is particularly well-suited to circumvent the hurdles imposed by the heterogeneous and 

asynchronous nature of cellular reprogramming (Biddy et al., 2018; Liu et al., 2017b; 

Treutlein et al., 2016).

In this study, we performed scRNA-seq to study the molecular and cellular dynamics of 

hiCM reprogramming. Consistent with a “decision point” uncovered by RNA velocity (La 

Manno et al., 2018), SLICER based trajectory reconstruction (Welch et al., 2016) identified 

a bifurcation event that led to acquisition of hiCM fate or regression toward fibroblast fate, 

with each of the fate choice being associated with distinct hiCM specific biological 

pathways and signaling molecules. Combining single cell analyses with functional studies, 

we further demonstrated that immune response associated DNA methylation is involved in 

hiCM induction and silencing several previously uncharacterized downstream targets of 

miR-133 could replace its indispensable function in hiCM induction. Additionally, we 

developed Cell Fate Index (CFI) algorithm to quantitatively assess reprogramming 

progression, and found a slower progression of hiCM reprogramming than miCM 

reprogramming. Collectively, our scRNA-seq study provides valuable resources to delineate 

gene networks underlying hiCM reprogramming at a much higher resolution. We also 

envision that the CFI algorithm can be applied to quantitatively compute progression of cell 

fate transition for other biological processes.

RESULTS

Optimized platform for hiCM reprogramming

Our previous study demonstrated that the miCM factors, when delivered as a single 

polycistronic transgene in the splicing order of Mef2c, Gata4 and Tbx5, drastically enhanced 

both the quality and the quantity of miCM induction (Wang et al., 2015a). To achieve 

efficient and reproducible hiCM reprogramming, we generated human polycistronic 

MEF2C, GATA4 and TBX5 (hMGT for short), and transduced human fibroblasts with 

hMGT in combination with other factors from previously published cocktails (Fu et al., 

2013; Nam et al., 2013; Wada et al., 2013). hMGT plus microRNA miR-133 (hereafter 

referred to as hMGT133) was found to be the most efficient minimal hiCM reprogramming 

cocktail (Figures 1A and 1B). We then further optimized hiCM reprogramming by using 

SureCoat as coating substrate, performing puromycin selection at early stage and culturing 

the cells in low serum hiCM media at late stage of reprogramming (Figures 1C, S1A and 

S1B). Under the optimized condition, approximately 40% and 60% of the reprogramming 

human cardiac fibroblasts (hCF1 see Methods) were cTnT+ and Į-Actinin+ at 2 weeks post 

infection, respectively (Figures 1D, 1E and S1C). Furthermore, these hiCMs established CM 

molecular signature, exhibited periodic Ca2+ oscillations (Figures 1F–1H, Movie S1), and 

initiated contraction after co-culture with mouse neonatal CMs (Movie S2). Similar 

reprogramming efficiency was achieved when H9Fs (Fu et al., 2013) and another previously 
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established human primary cardiac fibroblast resource (hCF2, see Methods) were used for 

reprogramming (Figures 1I–1L). For consistent and reproducible hiCM induction, we used 

this optimized hMGT133 reprogramming platform for the entire study.

Single-cell RNA-seq of day 3 reprogramming hiCM

scRNA-seq study of miCM demonstrated that day 3 reprogramming culture comprises a 

wide range of cells transitioning from fibroblast to iCM (Liu et al., 2017b), we thus 

performed pilot scRNA-seq on day 3 hMGT133-transduced hCFs (d3hMGT) and three 

controls, namely, primary hCFs (d0hCF), day 3 uninfected hCFs (d3hU) and day 3 hCFs 

infected with DsRed plus empty vector (d3hR). We captured single cells with Fluidigm 

microfluidic system and generated single-cell full-length transcriptomes using SMART-Seq 

as we previously reported (Figure 2A) (Liu et al., 2017b). A series of quality controls were 

performed to exclude low-quality cells and non-expressing genes (Figures S1D and S1E, 

Methods). To estimate the sensitivity and accuracy of our scRNA-seq, we plotted the 

expression levels of external RNA spike-ins measured by RNA-seq against their theoretical 

numbers of molecules/chamber (bottom panels of Figure S1F, Table S1). This analysis 

revealed sequencing sensitivity at single-molecule level, and a robust correlation between 

the RNA-seq measured expression level and the theoretical molecule number of spike-ins 

across the dynamic range (~105) of ERCC concentration. Additionally, we found that the 

concentration of spike-ins covers the full range of human gene expression levels (top 

histograms of Figure S1F), indicating high fidelity of our scRNA-seq data across a wide 

range of human gene expression levels. We then applied SCnorm, a newly developed 

scRNA-seq normalization method (Bacher et al., 2017), to adjust for sequencing depth and 

other sample specific features. This normalization approach allows for appropriate 

comparison of a gene’s expression across samples (Figures S1G–S1H and Methods), and as 

indicated by the principal component analysis (PCA), the cells were better distributed on the 

3D PCA plots generated post SCnorm than post DESeq (Figures S1I and S1J). After 

normalization, a total of 13381 human genes were detected (normalized expression > 1 

counts per million, CPM) in 329 high-quality control and d3 reprogramming cells for 

subsequent analysis.

To obtain a general picture of the relationship among single cells, we performed unbiased 

dimensionality reduction using PCA with the top 400 genes showing highest loading values 

(weight) in the first three principal components (PC) and visualized the sample relationships 

by 3D PCA score plot (Figures 2B and S1K). The 3D PCA plot resembled a tripod shape 

with d3hU localized in the center and three ramifying branches that were mainly composed 

of d0hCF, d3hR, and d3hMGT cells, possibly representing three biological processes 

(Figures 2B and S1L). Indeed, we found that the PCA loadings (genes) in the direction of 

d0hCF cells were highly associated with cell cycle regulation, while immune response genes 

were enriched in the direction of d3hR cells and cardiac structural genes were enriched in 

the direction of d3hMGT cells (Figure 2C; also see below for more details).

Analyses of cell cycle status in reprogramming hiCM

Hierarchical clustering (HC) analysis of the top 400 PCA genes revealed that the largest 

identified gene cluster was enriched in cell cycle-related genes (Figure 2D). Based on this 
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result, we grouped the cells into cell cycle-active (CCA) and cell-cycle-inactive (CCI) 

populations. A similar segregation of CCA and CCI populations was evident in PCA plot 

(Figure 2E), which also demonstrated that most CCA cells were from the d0hCF samples. 

We then applied reCAT (Liu et al., 2017c), a recently developed algorithm to recover cell 

cycle along time for unsynchronized single-cell transcriptome data, to determine cell cycle 

status of individual cell. reCAT analysis identified distinct G2/M and G0/G1/S populations 

that exhibited similar distributions on the PCA plot as the CCA and CCI populations, 

respectively (Figures 2F and S2A, Figure 2G compared to Figure 2E). This observation was 

further supported by the difference in the expression of representative cyclin and cyclin 

dependent kinase genes in individual cell between d0hCF and the rest cell populations 

(Figure 2H), suggesting human cardiac fibroblasts lost their highly proliferative capacity 

along in vitro reprogramming.

We next performed unsupervised HC and PCA analyses only on the day 3 reprogramming 

and control samples (Figures 2I–2K, S2B and S2C). These analyses identified five major 

cell populations: uninfected hCFs (hU), control hCFs expressing low/high level of DsRed 

(hRlow/hRhigh), hMGT133-infected hCFs that retained fibroblast features (hiFib), and 

hMGT133-transduced hCFs that gained CM gene signatures (hiCM) (Figures 2I, S2B and 

S2C). On the PCA plots, the hRlow/hRhigh cells and hiFib/hiCM were distributed along two 

bifurcating branches ramifying from uninfected hCFs (Figures 2J and 2K). Interestingly, 

while about 8% of hiFib cells also belonged to the proliferative CCA group, none of hiCMs 

were actively proliferating (Figure 2L), suggesting that cell-cycle exit might be essential for 

successful hiCM reprogramming. Indeed, upon hMGT133 transduction, expression of the 

cell proliferation marker Ki67 was dramatically reduced (Figure S2D). Cell growth curve 

further demonstrated that transduction of hMGT133 suppressed hCF proliferation compared 

with control treatment (Figure 2M). These observations are consistent with previous findings 

that cell cycle exit is prerequisite for successful fate conversion of murine iCM (Bektik et 

al., 2018; Liu et al., 2017b; Zhou et al., 2016).

The role of immune response in hiCM fate transition

We observed an enrichment of immune response genes in d3hR control samples (Figures 2B 

and 2C). We speculated that this upregulation was simply an antiviral response. Analyses of 

single cell data from day 3 control hCFs allowed us to identify three cell populations: 

uninfected hCFs (hU), hCFs with low expression of DsRed (hRlow) and hCFs with high 

expression level of DsRed (hRhigh). The three populations were associated with highly 

expressed genes representing fibroblast markers, antiviral response and immune response, 

respectively (Figures 3A–3C and S3A–S3C). Since the cell population grouping was 

significantly correlated with the expression level of DsRed (Figure 3D), we checked whether 

the upregulation of immune genes was due to DsRed viruses per se or a high titer of viruses. 

We determined the expression of representative immune response genes in both hCFs 

infected with DsRed at a gradient of dosages and with viruses expressing LacZ, GFP, or Td-

Tomato (Figure S3D). Adjusting the DsRed viral titer to the same level as other types of 

viruses diminished the activation of immune genes (Figure 3E), while transduction of 

overdosed LacZ viruses produced similar activation of immune response genes as from 

DsRed-infected cells (Figure 3F). Similar changes of the same immune genes were also 
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observed in virus infected H9F cells, excluding the possibility of cell type specific effects 

(Figure S3E). While substantial increase in the expression of immune-related genes was 

observed in DsRed control cells, hMGT133 cells demonstrated a moderate yet significant 

upregulation of the immune response genes, including factors in the interferon (IFN) 

signaling pathway (Figures S3F and S3G). It has been reported that the viral induced innate 

immunity is required for efficient reprogramming of induced pluripotent stem cell (iPSC) 

(Lee et al., 2012; Sayed et al., 2017). Our data showed similar activation of innate immune 

response, however it is unknown whether this activation is required for hiCM 

reprogramming.

Thus, we sought to study the role of immune response in hiCM reprogramming by knocking 

down candidate immune regulatory genes, including toll-like receptor 3 (TLR3, reported in 

iPSC reprogramming (Lee et al., 2012)) and its target, nuclear factor kappa B subunit 1 

(NFKB1), and prostaglandin-endoperoxide synthase 2 (PTGS2 or COX-2), the well-known 

target of nonsteroidal anti-inflammatory drugs (VANE, 1971). shRNA-mediated knockdown 

of these three genes suppressed their respective upregulation in hMGT133a cells (Figures 

S3H and S3I), and led to a profound reduction in hiCM induction (Figures 3G–3J). 

Importantly, knockdown of these genes had negligible effect on the expression of exogenous 

reprogramming factors (Figures 3J and S3J–3L), suggesting that inhibition of innate 

immunity had minimal effect on gene delivery and that compromised hiCM reprogramming 

was not due to failed upregulation of reprogramming factors. It has been shown that the 

effect of innate immunity on iPSC reprogramming is through altered chromatin remodeling 

(Lee et al., 2012). Hence, we performed a shRNA loss-of-function screen to identify 

epigenetic modifiers that mediated the effect of immune response on hiCM reprogramming 

(Table S2). Notably, Tet methylcytosine dioxygenase 1(TET1) knockdown resulted in a 4-

fold increase in percentage of hiCM compared to control treatment (Figure 3K). More 

importantly, knockdown of TET1 partially rescued the reduction of reprogramming 

efficiency caused by TLR3 knockdown (Figure 3L). Given the critical role of TET1 in DNA 

methylation, we speculated that changes in DNA methylation could underpin the TET1 
knockdown mediated reprogramming recovery in TLR3 depleted cells. Indeed, bisulfite 

sequencing results in double knockdown cells showed reduced methylation rates at the 

promoter regions of cardiac genes (Figure 3M). These data suggest that immune response is 

critical for myocyte fate acquisition during hiCM reprogramming, possibly through 

impacting DNA methylation status of cardiac loci.

Dynamics of hCF to hiCM fate conversion revealed by SLICER and RNA velocity

Using SLICER (Welch et al., 2016), we constructed the early reprogramming trajectory and 

calculated the relative position (pseudotime) of each cell on the route of fate switch from 

hCF to hiCM (Figures S4A and S4B). Built upon SLICER trajectory, we further applied 

RNA velocity analysis (La Manno et al., 2018) to assess the dynamics of each 

reprogramming cell. By calculating the ratio between spliced and unspliced reads for each 

gene in a given cell, RNA velocity predicts whether the gene is currently being turned on or 

off, and how rapidly this is occurring. Accordingly, it is possible to estimate gene-specific 

RNA velocity values for each cell using a kinetic model of transcription, in which the 

appearance of unspliced pre-mRNA precedes spliced mature mRNA as a particular gene is 
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turned on (La Manno et al., 2018). We calculated RNA velocity for each cell used in the 

trajectory analysis, then projected the vector field onto the SLICER trajectory (Figures 4A 

and 4B).

The velocity analysis suggests several interesting properties of hiCM reprogramming. The 

most salient feature of the velocity plot is the largely opposing directions of the velocity 

vectors for Fib/iFib and iCM cells (Figures 4A and 4B). That is, unexpectedly, many of the 

Fib/iFib cells appear to be regressing toward the fibroblast fate. This suggests that there may 

be a “decision point” after introduction of the reprogramming factors, in which a cell either 

responds to the hMGT133 cocktail and begins proceeding toward an iCM fate or drops back 

toward a fibroblast fate. However, intriguingly, not all of the Fib/iFib cells are proceeding in 

the same direction (inset in Figure 4A). Instead, a subset of the Fib/iFib cells have velocity 

vectors that point toward the iCM fate, suggesting that these cells have not yet reached the 

decision point and may be “late responders” still reacting to the introduction of the 

reprogramming cocktail. Thus, the Fib/iFib portion of the trajectory may consist of 

“opposing flows” (Figure 4A right panel), rather than a population of cells uniformly 

proceeding toward either iCM or fibroblast fate. This prediction was further supported 

experimentally by our time-course scRNA-seq (see below), suggesting the great value of 

using RNA velocity in combination with SLICER for prediction of the “direction” and 

“speed” at which a particular cell traverses high-dimensional gene expression space when 

the reprogramming is initiated.

Transcription factors and microRNA coordinate for hiCM reprogramming

To understand the contribution of individual reprogramming factors to transcriptome 

changes during reprogramming, we first navigated the relationship between TBX5 
expression and its downstream targets in each single cell due to the availability of other 

datasets (He et al., 2011; Waldron et al., 2016). We calculated the Pearson correlation 

coefficient between TBX5 expression and the expression of its predicted downstream targets 

within each reprogramming cell (Figure 4C), and performed GO analysis (Figures S4C and 

S4D). We also calculated the inter-correlation of TBX5 target genes to determine their co-

expression patterns (Figure 4D). GO results and co-expression patterns suggest that TBX5 
acts by promoting cardiac structure- and function-related genes and by suppressing 

fibroblast-related function and non-cardiomyocyte lineages (Figure 4C).

Because miR-133 is an indispensable factor unique for hiCM reprogramming, we focused 

on analyzing the gene network and co-expression patterns regulated by miR-133 by 

calculating Pearson correlation coefficient between expression of miR-133 and its predicted 

targets (Agarwal et al., 2015) (Figures 4E, 4F, S4E and S4F). Global GO analysis of 

positively correlated miR-133 target genes revealed enrichment of GO terms related to 

general cellular function (Figures 4E, S4E and S4F). Further examination of target genes 

that were strongly positively correlated with miR-133 expression (R > 0.4) and also strongly 

inter-correlated (box a in Figure 4F) identified a few genes that were cardiac related (rep. 

genes of box a). These genes might be critical mediators of miR-133 during reprogramming. 

GO analysis of negatively-correlated miR-133 target genes revealed enrichment of ribosome 

and cell-cycle related genes (Figure 4E). Consistent with the GO analyses, the inter-
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correlation matrix also identified cell cycle (box b) and translation (box c) related genes 

based on their co-expression patterns (Figure 4F).

Moreover, we found minimal overlap in GO terms enriched in TBX5 and miR-133 

downstream targets during hiCM reprogramming (Figures 4C and 4E). Consistent with 

different GO terms, comparison of the lists of miR-133 and TBX5 target genes revealed 

limited overlap (10% of miR-133 target genes, Figure 4G), suggesting TBX5 and miR-133 

contribute to hiCM reprogramming through distinct pathways. Next we attempted to identify 

the functional targets of miR-133 during hiCM reprogramming. We selected 24 potential 

miR-133 targets based on the prediction score provided by miRDB (Wong and Wang, 2015) 

and the Pearson correlation coefficient calculated between expression of miR-133 and its 

target genes in MEF2C highly expressed cells (expression value > 200) (Figure S4G). 

Among these selected targets, CNN2 and TAGLN2 are previously confirmed functional 

targets of miR133 in smooth muscle cells (Liu et al., 2008; Torella et al., 2011). We then 

determined if majority of these genes were downregulated by addition of miR-133 to hMGT-

infected hCFs (Figures 4H and S4H). In parallel, we functionally knocked down candidate 

targets of miR-133 in hMGT-infected hCFs. FACS analyses showed that silencing several 

genes including NCOA7 (Nuclear receptor coactivator 7), XPO4 (Exportin-4) and RQCD1 
(RCD1 required for cell differentiation1 homolog, also known as CNOT9) resulted in 

various degrees of enhancement in hiCM induction, suggesting that miR 133 promotes 

hiCM reprogramming partly through silencing these target genes (Figures 4I and 4J). It is 

important to note that NCOA7 functions as a transcription coactivator (Shao et al., 2002), 

XPO4 is a bidirectional nuclear transport receptor (Lipowsky, 2002), and RQCD1 belongs to 

CCR4-NOT complex that is one of the major cellular mRNA deadenylase (Mathys et al., 

2014). It will be of great interest to further explore their roles in cardiomyocyte fate 

determination and fibroblast plasticity.

Cell fate index (CFI) to quantitatively assess reprogramming progression

Although the molecular mechanisms underlying cardiac fate acquisition are largely 

conserved between mouse and human, differences do exist including considerable species-

specific genetic and epigenetic modulators. Given the availability of scRNA-seq data sets we 

recently generated for miCM reprogramming, we investigated the transcriptomic differences 

between hiCM and miCM reprogramming. We first analyzed the heterogeneity of 

reprogramming hCFs by calculating intercellular transcriptome variance. We found that the 

gene expression variance across hMGT133-infected cells is significantly less than that 

across murine MGT infected CFs (Figure S5A). As a control, DsRed plus EV introduced 

more intercellular variance in gene expression, possibly resulting from the over-activation of 

antiviral immune response as aforementioned (Figures 3E–3F, S3D–S3E). Intriguingly, in 

sharp contrast to miCM induction but similar to the initiation of iN reprogramming, the 

transcriptome variance in hMGT133 fibroblasts was much smaller than uninfected control 

hCFs, suggesting a possible synchronized response upon hMGT133 transduction (Liu et al., 

2017b; Treutlein et al., 2016). Notably, we found that the number of genes whose expression 

change significantly at day 3 of reprogramming in human was only 1/3 of that in mouse and 

57% changed genes in human were also changed in mouse (Figure S5B), suggesting that 

human cardiac programming might progress at a slower rate than the mouse one.
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We then sought to develop an approach to quantitatively measure the reprogramming 

progression at single cell level. By defining the starting fibroblast cellular state as 0 and the 

targeting myocyte state as 1, all reprogramming cells can be positioned mathematically 

along this fate path and given a calculated index, which we call “cell fate index” (Figure 

5A). With CFI, we evaluated the distance a reprogramming cell departed from fibroblast fate 

and how much the cell progressed toward myocyte fate. We first calculated CFIs of all 

mouse and human single cells using cardiomyocyte fate- and function-related genes 

obtained by comparison of bulk transcriptome profiles of de novo CFs and CMs (Figures 

S5C, S5D and Table S3). The results revealed a continuous acquisition of cardiomyocyte 

fate for both mouse and human reprogramming fibroblasts, the order of which was well 

aligned with the HC/PCA grouping of cell states (Figures 5B–5D). To further dissect the 

progression of CM fate acquisition during reprogramming, we calculated CFIs of both 

mouse and human cells using subgroups of CM fate- and function-related genes (Figure 5E). 

Mouse cells consistently progressed further toward the target cell type than human cells in 

all gene categories: cardiac structural protein, cell junction, contractility, and ion channel. In 

addition to target cell fate acquisition, suppression of starting cell fate is equivalently 

important in reprogramming. Therefore, we also calculated CFIs using genes that are 

expressed significantly higher in the starting cell compared to the target cell (Figure S5E, 

S5F and Table S3). The results revealed a continuous suppression of the starting cell fate in 

both mouse and human cells with the order of cells well-matched to HC/PCA grouping of 

cell states (Figures 5F and 5G). Similar to CM fate acquisition, the suppression of starting 

cell fate in human cells is less prominent than that in mouse cells, further confirming a 

slower rate of cardiac reprogramming in human cells than in murine cells (Figures 5F, S5E–

S5F). Moreover, human-specific mRNA-splicing, transcription and translation related 

reduction of cell fate index was determined along human reprogramming (Figures 5G, S5E–

S5F), consistent with our early findings in mouse.

Using CFI, we calculated the speed of hiCM and miCM reprogramming. We first 

determined the overall speed of these two reprogramming processes by considering the 

quantile-quantile plot (QQ-plot) using 600 equally-spaced quantiles from the CFIs for both 

human and mouse (Figure 5B). Linear regression estimated the slope of mouse’s quantiles 

over human’s quantiles to be 1.559, suggesting that mouse fibroblasts progressed 

significantly faster (P < 1e−16) toward the target cardiomyocyte fate, at a speed that is about 

1.6 times faster compared to human cells (Figure 5H). This result is also consistent with the 

highest CFIs achieved by mouse and human cells, with the fastest miCM arriving at CFI of 

0.45 and the fastest hiCM arriving at 0.25 (Figure 5B). We also calculated the speed of 

reprogramming at each moment along the process by fitting cubic smoothing splines to CFIs 

first (Figures S5G and S5H) and then calculating the derivative using first order finite 

difference approximation (Figure 5I). The results showed that instantaneous rate of miCM 

reprogramming was higher than that of hiCM reprogramming at any given time (Figure 5J, 

mean speed difference = 0.1944, p value = 0.0002), consistent with the overall rate estimated 

from QQ-plot. Interestingly, even though differing in absolute values, the rate of miCM and 

hiCM reprogramming demonstrated similar trend of progression over “time” featuring three 

consecutive phases. The first phase is characterized by initially high yet decreasing rate of 

reprogramming, which is followed by a second phase with steady and lower reprogramming 
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rate and the last phase of higher and accelerating reprogramming rate (Figure 5J). Further 

analysis of the reprogramming rate confirmed an overall higher progression rate of miCM 

reprogramming than hiCM reprogramming, with the mean speed differences being 0.1633 

(initial phase), 0.0875 (middle phase) and 0.4434 (late phase) and the p values smaller than 

0.05. To experimentally verify this calculation, we performed a pairwise comparison of the 

kinetics of hiCM and miCM reprogramming. Results from flow cytometry (Figures S5I and 

S5J) and the calculation of reprogramming efficiency demonstrated distinct kinetics of 

miCM (Figure 5K) and hiCM reprogramming (Figure 5L). We found that cTnT+ cells 

emerged on day 4 in mouse and day 8 in human cells, demonstrating a latency period of 2 

days and 6 days accordingly (Figures 5K–5L, S5I–S5J). Collectively, our results suggest that 

cardiac reprogramming in human cells progressed more slowly than in mouse cells, at least 

using the cocktails and platforms we described here.

Time-course scRNA-seq identified a refractory route along hiCM reprogramming

Because day 3-reprogramming human CFs lagged behind toward CM fate when compared 

to day 3-reprogramming mouse CFs, we decided to perform scRNA-seq at later time points 

along hiCM reprogramming. In contrast to its expression in day 3 miCMs, the cardiac 

marker cTnT was expressed at lower level in day 3 hiCMs, but demonstrated significant 

level of expression from day 5 to day 9 (Figure S6A). We thus collected single cells of 

hMGT133- or TdTomato+EV-infected hCFs at post-infection day 3, 5, 7 and 9 using the 

same Fluidigm C1 platform followed by Illumina sequencing as aforementioned (Figures 6A 

and S6A). Similarly, quality control and normalization were performed to exclude low 

quality reads and cells, yielding 13479 genes detected in 323 high-quality control and 

reprogramming cells for further analysis (Figures S6B–S6G and Methods). Interestingly, we 

found that all control TdTomato+EV-infected cells were clustered at the top-left corner of 

the PCA plots, while the hMGT133-infected cells bifurcated into two branches (Figures 6B–

6C). The first branch highlighted by pink circle along PC1 was associated with CM fate 

acquisition since PC1 accounts for the variations of cardiac genes (Figures 6B–6C and S6H–

S6I). In contrast, the second branch highlighted by the green circle along PC2 featured 

fibroblast markers and genes in the interferon pathway (Figures 6B–6C and S6I). 

Intriguingly, within the second population, the day 3 and day 5 reprogramming cell clusters 

appeared to be further separated from the control cells compared to the day 7 and day 9 

samples (Figure 6C). Similar clustering pattern was demonstrated by t-SNE (Figures 6D and 

S6J) and HC analyses (Figures 6E and S6K). Using the major groups of gene cluster 

generated by these two analyses, we classified the cells into three major groups: the control 

cells, the cells that assumed cardiac fate (hereinafter referred as reprogramming cells), and 

the cells that retained fibroblast molecular signature (referred as refractory cells) (Figure 

S6K). Similarly, two subgroups of refractory cells corresponding to their duration of 

reprogramming (D3/D5 and D7/D9) were clearly distinguishable on the plot. The D3/D5 

refractory cells were associated with stress response genes, while D7/D9 refractory cells 

more resembled control fibroblasts and were also characterized by upregulation of antiviral 

response related genes (Figure S6K).

As the hMGT133-infected cells were distributed on bifurcating branches, we speculated that 

these cells could take alternative routes to either adopt cardiac fate or enter the refractory 
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state and subsequently assume original fibroblast fate. Interestingly, our RNA velocity 

analysis on day 3 hiCMs (Figures 4A–4B) revealed a “decision point” at which the cells 

proceed toward an iCM fate or fall back toward their original fate. To test our hypothesis, we 

performed SLICER analysis with the entire scRNA-seq dataset generated from the samples 

at day 3 time point onward to reconstruct the reprogramming trajectory and calculate the 

pseudotime (Figures 6F–6H). Consistently with HC grouping, the trajectory was comprised 

of two separate paths: one path (pink) progressing from control fibroblast to hiCM fate, and 

the other path (green) looping back to control fibroblast fate (Figure 6F), thus we defined the 

pink path as a reprogramming route (branches 1 and 3) and the green path as a refractory 

route (branches 1 and 2, Figures 6G and S6L). Plotting the cells at real time points on the 

trajectory, we further demonstrated the segregation of two cell populations (Figure 6H), and 

the relative distribution of which on the routes was consistent with the reprogramming 

efficiency determined by ICC and flow analyses (Figure 1D). These data strongly support 

the prediction from day 3 RNA velocity analysis.

We next performed nonparametric regression and k-medoids clustering to delineate the 

underlying regulatory networks. Six clusters of genes based on their dynamic expression 

patterns were identified along pseudotime of reprogramming (Rep) or refractory (Ref) route 

(Figures 6I–6J and S6M–S6O, Table S4). As expected, the upregulated genes in cluster 

Rep1 were associated with cardiac function (Figure 6I, left panel), while fibroblast function 

related genes in cluster Rep2 were downregulated within reprogramming route (Figure 6I, 

middle panel). Notably, the cluster Rep3 showed an up-then-down-regulation in the 

expression of the genes related to “ATP biosynthetic process” and “mitotic cell cycle” 

(Figure 6I, right panel), consistent with our finding that cell cycle was inhibited once 

reprogramming initiated (Figure 2).

The three gene clusters identified for refractory route were enriched in completely different 

molecular pathways and biological processes (Figures 6J and S6O). In particular, the 

characteristic GO terms enriched in the up-regulated cluster Ref1 were “NIK/NF-kappaB 

signaling”, “response to stress” and “viral process”, suggesting upregulated viral and stress 

response in cells distributed along refractory route (Figure 6J, left panel). Meanwhile, the 

downregulated genes were highly involved in “viral transcription”, “muscle contraction” and 

“response to mechanical stimulus” (Figure 6J, middle panel). More interestingly, “regulation 

of mRNA stability” and “protein folding” were enriched in cluster 3 genes, with their 

expression peaking at the middle point of refractory pseudotime (Figure 6J, right panel). 

Therefore, molecular pathway analysis along pseudotime of refractory route provided 

candidate genes and pathways for future studies.

Comparative analyses between reprogramming and refractory routes

Given the separation of hMGT133-infected cells into either reprogramming or refractory 

subpopulations with time, we next aimed to identify the underlying molecular differences 

between these two routes. We first examined the expression of reprogramming factors. As 

shown on the tSNE plot, we found that the expression of M, G, T, and miR133 in the 

reprogramming cell population was higher than that in the refractory population (Figure 

S7A), suggesting that the level of reprogramming factors could influence cell fate decision. 
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We then applied CFI to further evaluate the progression of each route in different gene 

categories related to cardiac or fibroblast cell fate. The CFIs of cardiac structural proteins or 

contractility genes showed that the cells following reprogramming route underwent more 

progression into cardiac cell fate over time than those following refractory route (Figures 7A 

and S7B). Fibroblast-fate- related CFIs were decreased in a time dependent manner in 

reprogramming cells but regressed in refractory cells (Figures 7B top panels and S7B). The 

CFI of mRNA splicing, which has been identified as barriers in mouse iCM reprogramming 

(Liu et al., 2017b), showed similar decrease in reprogramming cells but little alteration in 

refractory cells (Figure 7B bottom panels). More importantly, two categories of cardiac CFIs 

indicated by cell junction and ion channel genes failed to show differences in progression 

along either reprogramming or refractory route (Figure 7C). This data pointed to a 

promising future direction whereby re-activation of genes in these two categories might be a 

viable approach to promote the efficiency of hiCM induction.

To identify the different molecular signatures between reprogramming and refractory cell 

populations, we examined DEGs at each time point by one-way ANOVA and GO analysis 

(Table S5). In agreement with the above findings, the GO terms consistently enriched for 

highly expressed genes in reprogramming cells at each time point were cardiac cell fate or 

function related terms (Figure 7D). In contrast, we found that genes involved in “protein 

folding”, “response to endoplasmic reticulum stress” and “regulation of autophagy/

mitophagy” (Figure 7D. see D3 and D5), were upregulated in refractory cells, suggesting 

that these cells activated stress response pathways upon transduction of reprogramming 

factor.

To identify the potential selection markers for reprogramming or refractory populations, we 

focused on those genes repeatedly ranked at the top of the DEG list (p value < 0.05 at each 

time point, Figure 7D, highlight in red dots, Table S4). Among the genes highly expressed in 

reprogramming cells (Figure 7E), we found several makers already known in heart, like 

cardiomyopathy associated 5 (CMYA5) encoding MYOSPRYN (Benson et al., 2017; 

Durham et al., 2006), crystallin alpha B (CRYAB, or HSPB5) and Heat Shock Protein 

Family B (Small) Member 2 (HSPB2) (Sugiyama et al., 2000). Transforming growth factor 

beta 3 (TGFB3), another potential marker for reprogramming cells, exhibited increasing 

level of expression along reprogramming route (Bujak and Frangogiannis, 2007). The other 

two potential positive markers junction plakoglobin (JUP) and fibrinogen-like protein 2 

(FGL2) have unknown function in heart development or regeneration. We also identified five 

negative markers for reprogramming that were highly expressed in control and refractory 

cells but barely detectable in reprograming cells (Figure 7F). It is interesting to identify one 

immune cytokine TNF alpha induced protein 6 (TNFAIP6), and one metabolic enzyme aldo-

keto reductase family 1 member C1 (AKR1C1), with which small molecular inhibitors can 

be discovered and applied to eliminate the undesired refractory population. Moreover, 

fibroblast activation protein alpha (FAP) is a cell surface serine protease, which can be a 

promising surface marker to select against the refractory cells for enriching reprogramming 

hiCMs.

Lastly, we calculated RNA velocity of cells at all examined time points and projected that 

onto the entire time course-reconstructed trajectory (Figures 7G–7H and S7C–7D). It is 
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interesting to notice that the arrows (velocity) of cells on the reprogramming route is 

unidirectional, always pointing to cells at the next time point on the reprogramming route. 

However, some of the D3 and the majority of the D5, D7 and D9 cells on the refractory 

route regressed toward the starting fibroblast cells (Figures 7G and 7H), which is consistent 

with our finding in Figures 4A and 4B, indicating that the “decision point” is where the cells 

take the bifurcating reprogramming or refractory route. Additionally, the vector field plot of 

RNA velocity suggests that the early initiation of cell fate conversion progressed more 

rapidly than the late determination of hiCMs (Figures S7C and S7D). Therefore, the time 

course scRNA-seq analysis demonstrated the early separation of reprogramming and non-

reprogramming cells and provided more detailed molecular differences and potential 

biomarkers to distinguish these two populations.

DISCUSSION

In this study, we established a stable and reproducible platform for hiCM reprogramming. 

Using this optimized platform, we performed scRNA-Seq on reprogramming fibroblasts at 

multiple time points in the reprogramming process. In-depth scRNA-seq analyses 

demonstrated several salient properties of hiCM reprogramming. First, RNA velocity 

revealed a “decision point” at which a cell begins progressing toward a hiCM fate or regress 

toward a fibroblast fate. This observation is consistent with SLICER trajectory that an 

hMGT133-infected fibroblast could take alternative routes to either acquire hiCM fate or 

regress toward fibroblast fate. Additionally, these two separate routes are associated with 

distinct hiCM specific signaling molecules and factors that warrant in-depth future studies. 

Second, by performing cell fate index to quantitatively assess reprogramming progression, 

we found that hiCM reprogramming progresses at a much slower rate toward acquiring 

cardiac fate than mouse cardiac reprogramming. This is likely due to the fact that the 

instantaneous rate of hiCM reprogramming was lower than that of mouse cardiac 

reprogramming at any given time. Third, through further scRNA-seq analysis and follow-up 

functional studies, we demonstrated that immune response associated DNA methylation 

regulation is required for hiCM induction and silencing several previously uncharacterized 

downstream targets of reprogramming factor enhanced hiCM induction. Collectively, our 

scRNA-seq based approach revealed previously unrecognized molecular features and 

regulatory mechanisms of human cardiac reprogramming.

Our finding that depletion of immune genes represses iCM reprogramming, as well as 

previous reports of critical role of innate immunity in other reprogramming systems 

(Hodgkinson et al., 2018; Lee et al., 2012; Sayed et al., 2015, 2017) highlighted a critical 

role of innate immune signaling pathway in cell fate determination and maintenance. It is 

interesting to notice that activation of immune gene mainly occurs at the early stage of iCM 

reprogramming (Figure S6K) and is correlated with alterations in stress response genes 

(Figure 6I see Cluster Rep2), suggesting that innate immunity is required for and associated 

with initial iCM fate conversion rather than late maturation. It is also reasonable to believe 

that the activation of innate immune response is at least partially associated with the 

collateral stress/damage induced by the initiation of reprogramming. Mechanistically, we 

and others have shown that alteration of immune response during reprogramming is 

associated with epigenetic changes on histone modification and/or DNA methylation (Lee et 
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al., 2012). Yet it is still largely unknown how regulators of immune response acts on 

epigenetic modifiers to allow histone and DNA modification changes. Future research on 

this topic will inform us more on how a cell senses environmental stimuli and then relates to 

its epigenetic re-patterning to ultimately alter its cell status or identity.

The cell fate index approach that we developed allows a proof of principle comparison of 

cellular processes across species and conditions, and we anticipate that it will be useful for a 

variety of biological processes. We found that both hiCM and miCM reprogramming occurs 

with the “three phase” of differential rate of progression (Figure 5J). There are two turning 

points on each trendline that change the speed of reprogramming. The high yet decreasing 

speed in the initial phase seems to be consistent with a relative fast and uniform initial 

response to transcription factors and may suggest barriers impeding the progress of 

reprogramming around the turning point. In contrast, the steep burst in the late phase 

suggests a committed cardiomyocyte fate and certain critical regulators around the turning 

point might be important for this abrupt acceleration of speed. Follow-up studies about 

potential predicting functions of CFI and its derivatives will be of great interest.

Ultimately, interdisciplinary approaches combining biological experiments with statistical 

analyses and computational modeling will open opportunities for novel biological 

discoveries. Our studies incorporating the latest algorithms such as SCnorm, reCAT, RNA 

velocity, and our own SLICER and CFI analyses represent such an example and may inspire 

next crucial steps toward understanding the nature of cell identity and translating this 

knowledge into regenerative therapies.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to and will be fulfilled by 

the Lead Contact, Li Qian (li_qian@med.unc.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human fibroblasts culture—The human cardiac tissue was provided by the Duke 

Human Heart Repository (DHHR) with IRB protocol # Pro00005621. The patient is male at 

age of 63, Caucasian and non-Hispanic. Human cardiac fibroblasts (hCF1) were derived 

from heart tissue by explant culture. The heart tissue was firstly minced into small 

aggregates, then plated onto one gelatin coated 10 cm dish for explant culture in HCF 

medium (20% FBS/IMDM/1×P/S). After 7 days of migration, fibroblasts were trypsinized 

and dissociated into single cells. These cells were ready for reprogramming or frozen for 

future use. hCF2 cells were non-myocytes derived in Cheng Lab as described previously 

(Cheng et al., 2012). H9F cells were fibroblasts differentiated from aMHC-mCherry 

transgenic human embryonic stem cell H9 as previously described (Fu et al., 2013). Briefly, 

embryonic bodies were generated by suspension culture of H9 cells for 7 days, and plated 

onto gelatin-coated dished in H9F medium (20% FBS/DMEM) for additional 2 weeks.

Mouse fibroblasts culture—Fresh isolation of CFs was performed according to the 

protocols described previously (Wang et al., 2015b). Briefly, hearts were dissected from 
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postnatal 1.5 (P1.5) ĮMHC-GFP transgenic mice (CD1 background), rinsed with cold PBS 

and cut into small pieces with a sterile blade. Then, heart tissues were digested with 0.05% 

Trypsin at 37 °C for 10 minutes and 0.2% collagenase type II/HBSS (Life Technologies) at 

37°C for 5 minutes followed by 1 minute of vortexing for 5 times. Each time, supernatant 

containing single cells was filtered through 40 μm cell strainer (BD) and neutralized in equal 

volume of FB media. Red cells were removed using red cell lysis buffer (150 ml NH4Cl, 10 

mM KHCO3, and 0.1 mM EDTA) for 1 minute on ice. Then, magnetic-activated cell sorting 

(MACS) was performed to enrich Thy1.2 positive fibroblasts. Cells were incubated with 10 

μl of biotin anti-Thy1.2 antibody (Biolegend) in FACS buffer (DPBS/2% FBS/2 mM EDTA) 

for 30 minutes at 4 °C and then with 10 μl of Anti-Biotin Microbeads (Miltenyi Biotec.) in 

MACS buffer (DPBS/0.5% BSA/2 mM EDTA) at 4 °C for 30 minutes. After that, cells were 

washed and resuspended in MACS buffer and applied to calibrated LS column (Miltenyi 

Biotec.). Thy1.2 positive cells (CF) were flushed out and seeded for reprogramming.

METHOD DETAILS

Plasmids—Retroviral vectors encoding human MEF2C, GATA4, TBX5, ESRRG, MESP1 

and MYOCD in pMXs backbone vectors used for Fu (GMTEMsp) and Wada 

(GMTMyMsp) cocktail were described previously (Fu et al., 2013; Wada et al., 2013). 

Retroviral vectors encoding human GATA4, HAND2, MEF2C, TBX5, MYOCD, MESP1, 

miR-1 and miR-133 were gifts from Nam (for GMTMyMsp-miR-1/133 cocktail) (Nam et 

al., 2013). To generate polycistronic hMGT construct, human MEF2C, GATA4, TBX5 were 

PCR amplified and inserted into pGEMT-P2A-T2A vector as previously described (Wang et 

al., 2015a) and the hMGT cassette was sequentially cloned into pMXs-puro vector. pMXs-

puro-LacZ was purchased from Cell Biolabs. pMXs-puro-dsRed, pMXs-GFP and pMXs-

tdTomato were described previously (Liu et al., 2017d; Wang et al., 2015a). TroponinT-

GCaMP5-Zeo was a gift from John Gearhart (Addgene plasmid #46027) (Addis et al., 

2013). All the lentiviral shRNA plasmids were purchased from Sigma and listed in Table S2.

Virus packaging—To obtain retroviruses for human cell infection, retroviral DNA 

plasmids along with pCMV-VSV-G (Addgene #8454) and pUMVC (Addgene #8449) were 

transfected by NanoFect (ALSTEM) into 293T cells. While, we used PlatE cells to package 

retroviruses for mouse cell infection. One day before transfection, 4–5 million 293T or PlatE 

cells were seeded onto poly-l-lysine (Sigma) coated 10 cm dish with 293T media (DMEM 

supplemented with 10% fetal bovine serum (FBS), 0.1 mM non-essential amino acids 

(NEAA) and 1% penicillin/streptomycin (P/S)). Fresh 293T media without P/S was changed 

prior to transfection. For 293T cell transfection, DMEM mixture with 45 μl of NanoFect was 

added into DMEM mixture with 8 μg of retroviral DNA plasmid, 8 μg of pUMVC and 1 μg 

of pCMV-VSV-G and vortexed. For PlatE cell transfection, 20 μg of retroviral DNA plasmid 

was used instead. After 15 minutes of incubation at room temperature, total mixture was 

added dropwise to 293T or PlatE cells. Supernatant containing retroviruses was collected 48 

and 72 hours after transfection, filtered through a 0.45 μm filter (Thermo Scientific) and 

incubated with 8% of PEG6000 (Sigma) at 4 °C overnight. Viral particles were pelleted with 

centrifuge at 3900 rpm for 30 minutes at 4 °C. Viruses from each 10 cm dish were 

resuspended in 100 μl of DMEM and ready for future use. For lentiviral packaging in 293T 

cells, same protocol with Nanofect was used, except the different viral DNA mixture, which 
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contained 10 μg of lentiviral shRNA plasmids cotranformed with 7 μg of psPAX2 (Addgene 

#12260) and 3 μg of MD2.G (Addgene #12259).

Human fibroblasts cardiac reprogramming—To test different combinations of 

transcription factors, 2 × 104 of H9Fs per well were seeded onto gelatin-coated 24 well 

plate, and infected with 10 μl of each indicated viruses in iCM media (10% FBS/20% M199/

DMEM) supplemented with 8 μg/ml polybrene. Media were changed every 4 days 

thereafter. At reprogramming day 14, cells were trypsinized and analyzed by flow cytometry. 

The optimized protocol of cardiac reprogramming was performed as following. Human 

fibroblasts were seeded onto SureCoat (Celltron) pre-coated wells of 24 well plate at a cell 

density of 2 × 104 per well one day before infection. Cells were infected with 10 μl of puro-

hMGT and 10 μl of miR-133 with iCM media supplemented with 8 μg/ml polybrene. 

Puromycin selection was performed from day 3 to day 7. The media were replaced with 

hiCM (RPMI1640/2% B27/2%FBS/0.05%BSA/50 μg/ml Ascorbic Acid/0.2 mM 

GlutaMAX, 1× NEAA) media at reprogramming day 10. Reprogramming cells were 

harvested at indicated time point for immunostaining, RT-qPCR and flow cytometry.

Co-culture of hiCM with mouse neonatal CM—H9Fs were infected with retroviral 

hMGT133 for iCM reprogramming and lentiviral GFP to indicate the human cells. After 2 

weeks of infection, the infected cells were trypsinized and re-plated onto neonatal mouse 

cardiomyocytes at a ratio of 1:10 with DMEM/M199/10% FBS medium. Neonatal mouse 

cardiomyocytes were isolated from P3.5 mouse pups by using the neonatal cardiomyocytes 

isolation system (Worthington Biochemical Corporation) except that all enzymes were used 

at a quarter of the recommended concentration to increase cell viability. After a 1.5 h of pre-

plating on an uncoated surface to remove attached non-cardiomyocytes, the unattached 

cardiomyocytes were counted and used for seeding with GFP labeled reprogramming cells 

together.

Mouse fibrobroblasts cardiac reprogramming—Freshly isolated neonatal mouse 

cardiac CF (Thy1.2+) seeded for reprogramming at a density of 2 × 104 per well onto 

gelatin-coated 24 well plate. iCM media with 10 μl of retroviral puro-MGT and 4 μg/ml 

polybrene were replaced for FB media at reprogramming day 0. iCM media with 1 μg/ml 

puromycin were used at day 3 and replaced by regular iCM media at day 6. Reprogramming 

cells were collected at indicated time point in TRIzol for RNA extraction or fixed with 4% 

paraformaldehyde (PFA) for immunostaining or flow cytometry.

Flow cytometry—For flow cytometry, cells were trypsinized with 0.05% Trypsin/EDTA 

(Life Technologies), fixed with Fixation/Permeabilization Solution (BD Biosciences) for 30 

minutes at 4 °C. 1× Perm/Wash Solution (BD Bioscience) was used for wash between each 

step. Cells were incubated with primary antibodies (GFP, 1:500, Invitrogen; cTnT, 1:400, 

Thermo Scientific) diluted in BD Perm/Wash Solution for 30 minutes at 4°C and Alex Fluor 

488-or 647-conjugated secondary antibodies (1:500, Jackson ImmnoResearch Inc.) for 30 

minutes at 4°C. Cells were run on Beckman Coulter CyAn ADP flow cytometer. Data 

analyses was performed by FlowJo software (Tree Star).
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Imaging Calcium oscillation—Calcium signals were indicated with GFP fluorescence 

from cTnT driven GCamp5. H9Fs were infected with TroponinT-GCaMP5-Zeo lentiviruses 

and seed to perform hiCM reprograming 2 days postinfection. At reprogramming day 20, 

calcium flux was observed and videos of calcium oscillation were recorded using an image 

acquisition software liteCam HD (RSUPPORT) and an EVOS microscope system 

(Invitrogen). The calcium signals were quantified via ImageJ (Fiji version, NIH). The 

relative fluorescence unit (RFU) of GFP was normalized to the background fluorescence 

intensity.

Immunofluorescence staining—Cells were fixed with 4% PFA, permeablized with 

0.1% Triton-X100 for 20 minutes, blocked by 5% BSA for 30 minutes at room temperature, 

and then incubated with primary antibody (GFP, 1:500, Invitrogen; aActinin, 1:500, Sigma-

Aldrich, Connexin 43, 1:400, Abcam) at 4°C overnight and Alex Fluor 488- or 647-

conjugated secondary antibodies (1:500, Jackson ImmnoResearch Inc.) for 1 hour at room 

temperature. Finally, Hoechst 33342 (Life Technologies) was used to label nuclei. PBS was 

used for wash between each step. Images were captured using EVOS® FL Auto Cell 

Imaging System (Life Technologies). For the quantification of ICC, 10 images were 

randomly acquired under 20× magnification at the same exposure setting. Then the indicated 

cells were counted manually.

RNA extraction and qRT-PCR—According to the manufacturer’s instruction, cells 

lysate in TRIzol reagent (Invitrogen) were separated with chloroform. RNA in the aqueous 

phase was precipitated with isopropanol, pelleted with centrifuge, washed with ethanol and 

eluted in DNase- and RNase-free water. Purified RNA was quantified by Nanodrop (Thermo 

Scientific) and reverse-transcribed into cDNA using SuperScript III Reverse Transcriptase 

(Invitrogen). qPCR was performed using Power SYBR Green PCR Master Mix (Applied 

Biosystems) on the ABI ViiA 7 Real-Time PCR system (Applied Biosystems). Additional 

primer sequences for RT-qPCR are provide in Supplemental Table S2.

Bisulfite sequencing—H9Fs were infected with lentiviral shRNAs targeting TLR3 and 

selected with puromycin for 2 days. Then TLR3 knocked down H9F were seed at density of 

40,000 and infected with hMGT133 with shNT or shTET1 the next day after seeding to 

perform reprogramming. Fresh iCM medium was replaced post-transduction day 2 and cells 

were harvested at day 6 by trypsinization, and genomic DNA was extracted using DNeasy 

Blood & Tissue Kits (Qiagen) and bisulfite converted (~ 500 ng/reaction) using the EZ DNA 

Methylation-Gold Kit (Zymo Research). 1 ȝl of the bisulfite converted DNA was used for 

PCR amplification of the promoter regions of MYH6 and MYL7 genes using previously 

described primers (Fu et al., 2013) and the EpiMark Hot Start Taq DNA Polymerase (NEB). 

The PCR products were then gel purified and TA-cloned into pGEMT vector (Promega). Ten 

clones in each sample were successfully sequenced. Bisulfite Sequencing DNA Methylation 

Analysis (BISMA) was used to analyze the bisulfite sequencing DNA methylation data 

(Rohde et al., 2010).

Single cell capture and cDNA preparation—Single cells were captured using the 

Fluidigm C1 system with the capacity of up to 96 single cells per experiment. A total of 
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eight individual single-cell experiments were performed (see Fig. 2A and Fig. 7A for 

experimental design). One plate (D0hCF) contained uninfected d0 human primary 

fibroblasts. Two plates (D3M1 and D3M2) contained d3 MGT+miR-133-transduced cells. 

The fourth plate (D3UN) contained d3 DsRed-transduced cells (DsRed+ by FACS) mixed 

with d3 uninfected cells at 3:1 ratio. The rest four plates contained MGT+miR-133-

transduced cells mixed with Tdtomato-transduced cells (Tdtomato+ by FACS) at 3:1 ratio, 

which were collected on d3 (D3M3), d5 (D5M1), d7 (D7M1), and d9 (D9M1), respectively. 

The cells were collected by trypsinization, stained with NearIR live/dead dye (Thermo 

Fisher Scientific), and FACS-sorted for live cells (negative for the live/dead dye). For plates 

D3M3, D5M1, D7M1 and D9M1, the MGT+miR-133-transduced cells were also stained 

with the green Carboxyfluorescein succinimidyl ester (CFSE) dye as described 

previously(Liu et al., 2017b) and only CFSE+ cells by FACS were collected and used. Pilot 

experiments showed that hCF had a diameter of 22.5 μm and a buoyancy of 7.5 (cells): 2.5 

(buoyancy buffer). Therefore, the sorted single cell suspension (~2000 cells μl−1) was loaded 

on a large-sized (17–25 μm) microfluidic RNA-seq chip and single cells were captured with 

the C1 system. Bright field and/or green (CFSE)/red (DsRed or Tdtomato) fluorescence 

images were taken for each capture site. For the next step, cDNAs were prepared on chip 

using the SMARTer Ultra Low RNA kit from Illumina (Clontech). Briefly, control RNA 

spike-ins were added to the plate before cell lysis and processed in parallel to cellular RNA. 

The experiment D3M1 used the Ambion Array Control spike-ins (AM1780) that were 

included in the SMARTer kit (spike 1, 4, and 7) according to Fluidigm’s protocol. For the 

other experiments, D0hCF, D3M2/3, D3UN, D5M1, D7M1, and D9M1, the External RNA 

Controls Consortium (ERCC) RNA spike-in Mix 1 (Ambion, Life Technologies), were 

added after a 80,000-fold dilution. After the addition of spike-ins, cell lysis, reverse 

transcription, and cDNA pre-amplification were performed on the chip according to 

Fluidigm’s standard protocol.

Illumina library preparation and sequencing—After in situ cDNA library 

preparation, the bright field and/or fluorescence images of each nest on the chip were 

carefully examined and only single and healthy cells were processed further. This step 

removed 64 empty nests, nests with two or more cells, or nests containing morphologically 

unhealthy cells from a total of 768 capture sites in the eight chips, resulting 704 single-cell 

cDNA libraries for further processing. Size distribution and quality of each of these cDNA 

libraries were assessed and confirmed on Agilent Bioanalyzer 2100 by UNC LCCC 

Genomics Core. Two negative control libraries from empty nests on the D3UN plate and the 

D9M1 plate was included and processed in parallel with other single healthy cells. Next, the 

704 high-quality cDNA libraries were sent to UNC HTSF Core and Illumina libraries were 

prepared using the Nextera XT DNA Sample Preparation kit according to Fluidigm’s 

standard protocol except that 13 cycles of amplification was used instead of 12 cycles. The 

barcoded single-cell Illumina libraries of each experiment were pooled and sequenced for 50 

base pairs (bp) single-end reads on one lane of Illumina HiSeq 2500. Previous studies 

showed that 0.5−1 million reads per cell were sufficient to detect most genes expressed by 

single cells (Treutlein et al., 2016; Wu et al., 2013) and we sequenced about 1–5×106 reads 

per cell in this study. Raw reads were re-assigned to each single cell by their unique Nextera 
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barcode and sequencing reads removed of barcodes were received from UNC HTSF Core 

in .fastq format.

QUANTIFICATION AND STATISTICAL ANALYSIS

QC, alignment, and counting scRNA-seq data—Quality of sequencing results was 

first checked by FASTQC and no trimming was performed because of high-quality reads. 

Therefore the raw reads were mapped to a merged genome of hg19, ERCC, E.coli K12, 

pMXs-DsRed, pMXs-Tdtomato, and pBabe-miR-133 with Tophat2 using default settings 

(allowed mismatch = 2, maximum hits = 1). Information about the number of total reads and 

the percentages of reads mapped to spike-in or human genome for each single cell were 

detailed in the Table S1. Outliers showing high ratios of % reads mapped to spike-in to % 

reads mapped to human genome were removed (Fig. S2A and Fig. S7B). This step removed 

29 outliers from the 704 sequenced single cells. After normalization (see next paragraph), 

additional outliers were removed at the default outlier removal step during analysis using the 

“SINGuLAR Analysis Toolset” R package (see “Analysis of single cell RNA-seq data”). A 

total of 23 additional outliers were removed based on median gene expression (Fig. S7E) or 

PCA (Fig. S7F), resulting 652 high-quality single cells for analysis including 85 original 

hCFs (D0hCF), 14 uninfected hCFs (D3UN), 54 day 3 DsRed- and EV-transduced hCFs 

(D3UN), 14, 21, 18, and 18 Tdtomato and EV-transduced hCFs collected on day 3 (D3M3), 

5 (D5M1), 7 (D7M1), and 9 (D9M1), and 248, 54, 64, and 62 hMGT- and miR-133-

transduced hCFs collected at day 3 (D3M1, D3M2, and D3M3), 5 (D5M1), 7 (D7M1) and 9 

(D9M1, Table S3). Gene expression was counted with Htseq-count using the union mode 

against the UCSC hg19 annotation file (Anders et al., 2015) (http://www-huber.embl.de/

users/anders/HTSeq). No-feature and ambiguous counts were excluded for downstream 

analysis.

Normalization of scRNA-seq data—The human mRNA raw counts were then 

normalized using SCnorm (Bacher et al., 2017) to correct the dependence of read counts on 

sequencing depth (FilterCellProportion = .1, 1 condition). Plate D0hCF, D3M1, D3M2, and 

D3UN were normalized together (329 cells, K = 7, Fig. 2D and Fig. S2C) and plate D3M3, 

D5M1, D7M1, and D9M1 were normalized together (346 cells, K=9, Fig. S7C,D). The 

count-depth plot (Fig. 2D and Fig. S7C) clearly documented the shift of slope (indicating the 

dependence of gene counts on sequencing depth of each cell and each gene) from 1 before 

normalization to 0 after normalization, suggesting the successful removal of count-depth 

dependence. PCA analyses suggest that normalization with SCnorm outperformed our 

previous normalization strategy (Liu et al., 2017b) using DEseq (Bacher et al., 2017) and 

SCnorm outperformed our previous strategy judging from PCA (Fig. 2E, F). After 

normalization, total number of counts per cell is about 1 million (Fig. S2C, S7D). Therefore 

the unit of gene expression reported here is counts per million (CPM). Based on the 

normalized DsRed counts, cells in D3UN were classified as DsRed-infected (R, expressing 

high levels of DsRed), or uninfected cells (U, low DsRed expression, Fig. S2E). Similarly, 

cells in D3M3, D5M1, D7M1, and D9M1 were classified as Tdtomato-infected or 

MGTmiR133-infected based on Tdtomato versus MGTmiR133 counts (Fig. S7G).
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Analysis of scRNA-seq data

Dimension reduction and correlation analysis: Single cell transcriptomes normalized with 

SCnorm were analyzed in two batches. D0hCF, D3M1, D3M2, and D3UN were analyzed 

together (Fig. 2–6, S2–S6, 329 cells in total). D3M3, D5M1, D7M1, and D9M1 (323 cells) 

were analyzed together with the 14 day 3 uninfected control cells from plate D3UN after 

sequencing depth adjustment (Fig. 6–7 and Fig. S7–S9, 337 cells in total). First, genes 

expressed at a level below limit of detection (average normalized expression = 1 CPM) were 

excluded, resulting in 13381 and 13479 detected genes for the two batches of analyses. Then 

a logarithm transformation (log2)is applied to all single-cell data to avoid non-Gaussianity. 

Outlier removal, PCA, HC, tSNE, ANOVA, and the generation of volcano and violin plots 

were performed with the “SINGuLAR Analysis Toolset” package (Fluidigm) in R. 

Expression of the reprogramming factors M, G, T, and miR133 was excluded before 

analysis. Next, top 400 PCA genes were selected by largest weight (loading) contribution to 

principle component 1, 2, or 3. Then HC was performed with these 400 genes and cells were 

grouped (grouping information in Table S3). tSNE was also performed with these genes. 

One-way ANOVA was performed on all detected genes using cell clusters determined by 

HC and pairwise comparisons of cells on reprogramming route vs. refractory route were 

performed for each time point. The expression of a total of 4333 genes were considered 

statistically significant by showing p value < 0.05 in one or more of the four pairwise 

comparisons (Table S5). Genes showing p < 0.05 and fold change > 2 between cells on 

reprogramming vs. refractory route at all four time points were selected as potential positive 

or negative markers of reprogramming. SLICER analysis, pseudotime calculation and 

identification of genes significantly related to reprogramming progress were performed as 

previously described (Liu et al., 2017b) except that SLICER auto-selected genes were used. 

For the calculation of Fig. 7I, cells on branch 1 and 3 (Fig. S8E) were included. For the 

calculation of Fig. 7J, cells on branch 1 and 2 (Fig. S8E) were included. Analysis of cell 

cycle status with reCAT (Liu et al., 2017c) was performed with R package available at 

https://github.com/tinglab/reCAT. GO analysis was performed using the DAVID functional 

annotation tool version 6.8 (https://david.ncifcrf.gov/). The long list of GO terms then were 

categorized and visualized by REVIGO at http://revigo.irb.hr (Supek et al., 2011). For 

correlation analysis, only reprogramming cells were included. Potential miR-133 target 

genes were determined using the TargetScan tool (Agarwal et al., 2015); precomputed 

predictions were downloaded from http://www.targetscan.org/vert_71. Potential TBX5 
targets were obtained as previously reported (Liu et al., 2017b). Because all three 

reprogramming factors were expressed from one polycistronic viral vector, expression 

counts of all three factors were averaged and used to calculate correlation between TBX5 
and its targets. The associated p-values were obtained by considering a t distribution with 

degrees of freedom being equal to the sample size minus 2, under the null hypothesis. To 

identify the potential targets of miR-133, we ranked the Pearson correlation coefficient 

between expression of miR-133 and other genes in MEF2C highly expressed cells 

(expression value > 200), and picked up the hits with negative Pearson’s R (< −0.2) and high 

prediction score (> 60) provided by miRDB (http://mirdb.org) (Wong and Wang, 2015) as 

candidates for further functional validation.
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Transcriptome heterogeneity: In order to estimate intercellular heterogeneity of d0hCF 

and compare heterogeneity in human v.s. mouse fibroblasts receiving different treatments, 

intercellular transcriptome variance was calculated. Single cell gene expression profiles of 

mESC (2iLif), hESC, day 0 MEF, and five primary hGMB cells were obtained from 

previous studies (Patel et al., 2014). Htseq counts of uninfected, DsRed-infected, and 

reprogramming mouse fibroblasts from 513 single cells in our previous study (Liu et al., 

2017b) were normalized by SCnorm first in order to be compared with human cells. To 

ensure that gene expression calculated from different pipelines are comparable, linear 

expression of all single cell datasets was scaled so that the median total mRNA counts of 

each cell populations equal to 1 million. Then each expression dataset was filtered by 

removing genes with average expression level < 1. Log2(Exp+1) was calculated and 

intercellular variance of each gene was calculated. The distribution of variances for all genes 

per cell type/treatment condition was then plotted as box plots and statistics were calculated 

with ANOVA followed by Bonferroni correction.

Cell Fate Index: The cell-fate index of each single cell was calculated in three steps: 

calculation of differentially expressed genes (DEG) between starting and target cell types 

from bulk transcriptome data, filtering DEG to obtain genelists representing the starting and 

target cell fates, and calculation of cell-fate index using the transcriptome of single cells. To 

calculate DEG between cardiac fibroblast (starting cell type) and cardiomyocytes (target cell 

type), bulk RNA-seq data in previously published studies were downloaded from the Gene 

Expression Omnibus (GEO) website: mouse neonatal cardiac fibroblasts (mCF, 

GSM1223642/3) and cardiomyocytes (mCM, GSM1223646/7) (Giudice et al., 2014), 

human ESC (H1, GSM2264850/1, H9, GSM2264858/9 (Liu et al., 2017a) and human ESC-

derived cardiomyocyte (H1, GSM2264856/7, H9, GSM2264864/5 (Liu et al., 2017a), H7, 

GSM1536176/7/8 (Kuppusamy et al., 2015). Quality of sequencing results was first checked 

by FASTQC and low-quality bases were trimmed off by trimmomatic/0.36 (trim until the 

average score of adjacent 4 bases is above 30). Processed reads were then mapped to mm10 

or hg19 with Tophat2. Gene expression was counted with Htseq-count using the union mode 

(Anders et al., 2015) (http://www-huber.embl.de/users/anders/HTSeq). DEG between mCF 

and mCM were calculated with DESeq2 (Love et al., 2014). Due to lack of human cardiac 

fibroblast bulk RNA-seq data, we used assembly of our day 3 uninfected hCF single cell 

RNA-seq data for the calculation of DEG between hCF and hESC-CM (H7, referred to as 

hCM hereafter). Briefly, the 14 d3hU cells were randomly divided into two groups (7 cells 

per group) and average gene expression was calculated for each group based on normalized 

single-cell gene counts from SCnorm. The two groups mimic a duplicated bulk RNA-seq 

sample. Gene expression from the two groups were then scaled up (about 30 fold) to the 

same sequencing depth as hESC-CM because differences in sequencing depth would lead to 

miscalculation of DEG by DESeq2. After the scale-up, gene expression values were rounded 

up because DESeq2 requires raw counts (integer) as input data.

To obtain gene lists for the calculation of cell-fate index, the following filtering criteria were 

applied to DEGs calculated between mCF and mCM, and between hCF and hCM. For 

mouse, only DEGs with p < 0.05, average normalized expression (counts per million, CPM) 

> 5, and fold change (FC) of expression in CF versus CM (either direction) > 1.25 were 
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kept. Then DEGs with 0.01< p < 0.05 and 1.25 < FC < 1.5 were further excluded, resulting 

in 2428 genes expressed higher in mCF and 2965 genes expressed higher in mCM. For 

human, first, only DEGs with p < 0.05, CPM > 1, and FC > 1.25 were kept. Second, in order 

to exclude carry-over ESC genes in hESC-CM, DEGs between hESC-H1 and hESC-CM-H1 

and those between hESC-H9 and hESC-CM-H9 were calculated with DESeq2 and 

overlapping genes between H1 and H9 that were expressed at the same level in ESC and CM 

(p > 0.05) or expressed higher in ESC than CM (p < 0.05) were excluded. Third, DEGs with 

1 < CPM < 5 and 0.001 < p < 0.05, and DEGs with 5 < CPM < 50, 0.01< p < 0.05 and 1.25 

< FC < 1.5 were further excluded, resulting in 2866 genes expressed higher in hCF and 2713 

genes expressed higher in hCM. Next, GO analyses were performed with the four selected 

gene lists and enriched GO terms were grouped based on their related biological function. 

Then genes in each GO term group were combined and used for the calculation of cell-fate 

index.

To calculate cell-fate index for each gene list, we first defined the average of the beginning 

10 cells in pseudotime (smallest pseudotime value, Fig. 3G for human and Fig. 1e (Liu et al., 

2017b) for mouse) as the start point (CF), and the average of mCM or hCM bulk 

transcriptome as the end point (CM). Next, for each gene j in each single cell i, we 

calculated relative expression of that gene as rij = (gij – gCF) / (gCM – gCF) for gene lists 

expressed higher in CM than CF, and as rij = (gij – gCM) / (gCF – gCM) for gene lists 

expressed higher in CF than CM, where g denotes normalized gene expression from 

SCnorm. The value of rij was set to 0 or 1 when it’s < 0 or > 1. Then for each single cell i 
and each gene list containing m genes, we calculated the cell fate index (CFIi) as the 

weighted sum of relative gene expression across different genes: CFIi = <MI>wj ×rij, where 

the weight of each gene wj is proportional to its expression level at the end point (gCM) such 

that the sum of wj adds up to 1. The use of both relative gene expression rij and weight wj is 

to ensure that all expression changes are on the same scale of 0~1. For gene lists expressed 

higher in CF than CM, wj is proportional to its expression level at the start point (gCF). The 

plots in Fig. 4 were generated by sorting the cell fate indexes for all cells and then plotting 

on the y-axis with x-axis being the cell fraction time between 0 and 1. Day 3 cells on branch 

1 and 2 (Fig. S4C) were included for human and non-proliferating cells (Fig. 1e in ref (Liu 

et al., 2017b) were used for mouse).

To compare the “reprogramming rate” in mouse and human (Fig. 7A), we consider the 

quantile-quantile plot (QQ-plot) by using 600 equally-spaced quantiles from the cell fate 

indexes of both human and mouse. We then fit a linear regression of mouse’s quantiles over 

human’s quantiles. The slope parameter estimate is 1.559 with standard error 0.005. This 

result suggests that the mouse progression rate is 1.56 times faster than that of human. The 

rate estimate is also highly significant p-value < 1e-16, which suggests that the speed of 

progression in mouse cells is statistically significantly higher than that of human cells. For 

the estimation of the smoothed CFI curve and its derivative (Figure S5E–F, and 7B–C), we 

adopt the cubic smoothing spline method, which is a nonparametric statistical approach that 

has been widely used for estimation and smoothing of functions (Gu, 2013; Wahba, 1990) 

Compared to parametric methods (e.g., linear regression), smoothing spline provides a wide 

choice of shapes to characterize the behavior of CFI over time, which is extremely useful in 

our situation since the CFI curve and its derivatives can be highly nonlinear as the study time 
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varies. In addition, smoothing splines effectively deals with the over-fitting problem by 

shrinking the coefficients of the estimated function (in terms of its basis expansion). The 

main idea behind cubic smoothing spline is very simple and intuitive the underlying smooth 

function (e.g., CFI curve) is approximated by a linear combination of polynomials. This idea 

allows easy computations of the derivative and is theoretically well-supported based on the 

results from the approximation theory for polynomials.

RNA velocity: We calculated RNA velocity using the velocyto.R package (https://

github.com/velocyto-team/velocyto.R). Following the examples in the notebooks included 

with the package, we estimated gene-relative velocity using a gamma fit based on extreme 

quantiles. We did not employ knn pooling, as this might remove the effects of “opposing 

flows”, which we observed in Fib/iFib cells. To produce the plots shown in Fig. 4I–J, we 

projected the vector field onto the SLICER trajectory using the 

show.velocity.on.embedding.cor function with the same settings as in the sample notebook.

Statistical analyses—Where appropriate, values are presented as the mean ± SEM of 

replicate experiments. Statistical analyses were performed with Student t test or one-way 

ANOVA followed by post hoc tests. Generally, * P < 0.05 was considered statistically 

significant, *** P < 0.01 was considered highly significant and *** P < 0.001 was 

considered very highly significant. All data are representative of multiple repeated 

experiments. Statistical analyses were performed in Prism or R 3.3.2, which is freely 

available at https://www.r-project.org/

DATA AND SOFTWARE AVAILABILITY

Software—All software is freely or commercially available and is listed in the STAR 

Methods description and Key Resources Table.

Data Resources—The accession number for the scRNA-seq data reported in this study is 

GEO: GSE106888.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Single-cell transcriptomics reveals a bifurcated trajectory of hiCM 

reprogramming

• Discovery of a decision point for a cell to enter reprogramming or refractory 

route

• Identification of hiCM specific features when compared to miCM

• Development of cell fate index to evaluate the progression of cell fate 

conversion
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Figure 1. Optimizing hiCM reprogramming platform.
(A, B) Representative flow plots (A) and quantification (B) for cTnT+ cells 2-week post 

transduction of the indicated cocktails into H9Fs.

(C) Schematic of our optimized hiCM reprogramming platform.

(D) Flow analysis for cTnT+ cells in hMGT133 infected hCF1 at day 14.

(E) Representative ICC images and quantification for expression of cTnT and a-actinin 14 

days after transduction of hMGT133 in hCF1. Scale bars, 100 μm.

(F) Heatmap of the relative expression of a set of CM and CF marker genes determined by 

RT-qPCR in hCF1 at different time points as indicated after hMGT133 infection.
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(G, H) Representative images (G) and quantification (H) of hiCMs exhibiting calcium 

oscillation indicated by Calcium sensor GCamp5. Scale bar, 200 μm. RFUs, relative 

fluorescence units. (I, J) Representative flow plots (I) and quantification (J) for cTnT+ 

hiCMs from H9F and hCF2 at reprogramming day 14.

(K, L) ICC images with quantification for hiCMs expressing cTnT, a-Actinin and Cx43 

derived from H9F (K) and hCF2 (L). Scale bars, 100 μm.

Error bars indicate mean ± SEM, N=3 in (B, D, J), N=20 in (K, L). See also Figure S1.
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Figure 2. scRNA-seq on day 3 reprogramming hCFs revealed the cell cycle status during hiCM 
induction.
(A) Schematic of experimental design for scRNA-seq (see details in Methods).

(B, C) 3D PCA score plot (B) and 2D loading plot (C) calculated with the top 400 genes in 

all single cells.

(D) Heatmap showing identification of a cell-cycle related gene cluster by HC of all single 

cells with top 400 PCA genes. CCA, cell-cycle active. CCI, cell-cycle inactive. Rep Genes, 

representative genes.

(E) PCA of all single cells color-coded by CCA/CCI state.

(F) Each dot represents a cell and the cell cycle status of each cell was determined based on 

its mean score calculated by reCAT.
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(G) PCA of all single cells color-coded by cell-cycle states from (F).

(H) Violin plot showing the distribution of expression of cyclin and cyclin-dependent 

kinases in d0hCF cells and the rest single cells. Box plots were overlaid.

(I-K) HC and PCA of day 3 control and reprogramming cells were calculated with top 400 

PCA genes. (I) Heatmap showing HC results and relevant GO terms. Pos., positive; reg., 

regulation; neg., negative; rep., replication. PCA score (J) and loading (K) plots showing the 

five cell groups identified by HC.

(L) Comparison of the CCA:CCI ratio in hiFib and hiCMs.

(M) Cell number count of hMGT133 or LacZ-EV infected hCF along first 3 days after 

infection. Error bars indicate mean ± SEM, N= 3 in (M), *p < 0.05. See also Figures S1, S2 

and Table S1.
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Figure 3. Activation of innate immunity is required for hiCM generation.
(A-C) HC and PCA of d3hU and d3hR cells were calculated with top 400 PCA genes. (A) 

Heatmap showing HC-identified clusters (left) and GO terms (right). Neg., negative; reg., 

regulation. PCA score (B) and loading (C) plot showing the three cell groups identified by 

HC. (D) Expression levels of DsRed in the three cell groups. *, p < 0.05; ***, p < 0.001.

(E-F) Heatmap of the relative expression of immune-related genes determined by RT-qPCR 

in hCF 3 days after infection of hMGT133 together with indicated control viruses. Less 

amount of DsRed led to reduced immune response (E). Overdose of LacZ showed over 

activation of immune genes (F).
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(G-I) Flow cytometry (G), immunostaining images (H) and quantification (I) of cTnT+ cells 

14 days post-coinfection of hMGT133 and indicated shRNAs. EV, empty vector; 

shTubo,control. #1 and #2 are two individual shRNA oligos of each gene.

(J) RT-qPCR of marker gene expression at day 14 after knockdown of the indicated genes in 

hiCMs. Fibr, fibroblast genes.

(K) Histogram of normalized Z score of % cTnT+ cells after infection of shRNA lentiviruses 

targeting epigenetic regulators in TLR3 depleted hiCMs.

(L) Flow cytometry for cTnT+ hiCMs in TLR3 knockdown cells and TLR3/TET1 double 

knockdown cells.

(M) Bisulfite sequencing results showing DNA methylation at MYH6 and MYL7 loci. Open 

circle, unmethylated CpGs; closed circle, methylated CpGs.

Error bars indicate mean ± SEM, N=10 in (I), N= 3 in (G and J), **p < 0.01. See also Figure 

S3 and Table S2.
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Figure 4. Identification of cell fate decision point by RNA velocity and downstream gene 
networks regulated by reprogramming factors.
(A, B) Vector field of RNA velocity projected onto the SLICER trajectory. Arrows indicate 

the direction and “speed” for each cell (A) or the average velocity at a grid of points (B) 

along the trajectory.

(C-G) Potential TBX5 and miR-133 target genes whose expression significantly correlated 

(P < 0.05) to TBX5 (C, D) or miR-133 (E, F) expression. (C, E) Heatmaps showing Pearson 

correlation coefficient and representative GO terms enriched in positively- or negatively-

correlated target genes. Genes were ordered the same as (D) and (F). Reg., regulation; ECM, 

extracellular matrix. (D, F) Heatmaps showing inter-correlation of TBX5 (D) or miR-133 
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(F) target genes with co-expressed genes highlighted with boxes a-c. Genes were ordered by 

hierarchical clustering. Representative (rep.) genes in each box are listed to the right of the 

heatmap. (G) Venn diagram showing the number of target genes significantly correlated with 

miR-133 (red) or TBX5 (purple) expression.

(H) Time course analysis of relative expression of miR-133 candidate targets in hMGT-

infected or hMGT133 infected hCFs. Expression value of each gene in D0 cells was set as 1.

(I-J) Flow cytometry plots (I) and quantification (J) showing % cTnT+ cells in hMGT-

infected hCFs with addition of indicated shRNA to replace miR-133 for reprogramming.

Error bars indicate mean ± SEM, N= 3 in (H and J). See also Figure S4 and Table S2.
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Figure 5. Quantitative assessment of mouse and human iCM progression.
(A) Schematic for the calculation of cell fate index (CFI). See Methods for details.

(B-D) CFIs of day 3 mouse and human single cells undergoing reprogramming. (B) Overall 

CFIs calculated with cardiac fate- and function-related genes. Trendlines were show in grey 

(mouse) and lavender (human). Violin plots showing distribution of CFI in subpopulations 

of cells during hiCM (C) or miCM (D) reprogramming. Center yellow dots indicate the 

median value. mpiCM, mouse pre-iCM.

(E-G) CFIs calculated with subgroups of cardiac genes (E) or starting cell fate-related genes 

(F, G). ECM, extracellular matrix.

(H) Quantile-quantile plot of mouse and human CFIs shown in (B). The solid line indicates 

hypothetical data if speed of mouse equals to speed of human.
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(I) Formula for calculating instantaneous speed of reprogramming. See Figure S5G and S5H 

for details about CFIcubic.

(J) Speed of hiCM and miCM reprogramming calculated based on (I). Trendline was 

calculated by fitting cubic smoothing spline and confidence bands were shown in grey. Two-

sided t tests were performed, α= 0.05.

(K, L) Kinetics of miCM (K) and hiCM (L) reprogramming plotted by relative percentage of 

marker positive cells determined by flow cytometry along reprogramming. The end point of 

reprogramming was set as 1.

Error bars indicate mean ± SEM, N=3. See also Figure S5 and Table S3
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Figure 6. Time-course scRNA-seq of hiCM reprogramming identified a refractory route.
(A) Schematic of experimental design for time-course scRNA-seq of hiCM reprogramming 

(see details in Methods).

(B-E) PCA and tSNE of control and reprogramming cells from day 0, 3, 5, 7, and 9 were 

calculated with top 400 PCA genes. Cells were color-coded by treatment (B-D) or clusters 

defined by HC (E) and shown in 3D PCA (B, E), 2D PCA (C), or tSNE (D) plots.

(F-H) Reprogramming trajectories constructed by SLICER shown in 3D with cells color-

coded by treatment as indicated in (B) (F and H) or HC clusters (G). (H) Cells at each time 

point were highlighted by coloring cells from other time points in gray.

(I-J) Six gene clusters that are significantly related to and show similar trends along the 

reprogramming (Rep) (I) or refractory (Ref) (J) trajectory were identified. GO analysis was 

Zhou et al. Page 38

Cell Stem Cell. Author manuscript; available in PMC 2020 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



performed for each gene cluster and listed in the bottom. The number of genes in each 

cluster is shown in parentheses.

See also Figure S6, Tables S1 and S4.
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Figure 7. Comparative CFI, DEG and RNA velocity analyses between reprogramming and 
refractory cells.
(A-C) CFIs of cells on reprogramming (left) or refractory (right) route. Indexes calculated 

with subgroups of cardiac genes (A, C) or starting cell fate-related genes (B). Cells ordered 

based on their indexes.

(D) Differentially expressed genes (DEG) between cells on reprogramming verses refractory 

route at each time point were identified by one-way ANOVA followed by pairwise 

comparisons (adjusted p value < 0.05, number of DEG shown in parenthesis). Left panels: 

volcano plots showing DEGs with more than 2-fold change in red. Right panels: GO plot 
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showing enriched terms for DEGs highly expressed in refractory (green) or reprogramming 

cells (red).

(E-F) Violin plots showing distribution of the expression of potential positive (E) and 

negative (F) selection markers of reprogramming.

(G-H) RNA velocity analysis showing vector field of RNA velocity projected onto the 

SLICER trajectory. Arrows indicate the direction and “speed” for each cell along the 

trajectory. Cells colored by treatment (G) or HC clusters (H).

See also Figure S7, Tables S4 and S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal to cardiac troponin T ICC: abcam clone 1F11
Flow: Thermo Fisher clone: 3–11

ICC: ab10214
Flow: MS-295-p

Mouse monoclonal to a-Actinin (clone EA-53) sigma A7811–2ml

Rabbit polyclonal to Connexin 43 polyclonal abcam Ab11370

Rabbit polyclonal to GFP Thermo Fisher A11122

Donkey anti-mouse IgG(H+L), AlexaFluor647 
conjugated

Jackson Lab 715–695-151

Donkey anti-rabbit IgG(H+L), AlexaFluor488 conjugated Jackson Lab 711–545-152

Biotin anti-Thy1.2 Invitrogen 13–0903-85

Bacterial and Virus Strains

E.coli: HB101 Promega

Biological Samples

Human cardiac tissue from a male patient Duke Human Heart Repository https://sites.duke.edu/dhhr/

Neonatal P1.5 mouse hearts This paper

Chemicals, Peptides, and Recombinant Proteins

Poly-l-lysine Electron microscopy science (EMS) 19321-B

DMEM Corning 10–013-CV

FBS Millipore TMS-013-B

Non-essential amino acids Corning 25–025-CI

Penicillin/streptomycin Corning 30–002-CI

PEG6000 Sigma 81255–2.5g

0.05% Trypsin Corning 25–052-CI

M199 Corning 10–060-CV

Polybrene Millipore TR-1003-G

SurCoat Celltron SC-9035

RPMI1640 gibco 11875–093

B27 supplement gibco 17504–044

BSA Hyclone SH3057402

GlutaMAX gibco 35050–061

Gelatin sigma G1393–100ml

Collagenase type II Worthington LS004176

HBSS Corning 21–022-CV

EDTA sigma E5134

Anti-Biotin Microbeads Miltenyi Biotec 130–090-485

TRIzol Life technologies 15596018

32% paraformaldehyde EMS 15714
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REAGENT or RESOURCE SOURCE IDENTIFIER

Triton X-100 Acros 21568–2500 CAS 900293–1

Hoechst 33342 Life Technologies H3570

Isopropanol Fisher M-15805

Puromycin Thermo Fisher A1113803

Critical Commercial Assays

NanoFect transfection Reagent Alstem NF101

neonatal cardiomyocytes isolation system Worthington Biochemical Corporation 130–101-372

Fixation/Permeabilization Solution BD Biosciences 51–2090KZ

Perm/Wash Solution BD Biosciences 51–2091KZ

SuperScript III Reverse Transcriptase kit Invitrogen 18080093

Power SYBR Green PCR Master Mix Applied Biosystems 1710515

DNeasy Blood & Tissue Kits Qiagen 69504

EZ DNA Methylation-Gold Kit Zymo Research D5005

EpiMark Hot Start Taq DNA Polymerase NEB M0490S

NearIR live/dead dye Thermo Fisher Scientific L10119

Carboxyfluorescein succinimidyl ester (CFSE) dye Thermo Fisher Scientific 65–0850-84

Ambion Array Control spike-ins Thermo Fisher AM1780

External RNA Controls Consortium (ERCC) RNA spike-
in Mix 1

Ambion 4456740

C1™ Single-Cell mRNA Seq IFC, 17–25 µm—10 IFCs Fluidigm 100–6042

C1™ Single-Cell Reagent Kit for mRNA Seq Fluidigm 100–6201

Deposited Data

Raw and analyzed data This paper GEO: GSE106888

Human reference genome NCBI build 37, GRCh37 Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/
genome/assembly/grc/human/

Experimental Models: Cell Lines

Human: PlatE Cell Biolabs RV-101

Human: 293LTV Cell Line Cell Biolabs LTV-100

Human: ESC H9 derived fibroblasts: H9F Fu et al., 2013

Human: primary cardiac fibroblasts: HCF1 This paper

Human: primary cardiac fibroblasts: HCF2 Cheng et al., 2012

Experimental Models: Organisms/Strains

Mouse: aMHC-GFP transgenic CD1 Ieda et al., 2010

Oligonucleotides

See primer sequences for RT-PCR in Table S2 This paper

Primers for bisulfite sequencing Fu et al., 2013
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

pMXs-MEF2C Fu et al., 2013

pMXs-GATA4 Fu et al., 2013

pMXs-TBX5 Fu et al., 2013

pMXs-ESRRG Fu et al., 2013

pMXs-MESP1 Fu et al., 2013

pMXs-MYOCD Fu et al., 2013

pBabe-GATA4 Nam et al., 2013

pBabe-HAND2 Nam et al., 2013

pBabe-MEF2C Nam et al., 2013

pBabe-TBX5 Nam et al., 2013

pBabe-MYOCD Nam et al., 2013

pBabe-MESP1 Nam et al., 2013

pBabe-miR-1 Nam et al., 2013

pBabe-miR-133 Nam et al., 2013

pMXs-puro-hMGT This paper

pMXs-puro-LacZ Cell Biolabs

pMXs-puro-dsRed Wang et al., 2015a

pMXs-GFP Wang et al., 2015a

pMXs-tdTomato Ziqing Liu et al.

TroponinT-GCaMP5-Zeo Addgene #46027

pCMV-VSV-G Addgene #8454

pUMVC Addgene #8449

psPAX2 Addgene #12260

MG2.G Addgene #12259

pGEMT Promega

See list of shRNA cloned in pLKO.1 vector in Table S2. Sigma

Software and Algorithms

ImageJ (Fiji version) NIH https://imagej.net/Fiji/Downloads

FlowJo

GraphPad Prism

liteCam HD RSUPPORT

EVOS microscope system Invitrogen

Bisulfite Sequencing DNA Methylation Analysis 
(BISMA)

Rohde et al., 2010

R 3.3.2 https://www.r-project.org/

SLICER Welch et al., 2016 https://github.com/jw156605/SLICER

SCnorm Bacher et al., 2017 https://bioconductor.org/packages/
release/bioc/html/SCnorm.html

SINGuLAR Analysis Toolset Fluidigm https://www.fluidigm.com/software/
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REAGENT or RESOURCE SOURCE IDENTIFIER

reCAT Zehua Liu et al., 2017 https://github.com/tinglab/reCAT

DESeq2 Love et al., 2014

TargetScan tool Agarwal et al., 2015 http://www.targetscan.org/vert_71

miRDB Wong and Wang, 2015 http://mirdb.org

DAVID GO https://david.ncifcrf.gov/

REVIGO Supek et al., 2011 http://revigo.irb.hr

HTSeq Anders et al., 2015 http://www.huber.embl.de/users/anders/
HTSeq

velocyto.R La Manno et al., 2018 https://github.com/velocytoteam/
velocyto.R))

Other
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