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Abstract

Bulk gene expression experiments relied on aggregations of thousands of cells to measure the 

average expression in an organism. Advances in microfluidic and droplet sequencing now permit 

expression profiling in single cells. This study of cell-to-cell variation reveals that individual cells 

lack detectable expression of transcripts that appear abundant on a population level, giving rise to 

zero-inflated expression patterns. To infer gene co-regulatory networks from such data, we 

propose a multivariate Hurdle model. It is comprised of a mixture of singular Gaussian 

distributions. We employ neighborhood selection with the pseudo-likelihood and a group lasso 

penalty to select and fit undirected graphical models that capture conditional independences 

between genes. The proposed method is more sensitive than existing approaches in simulations, 

even under departures from our Hurdle model. The method is applied to data for T follicular 

helper cells, and a high-dimensional profile of mouse dendritic cells. It infers network structure 

not revealed by other methods; or in bulk data sets. An R implementation is available at https://

github.com/amcdavid/HurdleNormal.

1. Introduction.

Graphical models have been used to synthesize high-throughput gene expression 

experiments into understandable, canonical forms [Dobra et al., 2004, Markowetz and 

Spang, 2007]. Although inferring causal relationships between genes is perhaps the ultimate 

goal of such analysis, causal models may be difficult to estimate with observational data, 

and experimental manipulation of specific genes has remained costly, and largely inimitable 

to high-throughput biology. Many analyses have thus focused on undirected graphical 
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models (also known as Markov random fields) that capture the conditional independences 

present between gene expression levels. The graph determining such a model describes each 

gene’s statistical predictors: each gene is optimally predicted using only its neighbors in the 

graph. With gene expression studies serving as key motivation, a host of different 

approaches have been developed for structure learning and parameter estimation in 

undirected graphical models [Drton and Maathuis, 2017].

Characterization of the conditional independences between genes answers a variety of 

scientific questions. It can help falsify models of gene regulation, since statistical 

dependence is expected, given causal dependence. In immunology, polyfunctional immune 

cells, which simultaneously and non-independently express multiple cytokines, are useful 

predictors of vaccine response [Precopio et al., 2007]. Simultaneous expression or co-
expression of cellular surface markers potentially define new cellular phenotypes [Lin et al., 

2015], so expanding the “dictionary” of co-expression allows phenotypic refinements. 

Graphical models allow one to study such co-expression at the level of direct interactions.

1.1. Single cell gene expression.

Established technology determines gene expression levels by assaying bulk aggregates of 

cells assayed through microarrays or RNA sequencing. Although graphical modeling of the 

resulting data has seen profitable applications, see e.g. Li et al. [2015], there is an inheritant 

limitation to what can be inferred from expression levels that are averages across hundreds 

or thousands of individual cells, as we discuss in Section 2. In contrast, recent microfluidic 

and molecular barcoding advances have enabled the measurement of the minute quantities of 

mRNA present in single cells. This new technology provides a unique resolution of gene co-

expression and has the potential to facilitate more interpretable conclusions from 

multivariate data analysis and, in particular, graphical modeling.

At the same time, single cell expression experiments bring about new statistical challenges. 

Indeed, a distinctive feature of single cell gene expression data—across methods and 

platforms—is the bimodality of expression values [Finak et al., 2015, Marinov et al., 2014, 

Shalek et al., 2014]. Genes can be ‘on’, in which case a positive expression measure is 

recorded, or they can be ‘off ‘, in which case the recorded expression is zero or negligible. 

Although the cause of this zero-inflation remains unresolved, its properties are of intrinsic 

interest [Kim and Marioni, 2013]. It has been argued that the zero-inflation represents 

censoring of expression below a substantial limit of detection, yet comparison of in silico 
signal summation from many single cells, to the signal measured in biological sums of cells 

suggest that the limit of detection is negible [McDavid et al., 2013]. Moreover, the empirical 

distribution of the log-transformed counts appears rather different than would be expected 

from censoring: the distribution of the log-transformed, positive values is generally 

symmetric. Yet the presence of bimodality in technically replicated experiments (“Pool/

split” experiments) implicates the involvement of technical factors [Marinov et al., 2014].

Zero-inflation is seen, in particular, in a single cell gene expression experiment we analyze 

in Section 6. The experiment concerns T follicular helper (Tfh) cells, which are a class of 

CD4+ lymphocytes. B-cells that secrete antibodies require Tfh cell co-stimulation to become 

active [Ma et al., 2012]. Tfh cells are defined, and identified both through their location in 
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the B-cell germinal centers, as well as their production of high levels of the proteins 

CXCR5, PD1 and BcL-6. In the experiment we consider, Tfh cells were identified from 

CD4+CXCR5+PD1+ cells from lymph node biopsy. Figure 1 shows the pairwise expression 

distribution of four Tfh marker genes (P < 10−20 compared to non-Tfh lymph node T-cells, 

which are not shown). Although the expression of these genes could help discriminant Tfh 

from non-Tfh cells, the strength of linear relationships within Tfh cells (upper panels) varies. 

To identify coexpressing subsets of cells or to clarify the conditional relationship between 

genes, estimating the multivariate dependence structure of expression within Tfh cells is 

necessary. Figure 1 illustrates the issue of zero-inflation. The data are clearly poorly 

modeled by the linear regression models whose fit is shown in the lower panels of the figure.

1.2. Modeling zero-inflation.

In order to accommodate the distributional features observed in single cell gene expression, 

we propose a joint probability density function f(y) of the form

log f (y) = vy
TGvy + vy

THy − 1
2yTKy − C(G, H, K), y ∈ ℝm, (1)

for the dominating measure obtained by adding a Dirac mass at zero to the Lebesgue 

measure. The vector y ∈ ℝm comprises the expression levels of m genes in a single cell, and 

the vector vy ∈ {0,1}m is defined through element wise indicators of non-zero, so 

vy i
= I

yi ≠ 0  for i = 1,…,m. In the specification from (1), both binary and continuous 

versions of gene expression are sufficient statistics, and interactions thereof are 

parametrized, with G, H and K being matrices of interaction parameters. Zeros in these 

interaction matrices indicate conditional independences (and, thus, absence of edges in a 

graph for a graphical model). Specifically, the ith and jth coordinate are conditionally 

independent if and only if all interaction matrices have their (i, j) and (j, i) entries zero 

[Lauritzen, 1996, Theorem 3.9].

As we discuss in more detail in Section 3, the model given by (1), which we refer to as the 

Hurdle model, can be shown to be equivalent to a finite mixture model of singular Gaussian 

distributions. In light of the observed symmetry in the positive single cell expression levels, 

linking the modeling of zero-inflation with Gaussian parameters for nonzero observations is 

both natural and convenient. This said, it is an interesting topic for future work to develop 

more refined models of the continuous expression arising when genes are ‘on’.

We will base statistical inference in the Hurdle model on so-called neighborhood selection, 

where the neighborhood of each gene is inferred via penalized regression methods 

[Meinshausen and Bühlmann, 2006]. Neighborhood selection is a state-of-the-art method for 

estimation and inference in potentially high-dimensional graphical models; see the review in 

Section 3.4 of Drton and Maathuis [2017]. The main challenge in our setting is determining 

how to calibrate signal in the binary versus the continuous part. We solve this problem using 

an anisometric group-lasso penalty (Section 4).

McDavid et al. Page 3

Ann Appl Stat. Author manuscript; available in PMC 2019 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.3. Outline.

The remainder of the paper is structured as follows. Section 2 discusses the parameter 

targeted in single cell gene expression experiments, and why it is not accessible from 

traditional bulk experiments. Section 3 develops the parametric Hurdle model for single cell 

gene expression, as specified in (1), and discusses conditional independence in this setting. 

Section 4 gives a detailed account of estimation of graphical models using neighborhood 

selection via penalized regression. Section 5 provides a simulation study that demonstrates 

the benefits of our approach. In Section 6, we analyze the aforementioned experiment on Tfh 

cells. Since the data set contains selected gene profiles that were available for both single-

and several-cell aggregates, we are able to highlight the refined inferences that can be 

obtained from single cell data. In Section 7, we analyze data on mouse dendritic cells, which 

are of far higher dimensionality than the Tfh cell data. Our analyses show in particular that 

modeling the zero-inflation may uncover distinct networks compared to existing approaches. 

We conclude with a discussion in Section 8, where we highlight interesting problems for 

future research, in particular, in graphical modeling. A supplement Mc-David et al. [2018] 

contains expanded derivations and details on simulation scenarios.

2. Single cell versus bulk expression experiments.

Protocols for bulk gene expression experiments, such as for Illumina TrueSeq, call for 100 

nanograms of total mRNA, hence require hundreds to thousands of cells. On the one hand, 

this biological “summation” over many of cells is expected to yield sharper inference on the 

mean expression level of each gene. However, it can also be expected to distort any 

conditional (in-)dependences present between genes.

Let Y1, …, Yn be iid random vectors taking values in ℝm, with Yi representing the copy 

numbers of m transcripts present in the ith single cell. Now suppose the n cells are 

aggregated, and the total expression is measured using a linear quantification that reports 

values proportional to the input counts of mRNA. The expression observed in this bulk 
experiment is then

Z ∝ ∑
i

n
Yi,

with the constant of proportionality typically a semi-empirical normalization factor, such as 

TPM (Transcripts Per Kilobase Million) or FPKM (Fragments Per Kilobase Million). 

Although most bulk experiments are designed to test for differences in mean expression due 

to experimental treatments and lack extensive replication within a condition, stochastic 
profiling [Janes et al., 2010] experiments have provided iid replicates of Z suitable for 

estimating higher order moments. However, when the distribution of Yi obeys some 

conditional independence relationships, in general the distribution of Z does not obey these 

same relationships.

For example, take m = 3 and suppose that the Yi are iid samples from a tri-variate 

distribution supported on {0,1}3. Let [Y1, Y2, Y3] be a random vector following this 
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distribution, and let pijk = P (Y1 = i, Y2 = j, Y3 = k) be the joint probabilities. Then Y1 and 

Y3 are conditionally independent given Y2 (in symbols, Y1 ⫫ Y3 | Y2) if and only if the two 

matrices (pi0k)ik and (pi1k)ik have rank 1 [Drton et al., 2009, Prop. 3.1.4]. Yet even summing 

over only n = 2 cells, the random vector Z = Y1 + Y2 [Z1, Z2, Z3] taking values in {0, 1, 

2}3generally does not have Z1 ⫫ Z3 | Z2.

When the Yi are multivariate Normal, the conditional independence structure is preserved 

under convolution. Unfortunately for non-Gaussian distributions this does not generally 

hold. As noted in our introduction, single cell gene expression is generally bimodal and 

zero-inflated, so not plausibly described by a multivariate Normal distribution. Therefore, 

even though for large enough n the distribution of the bulk experiment Z might approach 

multivariate (log-)normality, the networks estimated from graphical modeling of bulk data 

will not reflect conditional independences that hold among expression levels in single cells.

3. Hurdle models.

Univariate Hurdle models arise from modification of a density through excision of points in 

the support and assignment of positive masses to these points. Targeting zero-inflation, our 

excision point is the origin. Let vy = I{y≠0 be the indicator function for a non-zero value of 

the observation y. Then the Hurdle model derived from a Normal distribution with mean ξ 
and precision τ2 has density

f (y) = exp vy 1/2log τ2/(2π) + log p/(1 − p) − ξ2τ2/2 + yξτ2 − y2τ2/2 + log(1 − p) (2)

with respect to the measure λ0 that is the sum of the Lebesgue measure and a Dirac mass at 

zero. Here, P (Vy = 1) = p ε (0, 1) is a mixing weight representing the chance of observing a 

non-zero value. Varying p, ξ and τ2, one obtains an exponential family with su cient statistic 

y,− y2/2, and vy, and associated natural parameters h = ξτ2, k = τ2, and

g = 1/2log τ2/(2π) + log p/(1 − p) − ξ2τ2/2.

3.1. Multivariate Hurdle models.

A plausible model for the joint distribution of a random vector Y = [Y1, …, Ym] 

representing single cell gene expression puts positive mass on every one of the 2m 

coordinate subspaces (recall Figure 1), including the origin when all genes are ‘off’ and the 

entire space ℝm when all genes are ‘on’. Assigning positive mass to the coordinate 

subspaces generalizes the univariate construction from (2). As it is easiest to construct this 

model conditionally, we introduce the vector V = V1, …, Vm
T ≡ I

y1 ≠ 0 , …, I
ym ≠ 0

T

that indicates the non-zero coordinates of Y. Throughout, our notation suppresses the 

dependence of V on Y. We emphasize that specification of the distribution of the 

multivariate Bernoulli random vector V simply amounts to specification of a 2m probability 

table.
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For any vector v = [v1, …, vm] ε{0, 1}m, define the subspace ℝv = ∏i = 1
m ℝ

vi where we set 

ℝ0 = 0 . So, ℝv is coordinate subspace corresponding to the non-zero entries of v. 

Similarly, define PD(v) to be the cone of m × m symmetric matrices that have non-zero 

entries only in rows and columns indexed by i with vi = 1, and for which the submatrix given 

by these rows and columns is positive definite. Now suppose that the conditional distribution 

of Y given V is multivariate Normal and, specifically,

(Y |V = v) 𝒩(μ(v), Σ(v)) (3)

with mean vector μ(v) ∈ ℝv and covariance matrix Σ(v) ∈ PD(v) The normal distribution in 

(3) is singular (see Section 2 in supplement McDavid et al. [2018] for details) and supported 

on the subspace ℝv.

In the applications we have in mind the dimension m will be large enough so that it is 

infeasible to accurately estimate a general 2m probability table for the distribution of V, and 

a collection of 2m mean vectors and covariance matrices for the conditional distribution of 

Y. We thus proceed to formulate a more parsimonious pairwise interaction model. While of 

far lower dimension, the pairwise model allows one to capture interesting conditional 

(in-)dependences.

First, we assume V to follow an Ising model with joint probabilities

p(v) ≡ P(V = v) ∝ exp vTGv , v ∈ 0, 1 m, (4)

where G is a symmetric interaction matrix in ℝm × m. Second, we assume that the conditional 

normal distribution of Y given V = v has log-density

log f (y |V = v) = vTHy − 1
2yTKy − C′(H, K), y ∈ ℝv, (5)

with respect to Lebesgue measure restricted to the subspace ℝv. In (5), H and K are two m × 

m interaction matrices that do not vary with v, and C′(H, K) is a normalization constant. 

The matrix K is symmetric and positive definite, but H may be arbitrary from ℝm × m. 

Putting the two pieces from (4) and (5) together, the joint density of Y with respect to the 

product measure λ0
m simplifies to

f (y) = exp vTGv + vTHy − 1
2yTKy − C(G, H, K) , y ∈ ℝm . (6)

We recognize an exponential family with three interaction matrices G, H and K as natural 

parameters and the three statistics vvT, vyT, and yyT sufficient.
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Let ℐ ≡ ℐ(V) be the m × m diagonal matrix with (i, i) entry equal to Vi. Then for any vector 

x ∈ ℝm the product ℐX is the vector that has the ith coordinate replaced by zero for all 

indices i with Yi = Vi = 0. Similarly, multiplying ℐ from left and right to a matrix zeros out 

all but the principal submatrix determined by this set of indices. Using this notation, the 

pairwise Hurdle model from (6) corresponds to the particular choice of

μ(v) = (ℐ𝒦ℐ)−Hv, Σ(v) = (ℐ𝒦ℐ)− (7)

for the mean vectors and covariance matrices in the conditional specification from (5). In 

(7), A− denotes the Moore-Penrose pseudoinverse of a matrix A. From the perspective of 

(7), the pairwise Hurdle model is a mixture of 2m singular Gaussian distributions whose 

mean vectors and covariance matrices are derived from one precision matrix K and an 

interaction matrix H.

The notation we used in the conditional specification of the multivariate Hurdle model 

follows Lauritzen [1996], who describes conditional Gaussian (CG) models with 

inhomogeneous, non-singular precision K(v) that can depend on the discrete set of 

covariates in arbitrary, positive-definite fashion. These models have been considered more 

recently by Lee and Hastie [2013] and Cheng et al. [2013]. Our formulation differs from the 

traditional CG models by involving singular distributions with means and covariance 

matrices that exhibit structured inhomogeneity.

3.2. Conditional distributions identify interaction parameters.

The normalizing constant C in equation (6) is a difficult to compute sum of 2m terms. This is 

expected as already the distributions in the Ising model from (4)have an intractable 

normalization constant for moderately large m. Fortunately, the univariate full conditional 

distributions obtained from (6) have tractable normalizing constants and identify the 

parameters from a given row/column of the interaction matrices G = (gab), H = (hab), and K 
= (kab).

Fix a coordinate b, and define its complement A = {1, …, m} \ {b}. Consider now the 

density f(y) from (6) as a function of only yb, i.e., yA =[yi : i ԑ A] is fixed, and write f[b| A] 

for the conditional density of yb given yA. Then noting that viyi = yi and vi
2 = vi we have

log f [b | A](y) = vbg[b | A] + ybh[b | A] − 1
2 yb

2k[b | A] − C[b | A], yb ∈ ℝ, (8)

where C[b |A] does not depend on yb and

g[b | A] = gbb + 2gbAvA + hbAyA, (9)
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h[b | A] = hbb + hAb
T vA − kbAyA,

k[b | A] = kbb .
(10)

The conditional density f[b| A] is thus a univariate Hurdle density as specified in (2) with 

natural parameters g[b| A], h[b| A], and k[b| A].

The three natural parameters are obtained from linear predictors that depend on a design 

matrix constructed from yA and vA. For example, we may write

g[b | A] = gbb + ∑
a ∈ A

Xa

gba
hba

for Xa = [va, ya]. The linear predictor for h[b| A] can be written analogously. We note that if 

the data include additional nuisance covariates W0 that describe each experimental unit then 

these can be included by augmenting the linear predictor to

g[b | A] = W0
Tgb0 + gbb + ∑

a ∈ A
Xa

gba

hba
(11)

with gb0 being the parameters capturing the effects of the covariates. From this perspective, 

the conditional distribution in (8) defines a vector generalized linear model, parametrized by 

three natural parameters g[b| A], h[b |A] and k[b| A], the first two of which are modeled as a 

linear function of the expression of other genes.

3.3. Conditional independence graphs.

The dependence structure of the random vector Y = [Y1, …, Ym] may be summarized in its 

conditional independence graph. This is an undirected graph 𝒢 = (𝒱, ℰ) with vertex set 

𝒱 = 1, …, m  and an edge set Ԑ that is determined by the conditional independences Y. 

More precisely, the edges in Ԑ are those two-element sets a, b ⊂ 𝒱 for which Ya and Yb 

are conditionally dependent given the remaining variables, i.e., Y𝒱\ a, b . In our case, Y has 

a density f as in (6). The dominating measure is a product measure, and f is positive and 

continuous. Hence, the Hammersley-Clifford theorem assures that the conditional 

independence graph of Y has an edge {a, b} if and only if the four possible ab interactions 

are zero, so

gab = hab = hba = kab = 0; (12)

see Lauritzen [1996, Chapter 3]. This fact is also evident from the form of the conditional 

distributions detailed in (8), (9), and (10). It motivates the neighborhood selection procedure 

developed in the next section.
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4. Neighborhood estimation via penalized regression.

In the single cell experiments to which we envision applying this method, the number of cell 

replicates, n, is larger than the sample sizes seen in typical bulk mRNA experiments. 

However, it is still often the case that the number of genes m is larger than the number of 

cell replicates. We are thus in a setting that benefits from application of methods from ‘high-

dimensional statistics’; though emerging technologies are increasing available sample sizes.

4.1. Related work.

Under scenarios in which n, m ➝ ∞while satisfying that n > Cdϕ(log m)ψ where C,ϕ and ψ 
are constants that depend on the model and d is the maximum vertex degree of the 

conditional independence graph, penalized regression has been shown to consistently 

identify the graph of multivariate Normal models [Meinshausen and Bühlmann, 2006], of 

Ising (auto-logistic) graph of multivariate Normal mosels [Meinshausen and Bühlmann, 

2006], of Ising (auto-logistic) models [Ravikumar et al., 2010] and of exponential family 

graphical models [Yang et al., 2014, Chen et al., 2015]. While this paper was in preparation, 

Tansey et al. [2015] further extended this line of work to general vector space graphical 
models that include the multivariate Hurdle model as a special case. However, the standard 

(isometric) group-lasso they propose for estimation of the conditional independence graph 

does not account for heterogeneity in the scaling of predictors in the conditional 

distributions. The anisometric group-lasso we propose in the following section yields drastic 

improvements in finite samples.

4.2. Anisometric penalty.

Throughout this section, we fix an index b and consider the conditional distribution Yb given 

the other variables in YA for A = {1, …, m} \ {b}. For any a ε A, define the parameter 

vector θa = [gba, hba, hab, kba], By (12), Yb ⫫Ya|YA\{a} if and only if θa = 0.

Pλ(θ) = λ ∑
a ∈ A

θa
Tθa (13)

be the group lasso penalty for tuning parameter λ ≥ 0. Maximization of the penalized 

conditional log-likelihood function

log f [b | A](y) − Pλ(θ)

can lead to a solution that is sparse in parameter blocks, that is, some of the subvectors θa 

are zero. The penalty is equivalent to placing a sequence of independent, multivariate 

Laplace priors on blocks of and reporting the MAP [Eltoft et al., 2006].

Viewed as a prior, the standard group-lasso penalty from (13) implicitly assumes that each 

variable in each block has a similar effect size. This may be reasonable if the variables in 

each block are measured in comparable units, but is problematic otherwise. For example, if 

covariate X1 is measured in meters, while covariate X2 in centimeters, then the distribution 
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of effect sizes for X2 would be 100-times more dispersed than the distribution of effect sizes 

for X1. In penalized GLMs, this is typically enforced “at run time” by ensuring covariates 

are on comparable scales, or Z-scoring each column of the design matrix if no intrinsic scale 

exists.

In our setting of a vector regression, terms from linear predictor g[b |A] and linear predictor h 

[b| A] end up together in blocks, and these coefficients are not necessarily comparable, as one 

specifies log-odds of E(Vb| VA = 0) while the other specifies conditional expectations of 

E(Yb| YA). Re-scaling does not resolve this, since the same design matrix Xa = [Va, Ya] is 

used in each linear predictor, and in any case, re-scaling generally alters the solution [Simon 

and Tibshirani, 2012]. Instead, we propose replacing the isometric 𝓁2 norm in the sum in 

(13) so that the penalty is

PH, λ(θ) = λ ∑
a ∈ A

θa
THaaθa . (14)

Here, H ≡ diag (Haa) is a block-diagonal, positive-definite matrix that allows terms from the 

linear predictors to have different scales of penalty. It also accounts for correlation between 

components of θa, since columns of the design are correlated due to both va and ya 

appearing as predictors.

If prior information existed, the matrix H could be chosen accordingly, with interpretation as 

a multivariate Laplace prior. Absent prior information, setting H equal to the Fisher 

information under a null model θa = 0 for all a results in variable selection approximately 

equal to conducting score tests, with exact equivalence holding under a null hypothesis of θa 

= 0 for all a; see Proposition 1 in McDavid et al. [2018].

4.3. Computation.

In Algorithm 1, we outline the proposed neighborhood selection, allowing for possible 

nuisance covariates W. The nuisance covariates W might just be an intercept column, but 

generally could be any cell-level covariate deemed relevant. The smooth and concave 

function in line 7 can be maximized using any Newton-like algorithm (e.g., BFGS). The 

objective in line 10 is a sum of a concave, smooth function and a structured concave function 

and can be efficiently solved using proximal gradient ascent [Parikh and Boyd, 2014]. In 

particular, one may exploit the fact that although the proximal operator

proxγ(x) = argmaxu
1
γ ‖x − u‖2

2 + ∑
a ∈ A

ua
THaaua

is not available in the familiar form of a soft-thresholding operator as in the isometric group-

lasso, the proximal operator of the anisometric group-lasso can be efficiently found via a line 

search after one-time pre-calculation of the singular value decomposition of Haa [Foygel and 

Drton, 2010]. Throughout the inner-loop, warm starts are exploited for θ  as varies. λ Active 

set heuristics using the strong rules of Tibshirani et al. [2012] yield computational gains for 
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sparse solutions with large m. The algorithm yields, for each node, a sequence of 

neighborhoods over a sequence of tuning parameters Λ. These neighborhoods need not be 

consistent, in the sense that for some element of it could be that b ε Ne(a) but a ∉ Ne(b). We 

resolve that by adopting an “or” rule. In the accompanying software1, the algorithm is 

written in a combination of R and C++. Timings for the proposed method and competitors 

(described further in Section 5) are shown in Figure 3.

5. Simulations.

We consider a series of simulations under several sets of underlying i) graph topologies, ii) 

parametric models, iii) sample sizes and iv) number of vertices. We summarize the 

considered setups here and defer details (including the choice of graph topology) to the 

supplementary material in Section 3. The number of observations n varies from 100 to 

12500. In the chain graph topology, the number of vertices varies from m = 16 to m = 128, 

while in the e. coli graph topology, m = 500. The parametric models include the pairwise 

hurdle model (6), the hurdle model under contamination by t8 noise, a logistic/Ising model 

and a Gaussian/logistic censoring model specified in Supplementary Table 1. The pairwise 

hurdle model is said to be complete if for each edge present in the graph, all of the 

corresponding entries in each of the three interaction matrices are non-zero. The pairwise 

hurdle model is said to be G-minimal when H and K are diagonal matrices and only G 
contains non-zero off-diagonal entries. In this case, the G-minimal model is equivalent to a 

logistic/Ising model.

5.1. Methods compared and default tunings.

Six methods were examined to test graph structure inference, and are described in 

Supplemental Table 1. The Hurdle models are fit using the accompanying software 

HurdleNormal version 0.98.2, while the Logistic, Gaussian and NPN models are fit using 

the R package glmnet version 2.0–5 (via the autoGLM function in HurdleNormal). The 

Aracne method is fit using package netbenchmark version 1.6.0. For methods 1–5, 

neighborhoods are stitched together using an “or” rule, i.e., vertices a and b are adjacent if 

either b ∈ ne (a) or a ∈ ne(b).

1Available https://github.com/amcdavid/HurdleNormal
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In Figure 4 various fixed tunings are shown. In the oracle tuning, the graph with maximum 

sensitivity subject to FDR < 10% is shown. This tuning is not available in practice, but 

shows the maximum achievable performance of each method. With the BIC tuning, we 

employ the Bayesian Information Criteria on the pseudo-likelihood

BICλ = ∑
b ∈ 𝒱

−2log f [b | A] θb, λ + θb, λ 0logn,

where θbλ, is the penalized solution at penalty λ for vertex b, ∥θb,λ∥0 is the number of non-

zero entries, and θb, λ is the (unpenalized) maximum pseudo-likelihood estimate for the non-

zero entries. The BIC solution is the one that minimizes BICλ. This tuning is available for 

methods 1–5. In the case of the the Aracne method the BIC is unavailable as no likelihood is 

defined.

5.2. Results.

30 simulation replicates sufficed to bound the simulation-induced Monte Carlo standard 

error of the mean < 5 × 10−3 for FDR and < .02 for the sensitivity.

The simulations show that mis-specified estimation procedures perform poorly when model 

(6) is the data generating distribution. When an FDR-controlling oracle is available, the 

anisometric Hurdle model can dominate other methods in edge-sensitivity (Figure 4A–B). 

However, when the Hurdle model is over-parameterized as in the G-sparse scenarios, the 

minimal Logistic model is superior, though the anisometric 𝓁1 penalty partially ameliorates 

this gap. In very simple chain-graph scenarios, it is neigh-impossible to recover a network 

using 10-cell data. The e. coli network provides a counter example where 10-cell data nearly 

equals the performance available from single cell data. This may be due to the hub-and-

spoke nature of thee. coli network, so the effect of marginalization by convolution tends to 

only add more connections between the hub and its neighborhood. The e. coli data and 

chain-graphs suggest that collecting single cell data, and estimating graph structure with a 

method that accommodates zero inflation can accurately discover a wide variety of network 

topologies.

More seriously, ignoring zero-inflation confounds use of information criteria to tune network 

size (panel C). On the other hand, the Hurdle model is robust to a variety of model 

departures, including contamination with t8-distributed errors (labelled with “t”), and data 

generation under a Gaussian-Logistic censoring model. When the full solution path is 

examined (Figure 5), a practioner who reported only the top few edges would often suffer 

from a large number of false positives when using methods not designed for zero-inflated 

data. For example, with n = 100 in the e. coli network, all methods, aside from the Hurdle 

have FDR exceeding 20%. The simulations also suggest that perfect recovery of gene 

networks is impractical at realistic sample sizes, even with a correctly specified model, 

motivating a form of meta-analysis on estimated graphs, discussed further in Section 7.2.
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6. T follicular helper cells.

Our simulations show that depending on the data generating scenario, the Hurdle method 

may substantially outperform, or at least mimic the performance of other candidate methods. 

We next sought to see if methods would tend towards consensus in biologically-derived 

single cell and 10-cell data, or if it were possible that the Hurdle method might offer unique 

insights. We considered co-expression networks in Tfh cells measured in eight healthy 

donors. 65 genes were selected for profiling via qPCR on the basis of their role in Tfh 

signaling and differentiation, generally with sparse expression across single cells (overall 

probability of expression 27%). 465 single cell, and 187 10-cell replicates were taken.

Figure 6 shows networks of approximately 24 edges estimated using Hurdle, Gaussian (with 

centered data, see Section 1 McDavid et al. [2018] and Logistic, and Gaussian model using 

10-cell aggregates. The size of the network is a compromise between stability selected [Shah 

and Samworth, 2013] sizes of each procedure, which varies from 11 edges (Hurdle) to 32 

edges (Gaussian).

Normalized Hamming distances between the four methods, the Aracne method and the 

Gaussian model fit on the “raw”, uncentered data are reported in Table 1. The Hurdle and 

Gaussian models are most similar, while the logistic and Gaussian 10-cell network are quite 

distinct. The Gaussian(raw) model on untransformed data is similar to the logistic model, as 

distance of non-zero expression values from the origin is large compared to the variation 

among the non-zero values.

In the Hurdle network, the transcription factors NFATC1 (Nuclear factor of activated T-cells) 

and BCL6, and the signaling molecule CD154 and chemokine receptor CCR3 are hubs. 

NFATC1 has been found to promote transcription of cytokines IL21 [Hermann-Kleiter and 

Baier, 2010] and signaling molecule CD154 [Pham et al., 2005], while BCL6 serves as a 

transcriptional repressor, and is one of the canonical markers constitutively expressed in Tfh 

cells. CTLA4 which has been described to inhibit inflammation, interacts negatively with 

inflammatory activator JAK3. The disconnected component of CCR3-CCR4-BTLA-SELL-

TNFSF4 may hint at plasticity between Tfh cells and the related T-cell lineages Th1 and 

Th2. CCR3 and CCR4 are canonical markers of Th2 cells, while TNFSF4 (coding for 

OX40L) promotes Th2 development de Jong et al. [2002]. Thus co-expression of these 

genes may suggest cells transitioning between Tfh and Th1 or Th2 states.

In the Gaussian network, though NFATC1, BCL6 and CD154 remain highly connected, 

CD27 now has highest degree and serves as a hub to receptors CXCR4, IL2Rb, IL2Rg, as 

well as ITGB2, NFATC1 and FYN. CD3e, the backbone responsible for transducing the T-

cell receptor signal is connected with co-receptor CD4, CD154, IL2Rg, Fyn and ANP32B. 

The negative interactions between BTLA and CTLA4 are absent.

The logistic network consists primarily of negative interactions. The strongly negative 

BCL6–BLIMP1 edge is consistent with previously described antagonism between these 

genes [Johnston et al., 2009]. Interestingly, this edge is absent in the other networks.
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7. Mouse dendritic cells.

Shalek et al. [2014] exposed bone marrow-derived dendritic cells, from mus musculus, to 

lipopolysaccharide (LPS). LPS is a toxic compound secreted and structurally utilized by 

gram-negative bacteria and induces a cascade of changes in a cell’s expression profile 

through several pathways. Cells were sampled after 0, 1, 2, 4, and 6 hours post-exposure. We 

estimated transcription networks using 4431 transcripts expressed in at least 20% of 65 cells 

sampled 2 hours after LPS exposure, at which interval transcription is expected to be 

undergoing a variety of dynamic changes. Rather than attempting to perform model 

selection on this limited sample size, we consider highly sparse (< .01% sparsity) networks 

of 700 edges, chosen to provide tractable visualization and illustration of the method. The 

BIC tunings (discussed subsequently) are decidedly larger.

7.1. Selected networks.

In a Gaussian model, the network is star-shaped, with Mx1, Ccl17, Tax1bp3 and Ccl3 as 

hubs all with degrees ≥15, though none are directly inter-connected (Figure 7). In all, 2.5% 

of non-isolated vertices contribute 50% of the edges in the network. With the exception of 

Tax1bp3, these hub genes are all immune-signaling related.

In the Hurdle model (Figure 8), the graph is more chain-like, with maximum degree 12: 7% 

of nodes provide 50% of the edges. The strongest hub, Mgl2 (also known as Cd301b), has 

been recently described to be involved in uptake and presentation of glycosylated antigens, 

such as LPS, by dendritic cells [Denda-Nagai et al., 2010]. A sub-connected set of genes 

coding for MHC-II antigen presentation (H2ab1, H2eb1, H2aa) is the densest 

subcomponent, and interconnected to Mgl2 as well as Fabp5. Increased expression of Fabp5 

has been shown to increase expression of cytokines Il7 and Il18, hence is also involved in 

immune cell stimulation [Adachi et al., 2012]. Many of the neighbors of Mgl2,H2ab1, 

H2eb1, H2aa and Fabp5 are neighbors of the hub genes in the Gaussian graph, whereas 

Mx1, Ccl17 and Ccl3 are sparsely connected in the Hurdle network. Tax1bp3 is absent.

Using BIC, both the Gaussian and Logistic models yield networks with more than 25,000 

edges, while the Hurdle selects a network of roughly 12,000 edges. The additional flexibility 

available in the Hurdle for modeling inter-node relationships may permit sparser graphs to 

describe the conditional dependence relationships. We also observe that the Hurdle 

synthesizes signal from both Gaussian and Logistic networks. For sufficiently rich network 

sizes, the Gaussian and Hurdle and Logistic and Hurdle networks share 21% and 1% of 

possible edges, respectively, compared to only .08% of possible edges between the Gaussian 

and Logistic networks (binomial test p < 10−6).

7.2. Graphical geneset edge enrichment.

We consider how well the 700 edge networks recapitulate known relationships between 

genes using previously described functional annotations. The Gene Ontology Consortium 

[2015] provides a database of categories to which genes may be annotated if experimentally 

or computationally they are involved in a biological process. We note that networks may 
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exhibit intraconnection within GO categories, and that some pairs of categories may exhibit 

preferential interconnection.

Each pair (i, j) of GO categories—including self-pairs—induces a coloring of vertices, 

coloring the vertices belonging to category i color ci and category j color cj. Vertices that do 

not belong to either i or j remain uncolored. Iterating through the 39872/2 pairs of categories, 

we test for edge enrichment between colors. Suppose in the inferred graph of 700 edges, nij 

edges connect ci-colored vertices to cj vertices. If the colored vertices were completely 

connected with ni vertices of color ci and nj vertices of color cj, then there would be mij = ni 

× nj edges among them (with the obvious adjustment made for self-edges when i = j). We 

now define an enrichment statistic as the hypergeometric tail probability

ti j = P(Ni j > ni j; 700, mi j, 4431 × 4430/2),

which is the probability of drawing nij colored balls, given 700 draws from urn containing 

4431 × 4430/2 balls of which mij are colored.

This results in nearly 16 million enrichment statistics on the pairs of categories, which 

follow a complicated dependence structure under the series of null hypotheses that the 

observed edges being connected independent of coloring. The top 200 (smallest in 

magnitude) enrichment statistics t(k), k < 200 are compared to their distribution P (t*) under 

a Erdos-Renyi random graph model, yielding a Monte Carlo p-value for each order statistic. 

A pair of colors (i, j) with rank rij < 200 is declared significant if P (tij < t* (rij)) <.05 and P 
(t(r) < t* (r)) < .05 for all r < rij, that is, it is significant at 5% and all smaller order statistics 

are also significant.

7.2.1. Hurdle graphs tend to include intra-category enrichment.—In the 

Gaussian model, more than 100 pairs of categories (colors) are significantly enriched at an 

FDR of less than 10%, however in these pairs, only 6 correspond to intra-category 

enrichment (Figure 10). These are: response to salt stress, potassium channel regulator 

activity, extracellular exosome and three genesets containing genes with significant time-

course differential expression in the original experiment. In the Hurdle model (Figure 11), 

13 of 57 significantly enriched pairs form intra-connections, including defense response to 

Gram-negative bacteria, and cell-cell adhesion and several modules involving extracellular 

secretion via the Golgi apparatus. Also of particular note, genes annotated to the activation 

of innate immune response are directly connected to RNA PolII transcription factors, as well 

as “detection of lipopolysaccharide”–“endoplasmic reticulum–Golgi intermediate 

compartment.” Both of the modules are absent from the Gaussian network. This suggests 

that the more appropriate Hurdle model manages to identify transcription factor-induced 

expression changes in these regulated genes, a direct method by which one gene would 

induce expression changes in another.

No significant enrichment was found in the logistic model.
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8. Discussion.

Graphical models estimated from single cell data are distinct from networks estimated from 

bulk data, or even repeated stochastic samples. In simulations, the Hurdle model with 

anisometric penalty has much greater sensitivity compared to available methods, while in the 

two data sets here, it yields substantially different network estimates compared to Gaussian 

and Logistic models on these zero-inflated data. When enrichment of gene ontology 

categories is considered between vertices in transcriptome-wide data, the enrichment 

uncovered with the Hurdle model is consistent with identifying direct effects of transcription 

factors on genes undergoing dynamic regulation due to LPS exposure.

In our work, we have utilized methods for sparse neighborhood selection. However, the 

zero-inflated parametric model explored here is not limited to this framework, and could 

serve as a basis for many network inference techniques, including mutual information-based 

techniques, or to parametrize families of directed networks.

Although measuring transcriptome-wide data allows conditional estimation of direct effects 

between genes, non-mRNA factors may also greatly affect gene expression. In this sense, 

important variables have still been marginalized over, and in the case of the Tfh data, indeed, 

most of the transcriptome has been marginalized over. Extensions that adapt graphical model 

selection to clustering and/or factor analytic models would likely be useful and allow greater 

biological insight with these data sets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1: 
Scatter plots of inverse cycle threshold (40-Ct) measurements from a quantitative PCR 

(qPCR)-based single cell gene expression experiment (lower panels). The cycle threshold 

(Ct) is the PCR cycle at which a predefined fluorescence threshold is crossed, so a larger 

inverse cycle threshold corresponds to greater log-expression [McDavid et al., 2013]. 

Measurements that failed to cross the threshold after 40 cycles are coded as 0. Marginal 

expression in Tfh (CXCR5+PD1+) cells of Tfh marker genes is illustrated in the kernel-

density estimates along the diagonal. The lower panels show the linear relationships between 

pairs of genes.
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Fig 2: 
Scatter plots of inverse cycle threshold (40-Ct) measurements y from a quantitative PCR 

(qPCR)-based single cell gene expression experiment (lower panels). The cycle threshold 

(Ct) is the PCR cycle at which a predefined fluorescence threshold is crossed, so a larger 

inverse cycle threshold corresponds to greater log-expression [McDavid et al., 2013]. 

Measurements that failed to cross the threshold after 40 cycles are coded as 0. The upper 

panels show mosaic plots of each pair of contigency tables that can be formed from the 

indicator functions [vy]i = I yi ≠ 0. On the lower panels, the linear regression on positive 

pairs of observations is indicated in blue, while the conditional mean values are indicated in 

red.
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Fig 3: 
Average timings for graph estimation algorithms as a function of the number of nodes
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Fig 4: 
Dimensional (a) and sample size scaling (b) of six different network inference algorithms 

applied to simulated data under oracle FDR tuning. Data are generated from the multivariate 

hurdle model (6) under chain graphs (a) and e. coli graph (b). Panel (c) shows network 

selection consistency of various methods using the Bayesian Information Criterion under 

various models described in the supplement. The paths trace out the changes in FDR and 

sensitivity as the sample size increases geometrically from 100 (1) to 12,500(4).
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Fig 5: 
Sensitivity vs. FDR for solution paths from methods and scenarios described in 

Supplemental Table 1. The ⊕ symbol indicates the tuning selected by BIC.
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Fig 6: 
Networks of 22 edges estimated through neighborhood selection under the Aracne, Hurdle, 

logistic, Gaussian model (single cells) and Gaussian model (10 cell aggregates) in T 

follicular helper cells. Brown hues indicate estimated negative dependences, while blue-

green hues indicate positive dependences. The edge width and saturation are larger for 

stronger estimated dependences.
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Fig 7: 
Core Gaussian model networks in LPS-treated mouse dendritic cells. Hub genes are shown 

in red. Vertex colors indicate gene ontology membership. Disconnected subgraphs with two 

vertices are suppressed.

McDavid et al. Page 25

Ann Appl Stat. Author manuscript; available in PMC 2019 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 8: 
Core Hurdle model networks estimated in LPS-treated mouse dendritic cells. Hub genes are 

shown in red. Vertex colors indicate gene ontology membership. Disconnected subgraphs 

with two vertices are suppressed.
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Fig 9: 
Overview of geneset edge enrichment analysis. 1. Vertices A and C belong to the blue 

category, while vertex B belongs to the red category. Vertex D belongs to neither.

2. There is nij = 1 blue-red intra-connection, while mij = 2 are possible given the 4 edges.

3. The enrichment statistic is the hypergeometric tail probability 

ti j = P(N = 2; 4, 2, 6) =
2
2

4
2

6
4

= .4

4. The significance of the blue-red enrichment statistic would be ascertained by sampling 

from the null Erdos-Renyi model over all possible pairs of categories.
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Fig 10: 
Modules enriched at FDR ≤10% using graphical geneset edge enrichment in mouse 

dendritic cells under Gaussian model.
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Fig 11: 
Modules enriched at FDR ≤10% using graphical geneset edge enrichment in mouse 

dendritic cells under Hurdle model.
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Table 1

Dissimilarities Hamming Distance
Number o f  edges  between networks of size 24 estimated through various methods. The 

Gaussian(10) model is a Gaussian model estimated on 10-cell replicates, while the Gaussian(raw) data is 

estimated on single cells without centering the data. The remaining models are described in Section 5.

Gaussian (10) Gaussian Gaussian(raw) Hurdle logistic

Aracne 1.00 0.92 0.92 1.00 1.00

Gaussian(10) 1.00 1.00 1.00 1.00

Gaussian 0.92 0.65 1.00

Gaussian(raw) 1.00 0.39

Hurdle 1.00
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