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Abstract

In recent years, a consensus has emerged about the development of the ventral visual pathway in 

humans: although scene- and body-selective regions are mature by middle childhood, face-

selective regions are not. This conclusion has rested primarily on comparisons of the relative size 

and univariate selectivity of these neural regions in both children and adults. In contrast, 

considerably less work has used multivariate methods, such as representational similarity analysis, 

to track the developmental trajectory of more distributed activation patterns within and across 

neural regions. Here, we scanned both children (ages 5–7) and adults to test the hypothesis that 

distributed representational patterns arise before category selectivity (for faces, bodies, or scenes) 

in the ventral pathway. Consistent with this hypothesis, we found mature representational patterns 

in several ventral pathway regions (e.g., FFA, PPA, etc.), even in children who showed no hint of 

the univariate selectivity. These results suggest that representational patterns emerge first in each 

region, perhaps forming a scaffold upon which univariate category selectivity can subsequently 

develop. More generally, our- findings demonstrate an important dissociation between category 
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selectivity and distributed response patterns, and raise many questions about the relative roles of 

each in development and adult cognition.

1. Introduction

The functional organization of the ventral visual pathway is strikingly similar across people 

(Kanwisher, 2010), raising the obvious question of how this highly systematic structure 

arises in development (Golarai, 2007; Deen, 2017). A consensus has emerged that although 

some regions like the parahippocampal place area (PPA) and extrastriate body area (EBA) 

are adultlike by middle childhood (Golarai et al., 2010; Scherf et al., 2007; Peelen et al., 

2009; Pelphrey et al., 2009, but see Golarai et al., 2007; Chai et al., 2010), the fusiform face 

area (FFA) is still developing at this age (Passarotti et al., 2003; Golarai et al., 2007; 2010; 

2015; Scherf et al., 2007, 2011; Peelen et al., 2009; Natu et al., 2016; but see Pelphrey et al., 

2009 and Cantlon et al., 2011). However, this work has focused almost exclusively on the 

relative size and univariate selectivity of these regions. By contrast, a growing literature in 

adults has argued that multivariate analyses can provide a richer, finer-grained 

characterization of the neural representations within and across cortical regions (Haxby et 

al., 2014; Kriegeskorte and Kievit, 2013). In particular, representational similarity analysis 

offers a window into the representations contained within a cortical region by comparing the 

similarities of the response patterns between all possible stimulus pairs. To the extent that 

this method can reveal neural representations, it should be an important tool for 

characterizing cortical development.

Here, we examined the developmental time course of pattern-based information using 

representational similarity matrices within and across regions of ventral visual cortex, and 

asked how they relate to the development of univariate category selectivity in these regions. 

Only a few studies have examined the development of representational similarity of the 

ventral visual pathway, finding that it is not adultlike at six months (Deen et al., 2017) but 

adultlike by age 7–11 (Golarai et al., 2010; 2015). Our study differs from these previous 

studies in two key respects: First, we tested 5 to 7 year-old children, an age between the 

infants and older children tested previously. Second, rather than exclusively examining large 

swaths of cortex, we quantified both representational similarity and univariate selectivity in 

numerous regions (e.g., FFA, PPA, EBA, etc.).

The central hypothesis tested in this study was that mature representational similarity 

patterns would arise before univariate selectivity in each cortical region. To test this 

hypothesis, we scanned adults and children with functional magnetic resonance imaging 

(fMRI) while they passively viewed a variety of object categories. For each participant, we 

first measured the size of several category-selective regions: FFA, PPA, EBA, as well as the 

occipital face area (OFA), the face selective portions of the superior temporal sulcus (STS), 

the occipital place area (OPA), and retrosplenial cortex (RSC). For each region we then 

selected every child with zero category-selective voxels for the defining contrast of that 

region, and we identified every adult with at least 100 category-selective voxels in each 

region. Within these participants, we asked whether the representational similarity patterns 

(i.e., the matrix of similarities in the pattern of responses across voxels between each pair of 
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stimulus categories) were correlated between children and adults in each region. This 

procedure enabled us to ask whether children who lacked any voxels showing the defining 

univariate selectivity for a given region nonetheless showed mature representational 

similarity patterns in that region.

What might we predict about the relationship between category selectivity and 

representational similarity across development? One possibility is that the univariate 

structures arise first, with the finer-grained pattern information developing later. If this were 

true, we would expect to find extremely low correlations between children and adult 

similarity matrices because we explicitly selected the children with zero category-selective 

voxels. In contrast, our hypothesis that representational similarity precedes category 

selectivity within each region predicts strong correlations between children and adults using 

representational similarity analysis even in children with no category-selective voxels. Here, 

we found strong support for this second prediction for each region in the ventral visual 

pathway. This finding raises new questions about how these univariate structures and 

multivariate patterns develop, their relationship to each other, and their respective causal 

roles in development and behavior.

2. Materials and Methods

2.1. Subjects

We scanned 38 adults (mean 25.1 years old; standard deviation 4.48 years) and 41 children, 

ages 5–7 years old (mean 6.6 years old; standard deviation 0.91 years). Excessive amounts 

of motion in 4 of the children resulted in their data being excluded from all further analyses 

due to an inability to reconstruct the images. All participants had normal or corrected-to-

normal vision and no known neurological or psychiatric conditions or structural brain 

abnormalities. Adult participants and the parents of children participants provided written, 

informed consent and all children gave verbal assent to participate in the experiment. The 

Massachusetts Institute of Technology (MIT) Institutional Review Board approved of all 

experimental protocols.

2.2. Stimuli

In order to hold the interest of children we used colored movie clips as stimuli, which 

showed movies of faces, bodies, scenes, objects, and scrambled objects (Pitcher et al., 2011). 

Movies of faces and bodies were filmed on a black background, and framed closeup so that 

only the faces or bodies of 7 children were visible as they danced, or played with toys or 

adults that were out of frame. The scene stimuli were mostly pastoral scenes shot from the 

window of a car that drove through suburbs. There were also some stimuli that were clips of 

flying over canyons or walking through tunnels. Moving objects were selected that 

minimized any suggestion of animacy of the object itself or of a hidden actor pushing the 

object. Examples of these objects included mobiles, windup toys, toy planes and tractors, 

balls rolling down sloped inclines. The scrambled objects were created by dividing each 

object clip into a 15×15 box grid and rearranging the location of each of the resulting 

frames. Finally, rather than using a stationary fixation point as baseline, we used six uniform 

color fields that were designed to maintain the interest of children, while approximating a 
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fixation baseline condition by avoiding any patterned visual input. All stimuli were created 

using MATLAB and Psychtoolbox (Brainard, 1997; Pelli, 1997) and were presented by a 

liquid crystal display projector onto a screen in the scanner, which subjects viewed via a 

mirror attached to the head coil.

2.3. fMRI Acquisition

All participants were scanned using functional magnetic resonance imaging (fMRI) at the 

Athinoula A. Martinos Imaging Center at the McGovern Institute for Brain Research, MIT 

on a Siemens 3T MAGNETOM Trim Trio Scanner (Siemens AG Healthcare). Two weeks 

before a child’s visit, he or she received a CD and illustrated booklet that introduced the 

experimenters to the child, described the MRI procedure, and included recordings of scanner 

sounds. Earbuds similar to those the child would wear in the scanner were also included so 

that he or she could become accustomed to them. Parents were encouraged to review all 

materials with their child and asked to help him or her practice lying still while listening to 

the noises of the scanner. Immediately before their scanning session, all children were 

trained for 15 to 30 min in a “mock” scanner, designed to simulate the appearance, noise, 

and confinement of the actual scanner. During these training sessions, children practiced 

lying still while watching a movie. The movie was turned off by a motion tracking system 

any time children moved too much in order to teach them how still they had to be to get 

“good brain pictures.”

For the children, functional images were acquired using a custom made 32-channel phased 

array head-coil (Keil et al., 2011) optimized to the average head size of 5 to 7 year olds, and 

a gradient echo single-shot echo-planar imaging sequence (32 slices, repetition time (TR) = 

2 s, echo time (TE) = 30 ms, voxel size = 3×3×3 mm, and 0.6 mm inter-slice gap). For the 

adults, functional imaging parameters were identical to the children, with the exception of 

using a commercially available Siemens 32-channel phased array head-coil, which is ideally 

suited for an adult head. For all scans, slices encompassed the whole brain aligned to the 

AC/PC line. Prior to each scan, four “dummy” scans were acquired and discarded to allow 

longitudinal magnetization to reach equilibrium. High-resolution T1-weighted anatomical 

images were also acquired for each participant.

2.4. Experimental Design

Functional data were acquired over four blocked-design functional runs lasting 234 seconds 

each. Each functional run contained three 18-second rest blocks, at the beginning, middle, 

and end of the run, during which a series of six uniform color fields were presented for three 

seconds each. Each run contained two sets of five consecutive stimulus blocks (i.e., faces, 

bodies, scenes, objects, or scrambled objects) sandwiched between the rest blocks, to make 

two blocks per stimulus category per run. Each block lasted 18 seconds and contained six 3-

second movies clips from each of the five stimulus categories. The order of stimulus 

category blocks in each run was palindromic (e.g., fixation, faces, objects, scenes, bodies, 

scrambled objects, fixation, scrambled objects, bodies, scenes, objects, faces, fixation), and 

counterbalanced across runs. Participants were asked to passively view the stimuli.
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2.5. fMRI Data Analysis

All fMRI data were analyzed using the Freesurfer software package (Dale et al., 1999; 

Fischl et al., 1999; 2001) and custom MATLAB scripts. Preprocessing steps included 3-

dimensional motion correction, linear trend removal, temporal high-pass filtering (0.01 Hz 

cutoff), slice scan-time correction, and spatial smoothing (5 mm FWHM kernel). To ensure 

that this smoothing process did not artificially inflate our results, we also conducted a 

variety of key analyses on unsmoothed data (see Supplementary Data). In addition, both 

children and adult scans were spatially registered using the combined volume and surface-

based (CVS) non-linear registration method (Postelnicu et al., 2009) via the T1-weighted 

MRI images. The surfaces were constructed from a 1 mm isotropic MPRAGE with real-time 

motion correction using nVas (van der Kouwe et al., 2008; Tisdall et al., 2012). This allowed 

for direct comparisons between the two groups since this transformation into a common 

space normalizes for absolute brain volume. All statistical analyses were based on the 

general linear model (GLM). GLM analyses all included boxcar regressors for each stimulus 

block, which were convolved with a gamma function to approximate the idealized 

hemodynamic response. For each experimental protocol, separate GLMs were computed for 

each participant, yielding regression-weights (i.e., beta maps) for each condition for each 

subject.

2.6. Defining, characterizing, and measuring category-selective regions of interest

Because category-selective regions of interest (ROIs) are sometimes ambiguous, such as 

when a subject has two FFAs (Weiner and Grill-Spector, 2012), traditional methods of 

identifying functionally defined ROIs sometimes require judgment calls about which 

activation cluster should be taken as the ROI in question, raising the possibility of bias. To 

minimize the subjectivity inherent in hand picking ROIs, our primary analysis used an 

algorithmic method for ROI selection. All category-selective ROIs were defined using a 

Group-Constrained Subject Specific (GSS) Method (Fedorenko et al., 2010). This analysis is 

based on a previously published parcel atlas that was derived from 42 human subjects to 

constrain the definition of numerous ROIs (Julian et al., 2012). These parcels are identified 

as relatively large swaths of the cortical surface in which most subjects show activation for a 

particular contrast. Therefore, each of our category-selective ROIs was defined by 

conjoining contrast maps (e.g., faces vs. objects) with a particular parcel. The particular 

contrasts used to define our ROIs were faces vs. objects for FFA, OFA, and STS, scenes vs. 

objects for PPA, OPA, and RSC, and bodies vs. objects for EBA (Figure 2). In all cases, for 

our primary analyses, we combined regions across the two hemispheres to form one bilateral 

region of interest.. For all contrasts, we used a statistical threshold of P<0.001 uncorrected.

To define and characterize every ROI, two runs were always used to select the voxels for a 

particular region, while the remaining two runs were used to obtain an independent measure 

of the response profile of that region. When quantifying the volume of a region, we would 

measure the number of voxels that passed our statistical threshold within each subject for the 

odd runs and the even runs separately and then average them together. For example, in the 

FFA, if a participant had 500 significant voxels from the two odd runs and 300 significant 

voxels from the two even runs, we would ultimately say that participant has an average of 

400 significant FFA voxels. Meanwhile, to characterize a region, we would use the held out 
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runs (i.e., define on odd runs, measure on even runs; and define on even runs, and measure 

on odd runs), and the results from those analyses were then averaged together. These steps 

were taken to ensure that we avoided any issues of statistical non-independence: data used to 

define a region were never also used to characterize a region (Kriegeskorte et al., 2009; Vul 

et al., 2009).

2.8. Statistical analysis: Representational similarity analysis

To compare the similarity structures between adults and children, we used representational 

similarity analysis to compute a series of brain/brain correlations focused on a variety of 

subdivisions within the visual hierarchy. This analysis requires the formation of a 

representational similarity matrix from neural measures in both adults and children that 

could then be directly compared to one another (Kriegeskorte and Kievit, 2013). A 

representational similarity matrix is the set of pairwise similarities (i.e. correlations) between 

the pattern of response of voxels in a given region to two stimulus classes (e.g., the 

correlation across voxels between the patterns of response to faces and scenes in FFA). Once 

these similarity matrices were computed for each child and each adult, they were averaged 

within each group to create a child group similarity matrix and an adult group similarity 

matrix. We then measured the correlation between those group-level matrices. The statistical 

significance of the observed correlations between two correlation matrices, one from adults 

and the corresponding one from children, was assessed using group-level analyses. That is, 

the condition labels of the data of each group-level matrix were shuffled, the newly labeled 

matrices were correlated with one another, and the resulting correlation value was Fisher z-

transformed. This procedure was repeated 10,000 times, resulting in a distribution of 

correlation values. A particular correlation between representational similarity matrices was 

considered significant if it fell within the top 5% of values in this distribution.

When correlating the representational similarity matrices between adults and children, it is 

possible that we would see artificially low correlations simply because of unreliable neural 

data. To assess this possibility, for every correlation we observed between adults and 

children, we also computed a reliability-adjusted correlation. The first step of computing 

these adjusted correlations requires determining the split-half reliability for each particular 

participant. To compute two similarity matrices, we would first use one set of runs (i.e., runs 

1 and 3) to define an ROI and the other runs (i.e., runs 2 and 4) to generate a similarity 

matrix. We would then switch the runs to generate a second similarity matrix (i.e., define an 

ROI with runs 2 and 4 and generate the matrix with runs 1 and 3). The result of this process 

was an odd and even similarity matrix for each participant and ROI. Once these matrices 

were computed for each participant, they were averaged together to form a group level odd 

and even similarity matrix for both the adults and the children. Those group level odd and 

even similarity matrices were then correlated with one another to get an estimate of the 

reliability of the data for each group of participants. These correlation values were then 

adjusted using the Spearman-Brown formula to estimate the reliability of the full data set 

(Spearman, 1910; Brown, 1910). Finally, to adjust the observed correlations as a function of 

the reliability of the data, we used the correction for attenuation formula: the observed 

correlation between adults and children from a given neural region divided by the square 
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root of the product of reliability of the data in that region from both adults and children 

(Nunnally and Bernstein, 1994; Cohen et al., 2017).

2.9. Similarity analysis in category-selective regions and participant selection

Rather than perform our analyses in every participant we scanned, we examined only those 

children who had zero category-selective voxels for each region and those adults who had at 

least 100 category-selective voxels for each region. The rationale for these selection criteria 

is as follows: If we find significant correlations between the representational similarity 

matrices of children and adults with these two groups, it would provide the strongest 

evidence that representational similarity precedes category selectivity in the ventral pathway. 

If, for example, we find strong correlations between children that do not have a single FFA 

voxel and adults that have at least 100 FFA voxels, then it suggests that distributed 

representational structures develop before category-selective regions, since there are no 

category-selective voxels in these particular children.

To select the voxels we want to use for these analyses, we first counted the number of 

category-selective voxels in each individual adult and only selected those adults with at least 

100 voxels (Figure 3A). Once we identified those adults, we then computed the average 

number of category-selective voxels within that group (Figure 3B). In the case of the FFA, 

we found that our selected adults had on average 849 significant voxels. Then, in order to 

have the same number of voxels across individuals, we went back to our contrast maps and 

selected the same number of voxels for each individual. Thus, for the FFA, this meant 

selecting the 849 most face-selective voxels in each individual adult (Figure 3C). It should 

be noted that in some cases this meant selecting some voxels that did not reach statistical 

significance in some people and excluding some voxels that did reach statistical significance 

in others. For example, imagine a participant with only 800 significant FFA voxels (P<0.001 

uncorrected). To get to 849 voxels, we chose those significant 800 voxels and we also chose 

the 49 voxels with the lowest P-values even though those values were all P>0.001. 

Conversely, imagine a participant with 900 significant FFA voxels. To get to 849 voxels with 

this participant, we would excluded the 51 voxels with the lowest P-values even though 

those voxels all had P-values that were still P<0.001. It was with these selected voxels that 

we would create a similarity matrix (Figure 3D) for each individual participant, which we 

then averaged together to make a single group-level matrix for the adults.

Once we identified the adults we wanted to examine and determined how many voxels were 

in each category-selective region for those adults, we then selected our children and the 

voxels we want to use within those children. Since the goal of our analyses is to examine 

representational similarity in children with no category-selective voxels, the first step of this 

process is to identify every child that has zero category-selective voxels in a given region, 

again with a threshold of P<0.0001 uncorrected (Figure 4A). We then consulted the number 

of category-selective voxels we found in a given region amongst the adults that we selected 

above (Figure 4B). In the case of the FFA, for example, we found an average of 849 FFA 

voxels. Similar to the procedure described above, we then selected that exact number of 

voxels in every child even though none of those voxels were above our statistical threshold. 
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(Figure 4C). In other words, we selected the 849 most “selective” FFA voxels in children in 

spite of the fact that none of those voxels are reliably more responsive to faces than objects.

It should be noted that even though we selected voxels in the children that did not 

significantly respond to faces over objects, it is still possible that once grouped together 

across participants, we would still find significant activation to the preferred category over 

objects in a particular region. For example, imagine that every FFA voxel we selected in 

children had a hypothetical P-value of 0.06 in terms of faces vs. objects. In that case, while 

no single voxel is significantly responsive to faces, once averaged together within and across 

participants, it is likely we would find that the group-level response to faces is greater than 

the group-level response to objects. Such a finding would defeat the purpose of these 

analyses, as the primary goal is to identify children that have zero category selectivity. Thus, 

with the selected children, we performed group-level comparisons of the average response to 

faces/scenes/bodies and the average response to objects. If the overall difference between the 

selected category and objects was P<0.50, we removed the participants with the greatest 

effect size until we reached P>0.50 for the group. This procedure was intended to ensure that 

we not only had selected individual children with no category-selective voxels, but that the 

children we did analyze did not even have a trend of a significant preference as a group for 

the selected category over objects in the different category-selective regions. Once we 

identified those children and those voxels in every individual child, we then performed our 

similarity analyses within those voxels for each child and then averaged them together to 

form a group similarity matrix that we could compare to adults (Figure 4D).

3. Results

3.1. Size of category-selective region and participant selection

The number of significant voxels we found in each child and adult for each of our seven 

category selective-regions is presented below (Figure 5). For the children, this resulted in the 

selection of 19 participants for the FFA, 31 for the OFA, 13 for the STS, 11 for the PPA, 32 

for the OPA, 17 for the RSC, and 14 for the EBA. For the adults, this resulted in the 

selection of 33 participants for the FFA, 19 for the OFA, 33 for the STS, 29 for the EBA, 31 

for the PPA, 8 for the OPA, and 23 for the RSC.

Overall, this selection process resulted in our identifying a group of adults within each 

category-selective region with an average total of 849 voxels in the FFA, 836 in the OFA, 

1,463 in the STS, 2,257 in the PPA, 561 in the OPA, 1,901 in the RSC, and 3,056 in the EBA 

(Figure 6). Naturally, since we selected children with no category-selective voxels, there was 

an average of zero category-selective voxels in each region.

3.2. Response properties of category selective regions

Even though we selected children with no category-selective voxels, it is still possible that 

on average, the response to the selective category (e.g., scenes in PPA or bodies in EBA) will 

still be significantly higher than to the control category (objects) in the group analysis. 

Indeed, we found this exact pattern of results in several of our category-selective regions in 

children: PPA: t(10)=2.32, P<0.05; OPA: t(31)=2.62, P<0.01; RSC: t(16)=3.70, P<0.01. For 
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OFA, STS, and EBA, the selective category (i.e., faces and bodies) were not significantly 

greater than objects: OFA: t(30)=0.68, P=0.50; STS: t(12)=0.91, P=0.38; EBA: t(13)=1.66 

P=0.12. Interestingly, in FFA, we actually found that the response to objects was slightly 

higher than the response to faces in the children selected with zero FFA voxels, though this 

effect was not significant (FFA: t(18)=1.25, P=0.23). For those category-selective regions in 

which the difference between the preferred category and objects was P<0.50, we identified 

the children with the largest preferences for the selective category over objects (i.e., faces 

greater than objects in OFA, bodies greater than objects in EBA) and removed them one by 

one until we obtained P>0.50. After removing certain subjects, all category-selective regions 

showed no preference for the selective category over objects in children: STS: t(10)=0.17, 

P=0.87; EBA: t(10)=0.30, P=0.77; PPA: t(6)=0.52, P=0.62; OPA: t(24)=0.57, P=0.58; RSC: 

t(6)=0.42, P=0.69. Meanwhile, in adults, each region showed a strong preference for the 

selective category relative to objects: FFA: t(32)=7.26, P<0.001; OFA: t(18)=13.48, 

P<0.001; STS: t(32)=14.58, P<0.001; EBA: t(28)=19.23, P<0.001; PPA: t(30)=15.39, 

P<0.001; OPA: t(7)=7.88, P<0.001; RSC: t(22)=12.41, P<0.001 (Figure 7).

3.3. Representational similarity in category selective regions

Once we identified a group of children with no discernable category selectivity and a group 

of adults with strong selectivity (Figures 6 and 7), we then asked if there is a significant 

correlation between the representational similarity matrices of these two groups. Again, to 

perform this analysis in children, we selected the most “selective” voxels for each region 

even though none of those voxels responded significantly more to the preferred category for 

that region than to objects. To determine how many voxels to select, we used the size of the 

adults’ category-selective regions as our benchmark (i.e., the top 849 voxels in FFA since on 

average the adults had 849 FFA voxels). After selecting these voxels in both groups, we 

created representational similarity matrices by correlating the responses for each pairing of 

categories across all voxels in a particular neural region (e.g., the correlation across voxels 

between the patterns of response to faces and scenes in FFA, etc.).

Our results were unambiguous. In every category-selective region, we found strong 

correlations between childrens’ and adults’ matrices: FFA: r=76, P<0.05, reliability-adjusted 

r=0.89; OFA: r=0.85, P<0.05, reliability-adjusted r=0.96; STS: r=0.82, P<0.05, reliability-

adjusted r=0.95; EBA: r=0.90, P<0.05, reliability-adjusted r=0.94; PPA: r=0.76, P<0.05, 

reliability-adjusted r=0.98; OPA: r=0.85, P<0.05, reliability-adjusted r=0.89 (Figure 8). The 

one region in which there was a trend, of a correlation that did not reach significance was in 

RSC (r=0.60, P=0.05). However, this relatively low correlation is likely due to unreliable 

data since the reliability-adjusted correlation is also quite high (r=0.75). Taken together, 

these data strongly suggest that even in children with no discernable selectivity for the 

defining contrast for that region, distributed representational structures are already mature in 

those regions.

Because we found such strong correlations between adult and child similarity matrices in 

every category-selective region, a natural question is whether these regions have different 

representational structures from one another. Are the strong correlations between adults and 

children across all category-selective regions driven by a common representational 
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structure? Or do the different regions have dissociable structures that vary across the cortex? 

To address these questions, we calculated the correlations between each of our neural 

regions within our two groups (i.e., correlate FFA and PPA within children, or EBA and 

RSC within adults, etc.). In children, approximately two thirds of the neural regions were not 

significantly correlated with one another: 15 out of 21 possible pairings. In adults, 

meanwhile, approximately half of the neural regions were not correlated with one another: 

10 out of 21 possible pairings. Thus, while there appears to be some common 

representational structures between certain neural regions, it does not appear as if our strong 

correlations between adults and children are driven entirely by our measuring one single 

structure.

3.4. Does category selectivity ever precede representational similarity?

We have focused so far on the development of representational similarity amongst a group of 

children who were specifically chosen because they have no discernable selectivity on the 

defining contrast for the region in question. We have shown that despite their total lack of 

univariate category selectivity, these children nonetheless show mature representational 

similarity patterns in the same regions. Is the opposite true? Do children who have no 

representational similarity with adults have any hint of category selectivity? To answer this 

question, we first correlated the matrix from each individual child from our original group 

(N=37) with the group-level adult similarity matrix, for each category selective region. We 

then selected every child whose individual correlation with the adults was r ≤ 0.00 in the 

region in question (i.e., one group of children were selected for FFA, another for PPA, etc.). 

Next, we measured the average size of the category-selective regions in the selected group of 

children using a statistical threshold of P<0.001 uncorrected. Overall, we found that for 

children that did not show a positively correlated representational similarity pattern in the 

region in question, the size of the category-selective region was never significantly greater 

than 0 (FFA: 88 voxels, t(7)=1.62, P=0.15; OFA: 7 voxels, t(10)=1.06, P=0.31; STS: 69 

voxels, t(7)=1.64, P=0.15; PPA: 42 voxels, t(2)=1.0, P=0.42; OPA: 1 voxel, t(4)=1.0, 

P=0.36; RSC: 55 voxels, t(5)=1.10, P=0.32; EBA: 200 voxels, t(4)=1.18, P=0.30). In other 

words, this analysis revealed that children who have not developed any representational 

structures that are correlated with adults have also not begun to develop category-selective 

regions (e.g., FFA, PPA, EBA, etc.). Thus, representational similarity patterns are present in 

children who lack the corresponding univariate selectivity for the region in question, but not 

vice versa. Of course, these analyses should be interpreted with some caution since for 

several regions we were only able to identify a small number of children whose similarity 

matrices were negatively correlated with adults (e.g., PPA). However, the fact that so few 

children are negatively correlated with adults is itself consistent with our broader claim that 

distributed activation patterns mature earlier than category selective regions.

4. Discussion

Here, we report a developmental dissociation between univariate category selectivity and 

distributed similarity patterns: even in children that have no discernable selectivity for the 

defining contrast of a given region (e.g., no voxels that respond significantly more to faces 

than objects in the FFA), the representational similarity patterns in that region are already 
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mature. These findings highlight a key dissociation in the development of the human visual 

system: rather than developing in perfect sync with one another, each region’s fine-grained 

activation patterns apparently develop before that region’s defining univariate selectivity. 

These results are consistent with those of Golarai and colleagues (2010; 2015), who showed 

more mature representational similarity across the ventral visual pathway in 7–11 year old 

children. However, our findings build on the earlier results by further showing that this more 

mature representational similarity a) is present at the younger age of 5–7, b) exists within 

each developing category-selective region, and c) is present even when the defining category 

selectivity of a region is absent altogether. These results reveal an important dissociation 

between category selectivity and representational similarity

Our findings raise numerous questions. First, what is the precise time-course of the 

development of distributed representational structures in the ventral visual pathway? Deen 

and colleagues (2017) showed that representational similarity structures are very different 

from adults at 6 months of age, so they could mature any time between infancy and the 5–7 

year old range studied here. Second, what are the neurobiological mechanisms that construct 

representational similarity during development? Third, given that representational similarity 

appears to mature first, does it play a causal role in the development of category selectivity? 

None of these important questions is answerable with the current data set, but in principle all 

could be addressed in future work.

A major obstacle in speculating about these questions comes from the fact that we do not 

understand the relative significance and causal roles of representational similarity and 

univariate selectivity, or their neurobiological basis, even in adults. Empirically, univariate 

selectivity in the ventral visual pathway is among the most robust and replicated phenomena 

in human cognitive neuroscience, and extensive evidence shows that category-selective 

regions play specific causal roles in behavior (Wada and Yamamoto, 2001; Pitcher et al., 

2008; Dilks et al., 2013; Schalk et al., 2017). But computationally, we do not know what 

goal might be served by category selectivity of specific neural populations, or by the spatial 

clustering of these neural populations at a sufficient grain to produce category-selective 

regions detectable with fMRI. Similarly, representational similarity patterns are robust and 

widely replicated. However, the window they offer into neural/mental representations and 

their causal role in behavior is unclear. The fact that a given stimulus classification can be 

performed based on patterns of response across voxels within a particular region of cortex 

does not guarantee that this information is used (i.e. read out by other brain regions Williams 

et al., 2007). Although representational similarity is sometimes correlated with behavior 

(e.g., Cohen et al., 2014; 2015; 2017), evidence from patients and stimulation studies raise 

questions about its causal role. For example, despite the many studies showing decoding 

abilities and replicable similarity matrices for non-faces objects in the FFA, intracranial 

electrical stimulation of the FFA appears to affect only face percepts, not the perception of 

non-face objects (Parvizi et al., 2012; Schalk et al., 2017), suggesting that the pattern 

information about non-face objects in the FFA may not be causally related to perceptual 

experience.

Even if representational similarity is sometimes epiphenomenal in terms of its role in adult 

perception and cognition, it may nonetheless play an important role in development. But 
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how differences in representational similarity could lead to a later change in the univariate 

selectivity of a given region is far from clear. One possibility is that early-developing 

representational similarity in the ventral pathway reflects a “protomap” of cortical 

organization that serves as a scaffold upon which further development is built (Hasson et al., 

2002; Deen et al., 2017, Livingstone et al., 2017). These representational similarities could 

further reflect retinotopic and featural biases (e.g., for curvature versus rectilinearity) 

inherited from earlier stages of visual processing, with these biases determining which 

regions of the ventral pathway will take on which function. Of course, it may be that 

representational similarity plays a relatively minor role in determining a region’s selectivity. 

Instead, that role may be better accomplished by structural connectivity, which develops 

very early, varies systematically across functionally different regions (Saygin et al., 2012; 

Osher et al., 2015), and in at least one case identifies the locus of a functionally distinct 

region before that region’s univariate selectivity arises (Saygin et al 2016).

The many questions raised by this study about the role of representational similarity in 

development can be addressed in future work by deriving more detailed similarity matrices 

from a larger set of stimulus types both within and between categories. Richer matrices 

might reveal differences between adults and children that were not evident in our study. It 

will also be important to scan children between the ages of 6 months and five years to learn 

more about the timeline of the development of representational similarity structures across 

distributed populations of voxels and neurons. Finally, to understand the role of distributed 

activation patterns in development, we need to better understand its causal role in adult 

perception, including the fundamental question of the spatial scale of the neural codes that 

are read out in behavior.
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Figure 1. 
Sample stimuli. Example frames from movies used as dynamic stimuli
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Figure 2. 
Example of each of the category selective regions we identified on representative adult 

participants.
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Figure 3. 
Visualization of the method used to form representational similarity matrices in adults. In 

this case, we use the FFA as an example. A) First, we measured the size of the FFA in every 

adult and only selected adults with at least 100 voxels. B) Then we determined the average 

size of the FFA across the selected adults (i.e., 849 voxels). C) Next, we selected the top 849 

voxels in every adult such that we had the exact same number of voxels in every participant. 

D) Once those voxels were selected, we created a similarity matrix in each individual 

participant, which we then averaged together across participants to make one adult group-

level matrix.
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Figure 4. 
Visualization of the method used to form representational similarity matrices in children. A) 

First, we measured the size of the FFA in every child and only selected children with 0 

voxels. B) Then we consulted how many FFA voxels we found across our group of selected 

adults (i.e., 849 voxels). C) Next, we selected the top 849 voxels in every child (even though 

none of those voxels reached statistical significance) such that we had the exact same 

number of voxels in every participant. D) Once those voxels were selected, we created a 

similarity matrix in each individual participant, which we then averaged together across 

participants to make one child group-level matrix.
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Figure 5. 
Summary distribution of the size of the category-selective regions in every participant. On 

the x-axis of every plot is a series of voxel bins in which we group the number of voxels into 

discrete bins of 100 voxels. On the y-axis is the number of participants whose category-

selective region land within a given bin. Across all plots, the colored bars mark the 

participants selected for further analyses (i.e., children with no category-selective voxels and 

adults with at least 100 category-selective voxels), while the grey bars mark participants 

excluded for further analyses (i.e., children with any category-selective voxels and adults 

with fewer than 100 category selective voxels).
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Figure 6. 
Size of each category-selective region. The number of voxels in each region was measured 

for both children and adults and is shown here on the y-axis. Each region was defined using 

a statistical threshold of P<0.001 uncorrected. There are no bars for the children since we 

purposefully selected children with no category-selective voxels. The error bars for adults 

denote the standard error of the mean.
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Figure 7. 
Univariate responses to selective categories (i.e., faces in FFA, OFA, and STS, bodies in 

EBA, and scenes in PPA, OPA, and RSC) in the selected voxels of children and adults. 

These data show the responses in each group after iteratively removing any children until the 

group analysis across children showed no univariate selectivity for the region-defining 

contrast. In all cases, the grey bars are the response in those regions to objects, while the 

colored bar are the response to the preferred category for the region in question, in data 

independent of those used to define the region. Percent signal change is represented on the 

y-axis. **P<0.01, ***P<0.001
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Figure 8. 
Representational similarity analysis comparing children and adults. A) Visualization of the 

similarity matrices based on distributed activation patterns in the FFA voxels in adults (top 

matrix) and children (bottom matrix). Each cell corresponds to the correlation of the 

activation patterns within a particular region for two stimulus categories (e.g., the correlation 

between the pattern of response across voxels to objects and bodies in FFA, etc.). B) 

Correlations between children and adults in each of our neural regions. The y-axis shows the 

correlation between the two groups. For each neural region, the saturated bar represents the 

observed correlation between children and adults while the desaturated bar represents the 

reliability adjusted correlation (see Methods).
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