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Abstract

Mendelian randomization (MR), a method to infer causal relationships, is confounded by genetic 

correlations reflecting shared etiology. We developed a model in which a latent causal variable 

(LCV) mediates the genetic correlation; trait 1 is partially genetically causal for trait 2 if it is 

strongly genetically correlated with the LCV, quantified using the genetic causality proportion 

(gcp). We fit this model using mixed fourth moments E(α1
2α1α2) and E(α2

2α1α2) of marginal effect 

sizes for each trait; if trait 1 is causal for trait 2, then SNPs affecting trait 1 (large α1
2) will have 

correlated effects on trait 2 (large α1α2), but not vice versa. In simulations, our method avoided 

false positives due to genetic correlations, unlike MR. Across 52 traits (average N=331k), we 

identified 30 causal relationships with high gcp estimates. Novel findings included a causal effect 

of LDL on bone mineral density, consistent with clinical trials of statins in osteoporosis.

Introduction

Mendelian Randomization (MR) is widely used to identify potential causal relationships 

among heritable traits, potentially leading to new disease interventions[1-12]. Genetic 

variants that are significantly associated with one trait, the ``exposure," are used as genetic 

instruments to test for a causal effect on a second trait, the ``outcome." If the exposure is 

causal, then variants affecting the exposure should affect the outcome proportionally. For 

example, LDL[3, 13] and triglycerides[4] (but not HDL[3]) causally affect coronary artery 

disease risk. However, pleiotropy presents a challenge for MR, especially when it produces a 

genetic correlation and when the exposure is highly polygenic[2,11,12,14-16]. Sometimes, 
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this challenge can be addressed using curated genetic variants without pleiotropic effects; 

this approach is most appropriate for molecular traits (e.g. LDL). For other complex traits, 

statistical approaches have been used to reduce the likelihood of confounding, such as MR-

Egger [7] and bidirectional MR [11,17,18]. However, these approaches have their own 

limitations.

We introduce a latent causal variable (LCV) model, under which the genetic correlation 

between two traits is mediated by a latent variable having a causal effect on each trait. We 

define trait 1 as partially genetically causal for trait 2 when it is strongly correlated with the 

causal variable, implying that part of the genetic component of trait 1 is causal for trait 2. We 

quantify partial causality using the genetic causality proportion. We showed in simulations 

that LCV has major advantages over MR methods, and we applied it to 52 diseases and 

complex traits.

Results

Overview of methods

The latent causal variable (LCV) model is based on a latent variable L that mediates the 

genetic correlation between the two traits (Figure 1a). Under the LCV model, trait 1 is fully 
genetically causal for trait 2 if it is perfectly genetically correlated with L; ``fully" means 

that the entire genetic component of trait 1 is causal for trait 2 (Figure 1b). More generally, 

trait 1 is partially genetically causal for trait 2 if the latent variable has a stronger genetic 

correlation with trait 1 than with trait 2; ``partially" means that part of the genetic 

component of trait 1 is causal for trait 2. In order to quantify partial causality, we define the 

genetic causality proportion (gcp) of trait 1 on trait 2. The gcp ranges between 0 (no partial 

genetic causality) and 1 (full genetic causality). A high value of gcp (even if it is not exactly 

1) implies that interventions targeting trait 1 are likely to affect trait 2. An intermediate value 

implies that some interventions targeting trait 1 may affect trait 2. (However, we caution that 

an intervention may fail to mimic genetic perturbations, e.g. due to its timing relative to 

disease progression.) For example, a recent study suggested either a fully causal effect of 

age at menarche (AAM) on height or a shared hormonal pathway affecting both traits[11]. If 

this shared pathway (modeled by L) has a large effect on AAM but a small effect on height, 

then AAM would be strictly partially genetically causal for height. Indeed, LCV produced 

an intermediate gcp estimate (gcp = 0.43(0.10), see below). We caution that low gcp 

estimates are not evidence of full genetic causality, and we refer to trait pairs with low gcp 

estimates as having limited partial genetic causality. LCV p-values test the null hypothesis 

that gcp=0, and a highly significant p-value does not imply a high gcp.

In order to test for partial genetic causality and to estimate the gcp, we exploit the fact that if 

trait 1 is partially genetically causal for trait 2, then most SNPs affecting trait 1 will have 

proportional effects on trait 2, but not vice versa (Figure 1c-e). Instead of using thresholds to 

select subsets of SNPs[11], we compare the mixed fourth moments E(α1
2α1α2) and E(α2

2α1α2)

of marginal effect sizes for each trait. The rationale for utilizing these mixed fourth moments 

is that if trait 1 is causal for trait 2, then SNPs with large effects on trait 1 (large α1
2) will 
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have proportional effects on trait 2 (large α1α2), so that E(α1
2α1α2) will be large; conversely, 

SNPs with large effects on trait 2 (large α2
2) will generally not affect trait 1 (small α1α2), so 

that E(α2
2α1α2) will be smaller. Thus, estimates of the mixed fourth moments can be used to 

test for partial genetic causality and to estimate the gcp. We note that LCV, unlike MR, does 

not distinguish between the “exposure” and the “outcome”; trait 1 and trait 2 are 

interchangeable labels.

LCV assumes that joint effect size distribution for two traits is a sum of two independent 

distributions: (1) a shared genetic component corresponding to L, whose values are 

proportional for both traits; and (2) a distribution that does not contribute to the genetic 

correlation (see Methods). We interpret the first distribution as ``mediated" effects 

(corresponding to π; Figure 1a) and the second distribution as ``direct" effects 

(corresponding to γ). The LCV model assumption is strictly weaker than the ``exclusion 

restriction" assumption of MR (see Methods).

Under the LCV model, the genetic causality proportion is defined as the number x such that:

q2
2

q1
2 = (ρg

2)x, (1)

where qk is the normalized effect of L on trait k (Figure 1a), and ρg is the genetic 

correlation[16] (note that ρg = q1q2). When the gcp is equal to 1, trait 1 is fully genetically 

causal for trait 2; when it is positive but less than 1, trait 1 is partially genetically causal. 

When it is negative, trait 2 is partially genetically causal. The gcp can be defined without 

making LCV (or other) model assumptions (see Methods).

In order to estimate the gcp, we utilize the following relationship between the mixed fourth 

moments of the marginal effect size distribution and the parameters q1 and q2:

E(α1
3α2) = κπ q1

3q2 + 3ρg, (2)

where π is the effect of a SNP on L and κπ = E(π4) − 3 is the excess kurtosis of π (see 

Methods). This equation implies that if ∣ E(α1
3α2) ∣ ≥ ∣ E(α1α2

3) ∣, then q1
2 ≥ q2

2 and gcp ≥ 0.

We calculate statistics S(x) for each possible value of gcp=x, using equation (2). These 

statistics also depend on the heritability[19], the genetic correlation[16], and the cross-trait 

LDSC intercept[19]. We estimate the variance of these statistics using a block jackknife and 

obtain an approximate likelihood function for the gcp. We compute a posterior mean gcp 

estimate (and a posterior standard deviation) using a uniform prior. We test the null 

hypothesis (that gcp=0) using S(0). Details of the method are provided in the Methods 

section. We have released open source software implementing the LCV method (see URLs).
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Simulations

To compare the calibration and power of LCV with existing causal inference methods, we 

performed a wide range of null and causal simulations involving simulated summary 

statistics with no LD. We compared four main methods: LCV, random-effect two-sample 

MR[5,9] (denoted MR), MR-Egger[7], and Bidirectional MR[11] (see Methods). We also 

compared with the weighted median estimator (MR-WME)[8] and mode-based estimator 

(MR-MBE)[10] (whose performance was roughly similar to MR and to MR-Egger 

respectively; results using these methods are reported in supplementary tables). We applied 

each method to simulated GWAS summary statistics (N=100k individuals in each of two 

non-overlapping cohorts; M=50k independent SNPs[20]) for two heritable traits (h2=0.3), 

generated under the LCV model. LCV uses LD score regression [19]; for simulations with 

no LD, we use constrained-intercept LD score regression (simulations with LD are described 

below). A detailed description of all simulations is provided in the Supplementary Note, and 

simulation parameters are described in Supplementary Table 1.

First, we performed null simulations (gcp=0) with uncorrelated pleiotropic effects (via γ; 

Figure 1a) and zero genetic correlation. 1% of SNPs were causal for both traits (with 

independent effect sizes, explaining 20% of heritability for each trait), and 4% of SNPs were 

causal for each trait exclusively (Figure 2a, Supplementary Table 2a-d). LCV produced 

conservative p-values (0.0% false positive rate at α = 0.05); our normalization of the test 

statistic can lead to conservative p-values when the genetic correlation is low (see Methods). 

All three main MR methods produced well-calibrated p-values. Even though the ``exclusion 

restriction" assumption of MR is violated here, these results confirm that uncorrelated 

pleiotropic effects do not confound random-effect MR at large sample sizes[21]. (Such 

pleiotropy is known to cause false positives if a less conservative fixed-effect approach is 

used[22].) In these simulations, all methods except LCV used the set of approximately 170 

SNPs (on average) that were genome-wide significant (p < 5 × 10−8) for trait 1 (or 

approximately 330 SNPs that were genome-wide significant for either trait, in the case of 

Bidirectional MR).

Second, we performed null simulations with a nonzero genetic correlation. 1% of SNPs had 

causal effects on L, and L had effects q1 = q2 = 0.2 on each trait (so that ρg = 0.2). 4% of 

SNPs were causal for each trait exclusively (Figure 2b, Supplementary Table 2). MR and 

MR-Egger both produced excess false positives, while Bidirectional MR and LCV produced 

well-calibrated p-values. These simulations violate the MR-Egger assumption that the 

magnitude of pleiotropic effects on trait 2 are independent of the magnitude of effects on 

trait 1 (the ``InSIDE" assumption) [7], as SNPs with larger effects on L have larger effects 

on both trait 1 and trait 2 on average, consistent with known limitations [22].

Third, we performed null simulations with a nonzero genetic correlation and differential 

polygenicity in the non-shared genetic architecture between the two traits. 1% of SNPs were 

causal for L with effects q1 = q2 = 0.2 on each trait, 2% were causal for trait 1 but not trait 

URLs
Open-source software implementing our method is available at https://github.com/lukejoconnor/LCV.
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2, and 8% were causal for trait 2 but not trait 1 (Figure 2c, Table S2h-j). Thus, the likelihood 

that a SNP would be genome-wide significant was higher for causal SNPs affecting trait 1 

only than for causal SNPs affecting trait 2 only. As a result of this imbalance, Bidirectional 

MR (as well as other MR Methods) produced excess false positives, unlike LCV.

Fourth, we performed null simulations with a nonzero genetic correlation and differential 

power for the two traits, reducing the sample size from 100k to 20k for trait 2. 0.5% of SNPs 

were causal for L with effects q1 = q2 = 0.5 on each trait, and 8% were causal for each trait 

exclusively (Figure 2d, Table S2k-m). Because per-SNP heritability was higher for shared 

causal SNPs than for non-shared causal SNPs, shared causal SNPs were more likely to reach 

genome-wide significance in the smaller trait 1 sample (N=20k), leading to a similar 

imbalance as in Figure 2c. As a result, Bidirectional MR (as well as other MR Methods) 

produced excess false positives, while LCV produced well-calibrated p-values.

Next, we performed causal simulations (with full genetic causality) to assess whether LCV 

is well-powered to detect a causal effect. We caution that LCV had lower power in 

simulations with LD (see below). First, we chose a set of default parameters: N=25k for 

each trait, 5% of SNPs causal for trait 1 (the causal trait), a (fully) causal effect of size q2 = 

0.2 of trait 1 on trait 2, and 5% of SNPs causal for trait 2 only (Figure 3a). There were ~15 

genome-wide significant SNPs on average, explaining ~2% of h2. LCV was well-powered to 

detect a causal effect at α = 0.001, while MR had lower power and bidirectional MR and 

MR-Egger had low power.

Second, we reduced the sample size for trait 1 (Figure 3b, Supplementary Table 3b-d), 

finding that LCV had high power while the MR methods had very low power, owing to the 

small number of genome-wide significant SNPs. We caution that for real traits, heritability 

estimates can be noisy at very low sample size, potentially leading to unreliable results (see 

below).

Third, we reduced the sample size for trait 2 (Figure 3c, Supplementary Table 3e-g). LCV 

had high power, while other methods had low power. The effect of trait 2 sample size on MR 

power was more modest than the effect of trait 1 sample size, suggesting that the number of 

genome-wide significant SNPs (ascertained using trait 1) is the primary limiting factor for 

MR power.

Fourth, we reduced the causal effect size of trait 1 on trait 2 (Figure 3d and Supplementary 

Table 3h-j). LCV had low power, and other methods had very low power. Fifth, we increased 

the polygenicity of the causal trait (Figure 3e, Supplementary Table 3k-m). LCV had 

moderate power while the MR methods had very low power, again owing to the low number 

of genome-wide significant SNPs. We also simulated a partially genetically causal 

relationship (gcp=0.25-0.75), with similar results (Supplementary Table 3p-r). We compared 

our gcp estimates in fully causal simulations with our gcp estimates in partially causal 

simulations, finding that LCV reliably distinguished the two cases, unlike existing methods 

(Supplementary Table 3a,p-r).
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In order to investigate potential limitations of our approach, we performed null and causal 

simulations under genetic architectures that violate LCV model assumptions. These 

simulations and their results are described in detail in the Supplementary Note. We 

simulated four types of LCV model violations: (1) null simulations with a bivariate Gaussian 

mixture model, where one of the mixture components generates imperfectly correlated effect 

sizes on the two traits; (2) null simulations with two latent causal variables; (3) causal 

simulations with a bivariate Gaussian mixture model; and (4) causal simulations with an 

additional latent confounder. LCV produced well-calibrated p-values under models of type 

(1) (Supplementary Figure 1a-c); in addition, these simulations recapitulated the limitations 

of existing methods (Figure 2). Models of type (2) sometimes caused LCV (and existing 

Methods) to produce false positives (Supplementary Figure 1d-e); however, extreme values 

of the simulation parameters were required in order for LCV to produce high gcp estimates, 

implying that results with high gcp estimates are extremely unlikely to be false positives 

(Supplementary Figure 2). Causal models of type (3-4) lead to reduced power for LCV (and 

other Methods) (Supplementary Figure 1f-g), as well as downwardly biased gcp estimates 

for LCV (Supplementary Tables 4-5).

Next, we performed simulations with real LD patterns to further assess the robustness of the 

LCV method. These simulations and their results are described in detail in the 

Supplementary Note. In null simulations with a wide range of parameter settings, LCV 

produced approximately well-calibrated or conservative false positive rates, except for 

simulations at low sample size with noisy heritability estimates (Supplementary Table 6 a-s 

and Supplementary Table 7). (We exclude real datasets with noisy heritability estimates). We 

determined that LCV can be confounded by uncorrected population stratification 

(Supplementary Table 8). In non-null simulations, LCV was usually well-powered to detect 

a causal or partially causal effect (Supplementary Table 6 t-bb). In simulations with a range 

of gcp values, we determined that our posterior mean gcp estimates are approximately 

unbiased and that our posterior standard errors are approximately well-calibrated 

(Supplementary Figure 3 and Supplementary Table 9).

Application to real traits

We applied LCV and the MR methods to GWAS summary statistics for 52 diseases and 

complex traits, including summary statistics for 37 UK Biobank traits[27,28] computed 

using BOLT-LMM[29] (average N=429k) and 15 other traits (average N=54k) (see 

Supplementary Table 10 and Methods). These traits were selected based on the significance 

of their heritability estimates (Zh > 7), and trait pairs with very high genetic correlations (∣ρg 

> 0.9) were pruned. As in previous work, we excluded the MHC region from all analyses, 

due to its unusually large effect sizes and long-range LD patterns[19].

We applied LCV to the 429 trait pairs (32% of all trait pairs) with a nominally significant 

genetic correlation (p<0.05), detecting significant evidence of full or partial genetic causality 

for 59 trait pairs (FDR < 1%), including 30 trait pairs with gcp > 0.6. We primarily focus on 

trait pairs with high gcp estimates, which have greater biological interest (and are extremely 

unlikely to be false positives; see Simulations). Results for selected trait pairs are displayed 

in Figure 4; results for the 30 trait pairs with gcp > 0.6 are reported in Table 1; results for all 
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59 significant trait pairs are reported in Supplementary Table 11; and results for all 429 

genetically correlated trait pairs are reported in Supplementary Table 12. To investigate the 

possibility that these results could be affected by model misspecification, we developed an 

auxiliary test for partial genetic causality that does not rely on LCV model assumptions 

(Supplementary Note). This test, though underpowered, produces highly concordant results 

on these trait pairs, confirming that LCV is unlikely to be affected by model misspecification

Myocardial infarction (MI) had a nominally significant genetic correlation with 31 other 

traits, of which six had significant evidence (FDR <1%) for a fully or partially genetically 

causal effect on MI (Table 1); there was no evidence for a genetically causal effect of MI on 

any other trait. Consistent with previous studies, these traits included LDL[3,13], 

triglycerides[4] and BMI[30], but not HDL[3]. The effect of BMI was also consistent with 

prior MR studies [30-33], although these studies did not attempt to account for pleiotropic 

effects (also see ref. [34], which detected no effect). There was also evidence for a 

genetically causal effect of high cholesterol, which was unsurprising (due to the high genetic 

correlation with LDL) but noteworthy because of its strong genetic correlation with MI, 

compared with LDL and triglycerides. The result for HDL and MI did not pass our 

significance threshold (FDR <1%), but was nominally significant (p=0.02, Supplementary 

Table 12); we residualized HDL summary statistics on summary statistics for three 

established causal risk factors (LDL, BMI and triglycerides), determining that residualized 

HDL showed no evidence of genetic causality (p=0.8). On the other hand, most of the other 

traits remained significant (Supplementary Table 13).

We also detected evidence for a fully or partially genetically causal effect of hypothyroidism 

on MI (Table 1). Although hypothyroidism is not as well-established a cardiovascular risk 

factor as high LDL, its genetic correlation with MI is comparable (Table 1), and this effect is 

mechanistically plausible[40,41]. While this result was robust in the conditional analysis 

(Supplementary Table 13), and there was no strong evidence for a genetically causal effect 

of hypothyroidism on lipid traits (Supplementary Table 12), it is possible that this effect is 

mediated by lipid traits. A recent MR study of thyroid hormone levels, at ~20 × lower 

sample size than the present study, provided evidence for a genetically causal effect on LDL 

but not CAD [42]. On the other hand, clinical trials have demonstrated that treatment of 

subclinical hypothyroidism leads to improvement in several cardiovascular risk factors 

[43-47]. We also detected evidence for a fully or partially genetically causal effect of 

hypothyroidism on T2D (Supplementary Table 11), consistent with a longitudinal 

association between subclinical hypothyroidism and diabetes incidence [48], as well as an 

effect of thyroid hormone withdrawal on glucose disposal in athyreotic patients [49].

We detected evidence for a (negative) genetically causal effect of LDL on bone mineral 

density (BMD; Table 1). A meta-analysis of randomized clinical trials reported that statin 

administration increases BMD[50]. Moreover, familial defective apolipoprotein B leads to 

high LDL and low BMD [51]. We performed two-sample MR using 8 SNPs that were 

previously curated (in ref. 3; see Supplementary Note), finding modest evidence for a 

negative causal effect (p=0.04). Because these variants are not likely to have pleiotropic 

effects, this analysis provides separate evidence for a genetically causal effect. Additional 

trait pairs with high gcp estimates are discussed in the Supplementary Note.
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Approximately half of significant trait pairs had low to medium gcp estimates (<0.6). Given 

that there is lower power to detect trait pairs with low gcp values (Supplementary Table 

3a,p-r), it is likely that partial genetic causality with gcp<0.6 is more common than full or 

nearly-full genetic causality with gcp>0.6. Trait pairs with low gcp estimates can suggest 

plausible biological hypotheses. For example, we identified a partially genetically causal 

effect of age at menarche (AAM) on height (gcp = 0.43(0.10), Table S11), suggesting that 

these traits are influenced by a shared hormonal pathway that is more strongly correlated 

with AAM than with height, as recently hypothesized [11].

A recent study reported genetic correlations between various complex traits and number of 

children in males and females[52]. We identified only one trait (balding in males) with a 

fully or partially causal effect on number of children (in males; Table 1). For college 

education, which has a strong negative genetic correlation with number of children (ρg = 

−0.31(0.07) and −0.26(0.06) in males and females respectively), we obtained low gcp 

estimates with low standard errors (gcp = 0.00(0.09) and gcp = 0.04(0.21) respectively, 

Supplementary Table 12). Thus, a genetic correlation with number of children does not 

imply direct selection. This result does not contradict the conclusion of reference [52] that 

complex traits are affected by natural selection, as pleiotropic selection can also affect a trait 

[53].

Polygenic autism risk is positively genetically correlated with educational attainment[16] 

(and cognitive ability[54], a highly genetically correlated trait[57]), possibly consistent with 

the hypothesis that common autism risk variants persist in the population due to 

compensatory effects on cognitive ability [55,56]. If so, then most common variants 

affecting autism risk would also affect educational attainment, leading to a partially 

genetically causal effect of autism on educational attainment. However, we detected 

evidence against such an effect (gcp = 0.13(0.13), ρg = 0.23(0.07); Supplementary Table 12). 

Additional trait pairs with negative results are reported in the Supplementary Note and in 

Supplementary Table 14.

In order to evaluate whether the limitations of MR observed in simulations (Figure 2) are 

also observed in analyses of real traits, we applied MR, MR-Egger and Bidirectional MR to 

all 429 genetically correlated trait pairs (Supplementary Table 12). MR reported significant 

causal relationships (1% FDR) for 271/429 trait pairs, including 155 pairs of traits for which 

each trait was reported to be causal for the other trait. This implausible result confirms that 

MR frequently produces false positives in the presence of a genetic correlation, as predicted 

by our simulations (Figure 2). In contrast, LCV reported a significant partially or fully 

genetically causal relationship for only 59 trait pairs (Supplementary Table 11), and it never 

reports a causal effect in both directions. Similarly, Bidirectional MR reported a significant 

causal relationship for only 45 trait pairs (including 17 pairs of traits that overlapped with 

LCV; Supplementary Table 15).

Discussion

We have introduced a latent causal variable (LCV) model to identify causal relationships 

among genetically correlated pairs of complex traits. We applied LCV to 52 traits, finding 
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that many trait pairs do exhibit partially or fully genetically causal relationships. Our method 

represents an advance for two main reasons. First, unlike existing MR methods, LCV 

reliably distinguishes between genetic correlation and full or partial genetic causation. 

Positive findings using LCV are more likely to reflect true causal effects. Second, we define 

and estimate the genetic causality proportion (gcp) to quantify the degree of causality. This 

parameter, which provides information orthogonal to the genetic correlation or the causal 

effect size, enables a non-dichotomous description of the causal architecture.

This study has two important limitations (additional limitations are discussed in the 

Supplementary Note). First, the LCV model includes only a single intermediary and can be 

confounded in the presence of multiple intermediaries. However, the 30 trait pairs with gcp > 

0.6 are unlikely to be false positives (see Supplementary Note and Supplementary Figure 2). 

Second, because LCV models only two traits at a time, it cannot be used to identify 

conditional effects given observed confounders[4,60]. This approach was used, for example, 

to show that triglycerides affect coronary artery disease risk conditional on LDL[4]. 

However, it is less essential for LCV to model observed genetic confounders, since LCV 

explicitly models a latent genetic confounder.

Despite these limitations, for most pairs of complex traits we recommend using LCV instead 

of MR, as MR methods (including MR Egger) are easily confounded by genetic correlations. 

MR is more reliable when it is possible to identify variants that are likely to represent valid 

instruments. For example, an MR analysis identified a causal effect of vitamin D on multiple 

sclerosis, utilizing genetic variants near genes with well-characterized effects on vitamin D 

synthesis, metabolism and transport [66]. As another example, cis-eQTLs can be used as 

genetic instruments, as they are unlikely to be confounded by processes mediated in trans 

[62-64]; however, this approach has other limitations [63,65].

Methods

LCV model

The LCV random effects model assumes that the distribution of marginal effect sizes for the 

two traits can be written as the sum of two independent bivariate distributions (visualized in 

Figure 1c-e in orange and blue respectively): (1) a shared genetic component (q1π, q2π) 

whose values are proportional for both traits; and (2) an even genetic component (γ1, γ2) 

whose density is mirror symmetric across both axes. Distribution (1) resembles a line 

through the origin, and we interpret its effects as being mediated by a latent causal variable 

(L) (Figure 1a); distribution (2) does not contribute to the genetic correlation, and we 

interpret its effects as direct effects. Informally, the LCV model assumes that any asymmetry 

in the shared genetic architecture arises from the action of a latent variable.

In detail, the LCV model assumes that there exist scalars q1, q2 and a distribution (π, γ1, γ2) 

such that
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(α1, α2) = (q1π + q2π) + (γ1, γ2),
where π ⊥ (γ1, γ2)

and (γ1, γ2)~( − γ1, γ2)~(γ1, − γ2) .

(3)

Here αk is the random marginal effect of a SNP of trait k, π is interpreted as the marginal 

effect of a SNP on L, and γk is interpreted as the non-mediated effect of a SNP on trait k. α 
and π (but not γ) are normalized to have unit variance, and all random variables have zero 

mean. (The symbol ``~" means ``has the same distribution as.") q1, q2 are the model 

parameters of primary interest, and we can relate them to the mixed fourth moments, which 

are observable (equation 2). In particular, this implies that the model is identifiable (except 

when the excess kurtosis κπ = 0; see Supplementary Note). We do not expect that κπ will be 

exactly zero for any real trait, but there will be lower power for traits with higher 

polygenicity. Note that we have avoided assuming any particular parametric distribution.

The LCV model assumptions are strictly weaker than the assumptions made by MR. Like 

LCV, a formulation of the MR assumptions is that the bivariate distribution of SNP effect 

sizes can be expressed in terms of two distributions. In particular, it assumes that the effect 

size distribution is a mixture of (1') a distribution whose values are proportional for both 

traits (representing all SNPs that affect the exposure Y1) and (2') a distribution with zero 

values for the exposure Y1 (representing SNPs that only affect the outcome Y2). These two 

distributions can be compared with distributions (1) and (2) above. Because (1") is identical 

to (1) and (2") is a special case of (2), the LCV model assumptions are strictly weaker than 

the MR assumptions (indeed, much weaker). We also note that the MR model is commonly 

illustrated with a non-genetic confounder affecting both traits. Our latent variable L is a 

genetic variable, and it is not analogous to the non-genetic confounder. Similar to MR, LCV 

is unaffected by nongenetic confounders (such a confounder may result in a phenotypic 

correlation that is unequal to the genetic correlation).

The genetic causality proportion (gcp) is defined as:

gcp =
log ∣ q2 ∣ − log ∣ q1 ∣
log ∣ q2 ∣ + log ∣ q1 ∣ (4)

which satisfies equation (1). gcp is positive when trait 1 is partially genetically causal for 

trait 2. When gcp = 1, trait 1 is fully genetically causal for trait 2: q1 = 1 and the causal 

effect size is q2 = ρg (Figure 1b,e). The LCV model is broadly related to dimension 

reduction techniques such as Factor Analysis[67] and Independent Components 

Analysis[68], although it differs in its modeling assumptions as well as its goal (causal 

inference); our inference strategy (mixed fourth moments) also differs.

Under the LCV model assumptions, we derive the estimation equation (2) as follows:

O'Connor and Price Page 10

Nat Genet. Author manuscript; available in PMC 2019 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E(α1
3α2) = E((γ1 + q1π)3(γ2 + q2π))

= q1
3q2E(π4) + 3q1q2E(π2γ1

2)

= q1
3q2E(π4) + 3q1q2E(π2)E(γ1

2)

= q1
3q2E(π4) + 3q1q2(1)(1 − q1

2)

= q1
3q2(E(π4) − 3) + 3q1q2 .

In the second line, we used the independence assumption to discard cross-terms of the form 

γpπ3 and γ1
3π, and we used the symmetry assumption to discard terms of the form γ1γ2

3. In 

the third and fourth lines, we used the independence assumption, which implies that 

E(γ1
2π2) = E(γ1

2)E(π2) = E(γ1
2) = 1 − q1

2. The factor E(π4) – 3 is the excess kurtosis of π , which 

is zero when π follows a Gaussian distribution; in order for the estimation equation to be 

useful, E(π4) – 3 must be nonzero (see Supplementary Note).

Estimation under the LCV model

In order to estimate the gcp and to test for partial causality, we utilize six steps. First, we use 

LD score regression[19] to estimate the heritability of each trait; these estimates are used to 

normalize the summary statistics. Second, we apply cross-trait LD score regression[16] to 

estimate the genetic correlation; the intercept in this regression is also used to correct for 

possible sample overlap when estimating the mixed fourth moments. Third, we estimate the 

mixed fourth moments of the bivariate effect size distribution. Fourth, we compute test 

statistics for each possible value of the \gcp, based on the estimated genetic correlation and 

on the estimated mixed fourth moments. Fifth, we jackknife on these test statistics to 

estimate their standard errors, similar to ref. 19, obtaining a likelihood function for the gcp. 

Sixth, we obtain posterior means and standard errors for the gcp using this likelihood 

function and a uniform prior distribution. These steps are detailed below.

First, we apply LD score regression to normalize the test statistics. Under the LCV model, 

the marginal effect sizes for each trait, α1 and α2, have unit variance. We use a slightly 

modified version of LD score regression[19] with LD scores computed from UK10K data 

[58]. In particular, we run LD score regression using a slightly different weighting scheme, 

matching the weighting scheme in our mixed fourth moment estimators; the weight of SNP i 
was:

wi = 1
max(1, ℓi

HapMap)
(5)

where ℓi
HapMap was the estimated LD score between SNP i and other HapMap3 SNPs (this is 

approximately the set of SNPs that were used in the regression). This weighting scheme is 

motivated by the fact that SNPs with high LD to other regression SNPs will be over-counted 

in the regression (see ref. 19).
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Similar to ref. 16, we improve power by excluding large-effect variants when computing the 

LD score intercept; for this study, we chose to exclude variants with χ2 statistic 30 × the 

mean, exploiting the fact that genome-wide significant SNPs are not due to population 

stratification (these variants are not excluded in subsequent steps). Then, we divide the 

summary statistics by s = χavg
2 − χ0

2, where χavg
2  is the weighted mean χ2 statistic and χ0

2 is 

the LD score intercept, obtaining estimates α of α. (We also divide the LD score intercept by 

s2.) We assess the significance of the heritability by performing a block jackknife on s, 

defining the significance Zh as s divided by its estimated standard error.

Second, to estimate the genetic correlation, we apply cross-trait LD score regression [16]. 

Similar to above, we use a slightly modified weighting scheme (equation 5), and we exclude 

large-effect variants when computing the cross-trait LD score intercept. We assess the 

significance of the genetic correlation using a block jackknife.

Third, we estimate the mixed fourth moments E(α1α2
3) using the following equation:

E(α1α2
3 ∣ α1, α2) = α1α2

3 + 3α1α2σ2
2 + α2

2σ12 + 3σ12σ2
2, (6)

where σ2
2 is the LD score regression intercept for trait 2 (normalized by dividing by s2

2) and 

σ12 is the cross-trait LD score regression intercept (normalized by dividing by s1s2). For 

simulations with no LD, we fix σ2
2 = 1 ∕ s2

2 and σ12 = 0. Thus, we obtain an estimate κk of 

κk = E(αk
2α1α2) − 3ρg by computing the weighted average of α1α2

3 over SNPs (with weights 

given by equation 5), and subtracting 3α1α2σ2
2 + α2

2σ12 + 3σ12σ2
2.

Fourth, we define a collection of statistics S(x) for x ∈ X = {−1, −.01, −.02,…,1} 

(corresponding to possible values of gcp):

S(x) =
A1(x) − A2(x)

max 1
∣ ρg ∣ , A1(x)2 + A2(x)2

whereAk(x) = ∣ ρg ∣−x κk .

(7)

The motivation for utilizing the normalization by A1(x)2 + A2(x)2 is that the magnitude of 

A1(x) and A2(x) tend to be highly correlated, leading to greatly increased standard errors if 

we only use the numerator of S. However, the denominator tends to zero when the genetic 

correlation is zero, leading to instability in the test statistic and false positives. The use of the 

threshold leads to conservative, rather than inflated, standard errors when the genetic 

correlation is zero or nearly zero. We recommend only analyzing trait pairs with a significant 

genetic correlation, and this threshold usually has no effect on the results. Another reason 
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not to analyze trait pairs whose genetic correlation is non-significant is that for positive LCV 

results, the genetic correlation provides critical information about the causal effect size and 

direction.

Fifth, we estimate the variance of S(x) using a block jackknife with k = 100 blocks of 

contiguous SNPs, resulting in minimal non-independence between blocks. Blocks are 

chosen to include the same number of SNPs, and the jackknife variance is:

σS(x)
2 = 101 ∑

j = 1

100
(S j(x) − Savg(x))2 (8)

where Sj(x) is the test statistic computed on blocks 1,…,j − 1, j + 1,…100 and Savg(x) is the 

mean of the jackknife estimates. We compute an approximate likelihood, L(S∣gcp = x), by 

assuming (1) that L(S∣gcp = x) = L(S(x)∣gcp = x) and (2) that if gcp = x then S(x)/σS(x) 

follows a T distribution with 98 degrees of freedom.

Sixth, we impose a uniform prior on the gcp, enabling us to obtain a posterior mean 

estimate:

gcp = 1
∣ X ∣ ∑

x ∈ X
xL(x) (9)

The estimated standard error is:

se = 1
∣ X ∣ ∑

x ∈ X
(S j(x) − Savg(x))2 (10)

In order to compute p-values, we apply a T-test to the statistic S(0).

Outlier removal

In a secondary analysis, we applied an outlier removal procedure to determine whether our 

results on real traits using LCV were unduly influenced by individual loci. We computed the 

LCV test statistic S(0) for each of the 100 jackknife blocks, discarded jackknife blocks that 

were >20 standard deviations from the mean, and re-ran the procedure iteratively until no 

outliers remained. For most trait pairs, this process results in the removal of 0 blocks; for a 

handful of trait pairs, it results in the removal of one or a few.

We do not recommend the broad use of this procedure, because outlier loci may contain 

valuable information. In particular, if any SNP affects trait 1 without affecting trait 2 

proportionally, this suggests that trait 1 is not causal for trait 2. An alternative explanation is 

that its effect on trait 2 is masked by an opposing pleiotropic effect, either of the same causal 

SNP or of a different causal SNP at the same locus. If an outlier locus is to be removed, we 
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recommend manually examining it and determining whether its removal can be justified or 

whether it provides competing statistical evidence against a causal effect.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Illustration of the latent causal variable model. We display the relationship between 

genotypes X, latent causal variable L and trait values Y1 and Y2. (a) Full LCV model. The 

genetic correlation between traits Y1 and Y2 is mediated by L, which has normalized effects 

q1 and q2 on each trait. (See Supplementary Table 17 for a list of random variables vs. 

parameters.) (b) When q1 = 1, Y1 is perfectly genetically correlated with L (so L does not 

need to be shown in the diagram), and we say that Y1 is fully genetically causal for Y2. (c) 

Example genetic architecture of genetically correlated traits with no genetic causality (gcp = 

0, i.e. q2 = q1 < 1). Slight noise is added to SNP effects for illustration. Orange SNPs have 

correlated effects on both traits via L, while blue SNPs do not. (d) Example genetic 

architecture of genetically correlated traits with partial genetic causality (gcp = 0.8, i.e. q2 < 

q1 < 1). (e) Example genetic architecture of genetically correlated traits with full genetic 

causality (gcp = 1, i.e. q2 < q1 = 1).
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Figure 2: 
Null simulations with no LD to assess calibration. We compared LCV to three main MR 

methods (two-sample MR, MR-Egger and Bidirectional MR). We report the positive rate (α 
= 0.05) for a causal (or partially causal) effect. Scatterplots illustrate the bivariate effect size 

distribution. (a) Null simulation (gcp=0) with uncorrelated pleiotropic effects and zero 

genetic correlation. (b) Null simulation with nonzero genetic correlation. (c) Null simulation 

with nonzero genetic correlation and differential polygenicity between the two traits. (d) 

Null simulation with nonzero genetic correlation and differential power for the two traits. 

Results for each panel are based on 4000 simulations. Numerical results are reported in 

Supplementary Table 1.
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Figure 3: 
Causal simulations with no LD to assess power. We compared LCV to three main MR 

methods (two-sample MR, MR-Egger and Bidirectional MR). We report the positive rate (α 
= 0.001) for a causal (or partially causal) effect. (a) Causal simulations with default 

parameters: N1 = N2 = 25k; M = 50k; q1 = 1, q2 = 0.2 (results also displayed as dashed lines 

in panels b-e). (b) Higher (unfilled) or lower (filled) sample size for trait 1 (N1 = 50k and N1 

= 12.5k respectively). (c) Higher (unfilled) or lower (filled) sample size for trait 2 (N2 = 50k 

and N2 = 12.5k respectively). (d) Higher (unfilled) or lower (filled) causal effect size of trait 

1 on trait 2 (q2 = 0.4 and q2 = 0.1 respectively). (e) Lower (unfilled) or higher (filled) 

polygenicity for trait 1. Results for each panel are based on 1000 simulations. Numerical 

results are reported in Supplementary Table 3.
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Figure 4: 
Partially or fully genetically causal relationships between selected complex traits. Shaded 

squares indicate significant evidence for a causal or partially causal effect of the row trait on 

the column trait (FDR <1%). Color scale indicates posterior mean gcp for the effect of the 

row trait on the column trait; blue color indicates gcp > 0.6, grey color indicates gcp < 0.6. ``

+" or ``−" signs indicate trait pairs with a nominally significant (positive or negative) genetic 

correlation (p<.05), and the size of the "+" or "-" size is proportional to the genetic 

correlation. Results for the 30 trait pairs with gcp > 0.6 are reported in Table 1, results for all 

59 significant trait pairs are reported in Supplementary Table 11, and results for all 429 

genetically correlated trait pairs are reported in Supplementary Table 12. HTHY: 

hypothyroidism. FG: fasting glucose. PDW: platelet distribution width. BPD: bipolar 

disorder. SCZ: schizophrenia. BrCa: breast cancer: PrCa: prostate cancer.
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Table 1:

Fully or partially genetically causal relationships between complex traits. We report all significant trait pairs 

(1% FDR) with high gcp estimates (gcp > 0.6). pLCV is the p-value for the null hypothesis of no partial genetic 

causality; ρg is the estimated genetic correlation, with standard error; gcp is the posterior mean estimated 

genetic causality proportion, with posterior standard error. We provide references for all MR studies 

supporting causal relationships between these traits that we are currently aware of. Results for all 59 

significant trait pairs are reported in Supplementary Table 11, and results for all 429 genetically correlated trait 

pairs are reported in Supplementary Table 12.

Trait 1 Trait 2 pLCV
ρg (std err) gcp (std err) MR ref

Triglycerides Hypertension 1 × 10−38 0.25 (0.04) 0.95 (0.04)

BMI Heart attack 5 × 10−9 0.34 (0.09) 0.94 (0.11) [32,38]

Triglycerides Heart attack 2 × 10−31 0.30 (0.06) 0.90 (0.08) [4]

Triglycerides BP – systolic 1 × 10−40 0.13 (0.03) 0.89 (0.08)

HDL Hypertension 1 × 10−21 −0.29 (0.06) 0.87 (0.09)

LDL Hi cholesterol 2 × 10−6 0.77 (0.07) 0.86 (0.11)

Triglycerides Mean cell volume 2 × 10−18 −0.20 (0.04) 0.86 (0.11)

Triglycerides BP – diastolic 9 × 10−39 0.11 (0.04) 0.86 (0.10)

Mean platelet volume Platelet count 1 × 10−9 −0.66 (0.03) 0.84 (0.10)

BMI Hypertension 3 × 10−16 0.38 (0.03) 0.83 (0.11) [11,38]

Triglycerides Platelet distribution width 1 × 10−16 0.19 (0.04) 0.81 (0.13)

LDL Bone mineral density – heel 7 × 10−34 −0.12 (0.05) 0.80 (0.12)

BMI FVC 9 × 10−13 −0.22 (0.03) 0.79 (0.17)

Hi cholesterol RBC count 0.002 0.08 (0.03) 0.79 (0.15)

Triglycerides Reticulocyte count 5 × 10−10 0.33 (0.05) 0.79 (0.14)

Type 2 Diabetes Mean cell volume 0.004 −0.15 (0.03) 0.77 (0.20)

HDL RBC count 0.003 −0.13 (0.05) 0.76 (0.34)

Triglycerides Eosinophil count 6 × 10−17 0.14 (0.05) 0.75 (0.16)

Balding4 Number children – male 3 × 10−30 −0.16 (0.05) 0.75 (0.13)

HDL Platelet distribution width 2 × 10−16 −0.14 (0.04) 0.75 (0.16)

RBC distribution width Type 2 Diabetes 7 × 10−4 0.11 (0.03) 0.73 (0.19)

LDL Heart attack 4 × 10−31 0.17 (0.08) 0.73 (0.13) [3,13]

Hi cholesterol Lymphocyte count 0.004 0.18 (0.04) 0.73 (0.22)

Platelet distribution width Platelet count 2 × 10−7 −0.47 (0.04) 0.73 (0.15)

Hypothyroidism Type 2 Diabetes 4 × 10−4 0.22 (0.05) 0.73 (0.29)

HDL Type 2 Diabetes 5 × 10−7 −0.40 (0.06) 0.72 (0.17)

Heart attack Breast cancer 0.01 −0.16 (0.05) 0.72 (0.24)

Hypothyroidism Heart attack 1 × 10−11 0.26 (0.05) 0.72 (0.16)

Hi cholesterol Heart attack 5 × 10−4 0.52 (0.12) 0.71 (0.19)
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Trait 1 Trait 2 pLCV
ρg (std err) gcp (std err) MR ref

HDL BP – diastolic 9 × 10−17 −0.12 (0.06) 0.70 (0.18)
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