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Abstract

Disease surveillance in wildlife is rapidly expanding in scope and methodology, emphasizing the 

need for formal evaluations of system performance. We examined a syndromic surveillance system 

for respiratory disease detection in Gombe National Park, Tanzania, from 2004 to 2012, with 

respect to data quality, disease trends, and respiratory disease detection. Data quality was assessed 

by examining community coverage, completeness, and consistency. The data were examined for 

baseline trends; signs of respiratory disease occurred at a mean frequency of less than 1 case per 

week, with most weeks containing zero observations of abnormalities. Seasonal and secular (i.e., 

over a period of years) trends in respiratory disease frequency were not identified. These baselines 

were used to develop algorithms for outbreak detection using both weekly counts and weekly 

prevalence thresholds and then compared retrospectively on the detection of 13 respiratory disease 
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clusters from 2005 to 2012. Prospective application of outbreak detection algorithms to real-time 

syndromic data would be useful in triggering a rapid outbreak response, such as targeted 

diagnostic sampling, enhanced surveillance, or mitigation.

Keywords

Surveillance; Respiratory disease; Wildlife epidemiology; Wildlife health

INTRODUCTION

Increasing anthropogenic pressures such as habitat loss and human population growth have 

increased connectivity between human, domestic animal and wildlife populations, increasing 

the risk of disease emergence across species. Consequently, there is a call for increased 

wildlife disease surveillance where high biodiversity overlaps with human populations 

(Woolhouse and Gowtage-Sequeria 2005; Jones et al. 2008; Keesing et al. 2010). Nonhuman 

primates have been prioritized for surveillance of novel pathogens of risk to humans 

(Woolhouse and Gowtage-Sequeria 2005; Jones et al. 2008; Calvignac-Spencer et al. 2012), 

while potential benefits of surveillance to these populations are also recognized due to 

infectious disease threats from humans (Fruth et al. 2008; Oates et al. 2008; Robbins and 

Williamson 2008; Walsh et al. 2008).

Although health surveillance in free-ranging primates is complicated, populations closely 

monitored for research and tourism present the most feasible opportunity to design, 

implement and evaluate these systems. Gombe National Park (Tanzania) hosts the longest 

continual field research site for chimpanzee ecology and behavior in the world. High levels 

of disease-associated chimpanzee (Pan troglodytes schweinfurthii) mortalities (Williams et 

al. 2008), combined with growing interest in wildlife disease surveillance, spurred the 

creation of the Gombe Ecosystem Health Program in 2004 to collect standardized, 

observational data on syndromes of disease (Lonsdorf et al. 2006; Travis et al. 2008). This 

syndromic surveillance system parallels ongoing behavioral data collection, pathology 

(Terio et al. 2011), and fecal screening for enteric pathogens (Gillespie et al. 2010) and 

Simian Immunodeficiency Virus of chimpanzees (SIVcpz) (Keele et al. 2009).

Syndromic surveillance is the collection of pre-diagnosis health data that can signal a 

disease outbreak, triggering responses to reduce morbidity and mortality (Henning 2004). 

This type of surveillance targets groups of signs or symptoms that characterize a particular 

abnormality, although not a single disease process (Dόrea et al. 2011; Rodríguez-Prieto et al. 

2014). For example, clinical symptoms of fever or respiratory illness have been used in 

syndromic surveillance for respiratory infections in humans (Schindeler et al. 2009; Babin 

2010; van den Wijngaard et al. 2010; Hiller et al. 2013; Johnson et al. 2014). Although less 

specific than laboratory data, strong correlation between respiratory syndromic data and 

respiratory virus diagnosis has been demonstrated (Bourgeois et al. 2006; Hall et al. 2013). 

Syndromic surveillance is sensitive to changes in a population’s disease levels, providing 

early warning of disease outbreaks in human and animal populations (Henning 2004; Dόrea 
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et al. 2011). It also has the advantage of being noninvasive; thus, when applied to wildlife, 

such as primates, it does not interfere with natural behavior and/or habituation.

Although syndromic surveillance is employed for domestic animal health, it is an incipient 

approach to disease detection in wildlife populations (Arenas et al. 2002; Warns-Petit et al. 

2010; Oleaga et al. 2011). Consequently, there is a need for formal evaluations of system 

performance in wildlife (Stoto et al. 2006; Dorea et al. 2011; Rodríguez-Prieto et al. 2014). 

Formal evaluations involve a thorough analysis of data quality, an epidemiological profile of 

the population to characterize baseline and systematic variations in disease patterns (e.g., 

seasonal or day-of-the-week fluctuations), followed by development of an algorithm to 

detect abnormal variations (i.e., outbreaks) (Lescano et al. 2008). Detection algorithms are 

methods used to systematically monitor incoming data and generate a signal when disease 

levels exceed an established threshold (Stoto et al. 2006). The Gombe syndromic 

surveillance system was created with the goal of characterizing baseline disease levels to 

improve outbreak detection, but up until now, surveillance data had not being systematically 

analyzed and optimized for real-time outbreak detection.

Syndromic surveillance is best known for its application in large populations; thus, its 

application in a small chimpanzee population is unique. However, monitoring small 

populations is important since they are more susceptible to extinction risks from disease, 

making early detection critical to population viability. We systematically evaluated the 

Gombe syndromic surveillance system for the period of 2004–2012. Study objectives 

included (1) an assessment of data quality, (2) an epidemiological profile of baseline 

respiratory disease trends, (3) the development of algorithms for outbreak detection, and (4) 

a quantitative assessment of surveillance sensitivity. Here we report on Objectives 1–3; 

Objective 4 is reported by Wolf et al. (2019). We focused this initial work on respiratory 

syndrome given the recognized importance of respiratory outbreaks as causes of morbidity 

and mortality among great ape populations (Köndgen et al. 2008; Williams et al. 2008; 

Palacios et al. 2011).

MATERIALS AND METHODS

Study Population

Gombe National Park, Tanzania, is home to a population of chimpanzees, which appears to 

have declined from as many as 120–150 in the 1960s (Pusey et al. 2007) to 96–100 at the 

beginning of 2013 [Jane Goodall Institute Research Center, Duke University, unpublished 

data]. Two of three chimpanzee communities, Mitumba and Kasekela, are habituated to 

humans, with individually identifiable chimpanzees that have been the focus of behavioral 

research since the mid-1990s and 1960s, respectively. These two communities were the 

focus of this study. All research was conducted with permission from the Tanzania 

Commission for Science and Technology, Tanzania Wildlife Research Institute, and 

Tanzania National Parks Association.
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Syndromic Disease Surveillance

In 2004, a prospective health monitoring system was established to collect observational 

data on the presence or absence of clinical signs associated with specific disease syndromes 

(Lonsdorf et al. 2006; Travis et al. 2008). It is comprised of two standardized and one non-

standardized data streams (Lonsdorf et al. 2006). The Daily Health Record (DHR) captures 

detailed, standardized health data on individuals, whether healthy or unhealthy, that are 

subjects of full-day behavioral data collection. DHR protocol requires at least 1 h of health-

focused observation to gather respiratory, gastrointestinal, musculoskeletal, dermatologic, 

and general body condition data (Lonsdorf et al. 2006; Lonsdorf et al. 2018). If an individual 

in contact with the primary subject demonstrates abnormal health, an additional DHR is 

generated for that individual. The goal to date has been to capture DHR data on 60% of each 

community monthly. Weekly Health Record (WHR) data are collected on all chimpanzees, 

whether included in the DHR or not. WHR data are collected once a week, relying on recall 

to document presence or absence of abnormal clinical signs for all chimpanzees seen during 

the previous 7 days. This stream of data was designed to supplement the DHR, capturing 

less detailed health data on a greater number of chimpanzees. DHR and WHR data were 

collected by dedicated researchers having demonstrated familiarity with community 

members. Lastly, detailed, non-standardized monthly health reports are prepared by the 

resident veterinarian summarizing abnormalities observed within each community. All 

standardized data were entered into IMPACTtm (Internet-supported Management Program to 

Assist Conservation Technology), an online health surveillance database tool developed in 

partnership with Gorilla Doctors ™. In concert with syndromic surveillance is a pathology 

program, where all recovered carcasses undergo systematic necropsy and histopathology to 

determine cause of death and underlying pathologies (Terio et al. 2011). Data from this 

program were examined to identify mortalities associated with respiratory disease.

In this study, DHR and WHR data on syndromic respiratory disease were formally analyzed 

for the period of March 2004 to December 2012. This includes 5170 Kasekela DHRs from 

84 individuals, 2846 Mitumba DHRs from 33 individuals, and 28,000 WHRs from 429 

weeks in Kasekela and 10,721 WHRs from 437 weeks in Mitumba. Syndromic respiratory 

disease includes clinical signs of coughing, sneezing, and rhinorrhea. Veterinary reports and 

pathology data were used to validate findings. During this time, the Kasekela community 

size ranged 56–68 individuals, and Mitumba ranged 20–29 individuals [Jane Goodall 

Institute Research Center, Duke University, unpublished data].

Data Quality

Community coverage, data completeness, and consistency between DHR and WHR data sets 

were examined over the study period. Community coverage was assessed as the proportion 

of the community on which health data was collected each month. Monthly coverage was 

examined for seasonal changes in data quality, recognizing that it may be impacted by 

seasonal variations in animal behavior and observability as well as community size (Goodall 

1986). Data completeness was assessed as the percentage of completed respiratory data 

fields (i.e., no missing data) in the DHR and WHR. To determine whether some clinical 

signs are more easily observed than others, we also examined DHR data for differences in 
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completeness by clinical sign. For example, with limited visibility, a researcher may have 

difficulty confirming presence or absence of rhinorrhea, resulting in missing data.

Finally, consistency between DHR and WHR data was evaluated to assess the reliability of 

WHR data, which may be subject to recall bias. Percentage of agreement between the two 

records was calculated for all weeks when sick chimpanzees were reported using two 

approaches: Analysis 1: number of cases, and Analysis 2: identification of individuals 

reported sick. Since the WHR was designed to capture data on all chimpanzees seen, 

including those not in the DHR, WHR data was expected to have equal to or higher weekly 

counts of sick chimpanzees than DHR data. Thus, Analysis 1 was classified as consistent if 

WHR data had greater than or equal to the weekly number of sick chimpanzees reported in 

the corresponding DHR data. In Analysis 2, corresponding WHR and DHR data were 

classified as consistent if all sick chimpanzees identified in the DHR were also noted as sick 

in the WHR.

Respiratory Disease Trends

An epidemiological profile of baseline respiratory disease was performed as a descriptive 

analysis to facilitate selection of an optimal outbreak detection algorithm. We focused 

remaining analyses on DHR data based on WHR limitations revealed by data quality 

analyses. Cumulative number and prevalence of respiratory cases among observed 

chimpanzees each week were averaged over the study period. The justification for using 

both metrics was to account for weekly variations in the number of chimpanzees observed, 

which is not captured by the cumulative case count, but also recognizing that prevalence 

may appear abnormally high when low numbers of chimpanzees are observed. Weeks with 

previously recognized major respiratory outbreaks (Kasekela: n = 5 weeks; Mitumba: n = 8 

weeks) were excluded to obtain baseline estimates; major outbreaks have been previously 

described as those in which 20% or more of a community is affected (Williams et al. 2008). 

Individuals observed with any respiratory abnormality were counted only once, even if 

observed more frequently within an observation week. As individuals are generally observed 

with approximately equal frequency when sick and healthy, we assumed the weekly sample 

prevalence to be representative of the community.

Weekly counts of respiratory cases were analyzed for seasonal and secular (over periods of 

years) trends using all data. Missing weeks (which consisted of < 3% and < 1% of Kasekela 

and Mitumba data, respectively) were excluded from analysis. To explore whether there are 

seasonal trends in rates of respiratory disease, we aggregated data by season. The rainy 

season in Gombe spans November-April (Lonsdorf et al., 2011); the remaining months 

constitute the dry season. We calculated prevalence ratios (PR) and exact 95% confidence 

intervals using weekly prevalence data (number of cases divided by number of observed 

chimpanzees) to determine whether there were differences in levels of respiratory disease in 

the dry vs wet season.

Next, cumulative weekly case counts were modeled by Poisson regression in Stata, version 

15.1, as a simple descriptive analysis of whether there were secular trends in respiratory 

disease (i.e., trends over a period of years) and determine rate of change. Each community 

was modeled separately, with the weekly sum of respiratory cases as the dependent variable, 
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time (expressed as chronological study weeks) as the fixed predictor variable, and the 

weekly sum of observed chimpanzees as the offset. Time trends were modeled in various 

ways. First, to test for an overall linear trend, we included week as a continuous variable in 

the model. Second, to allow a more flexible approach to estimating secular trends, we fit a 

Poisson model with restricted cubic splines (Harrell 2001). In the Kasekela data, we used 

five knots (at the 10th, 25th, 50th, 75th, and 90th percentiles) applied to the weekly time 

variable to allow for a flexible nonlinear relationship between time and weekly case 

frequency. However, the Mitumba data had fewer cases of respiratory disease and could not 

support as many knot locations. For the Mitumba data, we used restricted cubic splines with 

4 knots (at the 10th, 25th, 50th, and 75th percentiles). We chose different knot locations for 

sensitivity analysis; however, interpretation was unchanged by these different locations. 

Bootstrap confidence intervals were used in all regression models to help adjust for 

autocorrelation. For graphical presentations, we calculated the expected number of cases we 

would observe from these models if the number of observed chimps was held constant at the 

average number observed at each location (5.2 chimps for Mitumba and 10 chimps for 

Kasekela). This allows more straightforward comparison of counts across weeks.

Algorithms for Respiratory Outbreak Detection

A simple set of detection algorithms was developed for respiratory outbreak detection. A 

weekly interval was used to minimize time to outbreak detection with future realtime 

application. Community thresholds were set so that approximately 95% of baseline weekly 

case data (count and prevalence) over March 2004-February 2005 fell below the threshold 

level. Use of a subset of surveillance data free of outbreaks, in this case, the first 12 study 

months, is typical for the generation of detection thresholds for a population (Lescano et al. 

2008; Dόrea et al. 2014). Thus, in practice, when the number or prevalence of respiratory 

cases in the DHR exceeds these weekly thresholds, managers would be alerted to a possible 

outbreak.

We screened the remaining years of weekly DHR data (March 2005-December 2012) for 

clusters of respiratory cases by each algorithm for comparison. Here we use the term cluster 

to refer to the occurrence of respiratory cases exceeding our established weekly thresholds 

but unconfirmed as a transmission event (i.e., outbreak). For each detection, we examined 

the DHR, WHR, and veterinary reports to confirm that illness was observed in more than 

one individual, either within the same week or consecutive weeks of the detection. Although 

optimal for assessing surveillance specificity, diagnostic data were not available to confirm a 

detected respiratory cluster as an outbreak; thus, count and prevalence algorithms were 

evaluated on detection agreement. This approach is used for diagnostic test assessment when 

a gold standard test is unavailable for comparison and true infection status is unknown 

(Basta et al. 2013). Chamberlain’s percent positive agreement was used as the measure of 

reliability for this analysis (Szklo and Nieto 2007). It is an index of reliability for situations 

where disease incidence is very low or high. This was considered the best estimate of 

agreement since the number of weeks where clusters occurred was far lower than the 

number of weeks with none.

Wolf et al. Page 6

Ecohealth. Author manuscript; available in PMC 2019 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Data Quality

Monthly community coverage by the DHR averaged 50% (± SD 4.9%) and 53% (± SD 

4.8%) for the Kasekela and Mitumba communities, respectively, whereas the WHR covered 

an average of 87% (± SD 3.3%) and 95% (± SD 2.0%) of Kasekela and Mitumba, 

respectively. There were no differences in mean coverage between months in either 

community (Fig. 1), suggesting that seasonal changes in chimp behavior and distribution did 

not impact data collection. Data completeness averaged 96.7% (± SD 0.4%) and 97.2% (± 

SD 0.4%) of the DHR (documenting either absence or presence of respiratory signs) and 

99.6% (± SD 0.4%) and 99.8% (± SD 0.1%) of the WHR in Kasekela and Mitumba, 

respectively. There were no differences by clinical sign in the amount of missing data, 

suggesting that clinical signs of respiratory disease (i.e., coughing, sneezing, and rhinorrhea) 

were equivalently observed within the forest environment. However, our data sets limited 

our ability to fully assess measurement bias in the case where unobserved abnormal signs 

were documented as absent.

Data consistency between DHR and WHR records was analyzed under two scenarios to 

assess the reliability of WHR data. Of 416 surveillance weeks, 80 and 73 weeks contained 

reports of respiratory cases in either data set in Kasekela and Mitumba, respectively. 

Agreement on the weekly number of cases (Analysis 1) averaged 60% (± SD 5.4%) and 

64.4% (± SD 5.6%) in Kasekela and Mitumba, respectively (Fig. 2). Consistency between 

the two records on the identities of sick chimpanzees (Analysis 2) averaged only 24% (± SD 

6%) in Kasekela and 46.2% (± SD 6.9%) in Mitumba. Based on low consistency revealed by 

Analysis 2, we chose the DHR for epidemiological profiling and algorithm development to 

avoid potential impacts of recall bias associated with WHR data.

Respiratory Disease Trends

The mean weekly number of chimpanzees on which data were collected in the DHR was 10 

(SD ± 6) and 5 (SD ± 3) in Kasekela and Mitumba, respectively. Among these, the mean 

number of chimpanzees with any combination of respiratory signs in weeks outside of 

previously recognized major outbreaks was 0.12 (median 0; range 0–4) and 0.11 (median 0; 

range 0–2) in Kasekela and Mitumba, respectively. Considering that most weeks contained 

no cases of respiratory disease, the mean number of cases reported when respiratory illness 

was observed (n = 44 weeks in each community) was 1.2 (median 1; range 1–4) and 1.1 

(median 1; range 1–2) in Kasekela and Mitumba, respectively (again, excluding weeks with 

recognized major outbreaks). Weekly respiratory disease prevalence was 1.3% (median 0%; 

range 0–50%) and 2.3% (median 0%; range 0–66.7%) in Kasekela and Mitumba, 

respectively, over all weeks of study. Similarly, case prevalence among observed 

chimpanzees estimated only for weeks when respiratory illness was observed was 13.9% 

(median 10.2%; range 450%) and 23.8% (median 20%; range 11.1–66.7%) in Kasekela and 

Mitumba, respectively.

When comparing respiratory disease prevalence between seasons, there was little evidence 

of a seasonal trend in Kasekela; although more respiratory cases were observed in the dry 
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season in Kasekela, the difference was not significant (PR 1.4; 95% CI 0.9–2.2). However, 

in Mitumba the prevalence in the dry season was half the rate in the wet season (PR 0.5; 

95% CI 0.3–0.9). Visual examination of respiratory case trends (Fig. 3) revealed that, in both 

communities, changes in case numbers across seasons appear to be largely a result of 

distinct clusters of respiratory disease in single years as opposed to regular seasonal 

fluctuation. These findings demonstrate that a detection algorithm utilizing a dynamic 

threshold to account for seasonal variation (e.g., temporal scan statistic) may be unnecessary.

Descriptive analysis of secular trends indicated no evidence of a linear trend over time in 

Kasekela (P = 0.53); however, in Mitumba there was some evidence of a slight decrease in 

the rate of respiratory outbreaks over time (P < 0.01). Descriptive analyses in Kasekela using 

splines suggest little secular trend, as well. However, there was some decline in the expected 

number of cases between weeks 250 and 400 with a slight increase in expected cases at the 

very end of the study. Descriptive analyses in Mitumba using splines suggest a slight 

decrease in the number of respiratory events over time, with the earliest weeks in the study 

having the highest rates (Fig. 4).

Algorithms for Respiratory Outbreak Detection

The thresholds representing the 95th percentile of the data (Fig. 5) were a count of ≤ 2 sick 

chimpanzees in either community and a prevalence of ≤ 16.7% and ≤ 33.3% in Kasekela and 

Mitumba, respectively (Table 1). Detections in 2 weeks by the prevalence threshold involved 

illness in only one chimpanzee and were considered false alarms. These occurred during 

weeks where few chimpanzees were observed, resulting in a prevalence of illness above 

threshold despite illness in only a single animal. In Table 1, summary results do not include 

these false alarms.

Combined, the algorithms revealed 13 clusters of respiratory cases in the two communities 

from 2005 to 2012. Mean cluster size was 14 (range 2–55) and 8 (range 2–24) in Kasekela 

and Mitumba, respectively. Clusters of cases spanned 3 weeks on average (range 1–5). Five 

clusters involved illness observed in only two (n = 2) or three individuals (n = 3) over the 

course of one (n = 4) or four (n = 1) weeks. A single mortality was diagnosed with 

respiratory disease during the study (Streptococcus pneumoniae pleuropneumonia), but was 

not associated with any respiratory clusters. The percent positive agreement between the 

count and prevalence detection thresholds was 69.2% (± SD 1.7%). Disagreement occurred 

when few animals were sick in a single week. Most of these were a 1-week event, but one 

signal involved a cluster of respiratory illness in 7–9 animals over 5–10 weeks.

Veterinary reports were available for 12/13 clusters and examined for further validation of 

detected clusters. Respiratory disease was described in ≤ 2 cases in 11/12 clusters; however, 

in one situation where clusters were detected in both communities, a veterinary report 

described cases in only one community. Available veterinary reports consistently validated 

large clusters of respiratory disease when 20% of a community was affected.
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DISCUSSION

Here we present the first formal assessment of a syndromic surveillance system developed 

for noninvasive disease detection in a wildlife population, building upon past descriptive 

evaluations of efforts (Lonsdorf et al. 2006, 2011, 2018) and bridging a quantitative 

assessment of system performance (i.e., surveillance system sensitivity) (Wolf et al. 2019). 

Here, we used several metrics to assess data quality, revealing specific areas that necessitate 

refinement. Notably, community coverage of the DHR fell short of the projected goal of 

60% each month in both communities. When established, this goal was considered a 

reasonable expectation of researcher efforts to find and collect data on community members. 

In general, an increase in community coverage would require either greater researcher effort 

to log data on more chimpanzees or a reduction in repeated sampling. Since some level of 

repeated sampling may be unavoidable, establishing a weekly goal exceeding a bottom-line 

estimate may better aid researchers in meeting the projected goal. Although WHR data 

provide greater community coverage, consistency between DHR and WHR data was 

lacking, suggesting that WHR data were not collected as intended or was subject to recall 

bias. This was a key finding in our early analyses, as it influenced our decision to focus 

remaining analyses on DHR data so as to avoid impacts associated with recall bias. Our 

results suggest that an optimal system would require a primary daily data collection system 

to ensure data accuracy, but a complimentary weekly approach could provide broader 

population coverage. In any case, a weekly approach should not be a sole data source for 

syndromic disease detection.

A set of disease detection algorithms that can be implemented for real-time outbreak 

detection were generated following an epidemiological profile of baseline disease. 

Preliminary comparison of the two detection algorithms revealed the weekly count threshold 

to be more sensitive, having identified four more clusters than the prevalence threshold. The 

prevalence approach was also more vulnerable to false alarms, based on two signals that 

occurred when only a single animal was sick. While both algorithms detected rapid 

increases in respiratory cases, the weekly count threshold appears better at identifying low-

level clusters that were distributed widely over time (detecting one event where 7–9 animals 

became ill over 510 weeks). The weekly count threshold is also advantageous for 

prospective outbreak detection in real time given its simplicity, enabling early detection 

(within the observation week) by population managers when the predefined threshold 

number of cases is observed. A quantitative analysis of the sensitivity of both algorithms is 

described by Wolf et al. (2019).

The ultimate goal of an efficient syndromic surveillance system is the early detection of 

infectious disease outbreaks with few false alarms. The evaluation of the current system was 

limited by a lack of pathogen data from the study site, precluding confirmation of detected 

respiratory disease clusters as infectious disease outbreaks. With a low detection threshold 

(as established in this study), false alarms would be expected. However, considering the low 

baseline level of respiratory disease in this population, a low, sensitive detection threshold, 

even if producing occasional false alarms, is favorable for triggering a rapid mitigation 

response. The integration of syndromic surveillance with a noninvasive diagnostic response 
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plan (Leendertz et al. 2006; Gillespie et al. 2008; Kondgen et al. 2010) would be a powerful 

approach to early outbreak detection and pathogen identification for disease mitigation.

We emphasize through this work that the design and implementation of syndromic 

surveillance systems should also include a formal analysis of system performance. Such 

evaluations should be integrated into the surveillance process and undertaken by a team that 

includes managers, observers, and epidemiologists or biostaticians. While this analysis 

focused only on respiratory data, the methods can be applied to other disease syndromes. We 

did not report here on the standardization of observer training protocols or inter-observer 

reliability assessment, which are important in reducing measurement error and/or bias. 

When syndromic surveillance can be integrated into ongoing observational studies, large 

amounts of health data can be accrued with comparably little effort and expense, but the 

system itself should be monitored to ensure optimal performance.
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Fig. 1. 
Mean community coverage across months. Panel A shows coverage of each community by 

the Daily Health Record for each month, whereas Panel B shows mean coverage by the 

Weekly Health Record for each month. The solid black horizontal lines indicate the 

projected goal of 60% coverage. KK Kasekela community; MT Mitumba community.
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Fig. 2. 
Percent agreement between Weekly Health Record (WHR) and Daily Health Record (DHR) 

data for each community. The first column set depicts the mean percent agreement on the 

number of individuals with respiratory disease. The second column set represents the mean 

percent agreement on the identities of respiratory cases reported in the two data sets. These 

estimates include only weeks where respiratory cases were reported, and takes into account 

that, by design, WHR data should contain at least the same number and identities of cases as 

DHR data. KK Kasekela community; MT Mitumba community.
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Fig. 3. 
Monthly respiratory case trends of the habituated chimpanzee communities. Monthly 

numbers represent the maximum number of weekly respiratory cases across months of each 

study year, and each study year is displayed by a different color. Months that fall within the 

wet season in Gombe are shaded in gray. Panel A shows monthly case indices for Kasekela 

community and Panel B for Mitumba.
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Fig. 4. 
Weekly trends of respiratory cases in Kasekela and Mitumba from 2004 to 2012. The 

observed weekly counts of respiratory cases (green dots) are plotted across weeks of study, 

along with the expected number of cases (red line) and corresponding 95% confidence 

intervals (blue band) generated from Poisson models. We calculated the expected number of 

cases we would observe from these models if the number of observed chimps was held 

constant at the average number observed at each location (5.2 chimps for Mitumba and 10 

chips for Kasekela). Kasekela is shown in Panel A and Mitumba in Panel B.
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Fig. 5. 
Frequency distribution of the baseline cumulative number and prevalence of weekly 

respiratory cases from the Daily Health Record in Year 1 of the study. Thresholds for 

outbreak detection in each community were set at the 95th percentile of the data, represented 

by the vertical dashed lines. Panel A represents the distribution of the weekly number of 

respiratory cases, where both communities had the same threshold (single vertical line). 

Panel B represents the distribution of the weekly prevalence of cases, where each 

community’s threshold is represented by individual vertical lines.
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