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Abstract

Aims: To assess the effects of walnuts on cardiometabolic outcomes in obese people and to 

explore the underlying mechanisms using novel methods including metabolomic, lipidomic, 

glycomic and microbiome analysis, integrated with lipid particle fractionation, appetite-regulating 

hormones and haemodynamic measurements.

Materials and Methods: A total of 10 obese individuals were enrolled in this crossover, 

randomized, double-blind, placebo-controlled clinical trial. The participants had two 5-day 

inpatient stays, during which they consumed a smoothie containing 48 g walnuts or a 

macronutrient-matched placebo smoothie without nuts, with a 1-month washout period between 

the two visits.

Results: Walnut consumption improved aspects of the lipid profile; it reduced fasting small and 

dense LDL particles (P < 0.02) and increased postprandial large HDL particles (P < 0.01). 

Lipoprotein insulin resistance score, glucose and the insulin area under the curve (AUC) decreased 

significantly after walnut consumption (P < 0.01, P < 0.02 and P < 0.04, respectively). Consuming 

walnuts significantly increased 10 N-glycans, with eight of them carrying a fucose core. 

Lipidomic analysis showed a robust reduction in harmful ceramides, hexosylceramides and 

sphingomyelins, which have been shown to mediate effects on cardiometabolic risk. The peptide 

YY AUC significantly increased after walnut consumption (P < 0.03). No major significant 

changes in haemodynamic or metabolomic analysis or in microbiome host health-promoting 

bacteria such as Faecalibacterium were found.

Conclusions: These data provide a more comprehensive mechanistic perspective of the effect of 

dietary walnut consumption on cardiometabolic variables. Lipidomic and lipid nuclear magnetic 

resonance spectroscopy analysis showed an early but significant reduction in ceramides and other 

atherogenic lipids with walnut consumption, which may explain the longer-term benefits of 

walnuts or other nuts on insulin resistance, cardiovascular risk and mortality.
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1 | INTRODUCTION

Large interventional and observational studies have repeatedly demonstrated a link between 

increased walnut consumption and reductions in cardiovascular disease (CVD) risk and 

mortality.1,2 Clinical trials on the Mediterranean diet and other dietary patterns rich in 

walnuts have shown evidence of cardiometabolic benefits.3 While the majority of nuts 

contain high concentrations of monounsaturated fatty acids, walnuts (Juglans regia) are 

particularly rich in polyunsaturated fatty acids, primarily alpha-linolenic acid (ALA), an 

omega-3 fatty acid with anti-atherogenic effects.4 Walnuts are also rich in fibre and 

polyphenols that are potentially cardioprotective.3 The US Food and Drug Administration 

issued a qualified health claim for walnuts affirming that, in the context of a balanced diet, 

the consumption of approximately 42.5 g walnut per day reduces CVD risk5 and the 

American Diabetes Association also currently recommend walnut consumption.6 The 
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beneficial effects of walnuts on CVD risk have been primarily attributed to altered lipid 

profile,7 glycaemic metabolism8 and vascular physiology9; however, prior studies do not 

fully explain the mechanisms underlying the beneficial effects of dietary walnuts on 

cardiometabolic health. A more comprehensive scientific approach which could provide a 

better understanding of these effects involves targeted analysis of several previously 

hypothesized pathways and the untargeted agnostic analysis using omics technologies, 

including changes in the relative abundance of metabolites (metabolomics), lipids 

(lipidomics), N-glycans (glycomics), and host-microbial communities (microbiome).10

We performed analysis of metabolomics, lipidomics, glycomics and the microbiome, 

assessed lipid fractionation and measured appetite-regulating hormones to explore 

mechanisms underlying the effects of dietary walnut consumption on metabolic and 

cardiovascular parameters in obese people. The present study is the first cross-over, 

randomized, double-blind, placebo-controlled short-term, inpatient feeding study using this 

integrated approach to evaluate the full spectrum of mechanisms underlying the 

cardiovascular and metabolic effects of walnut consumption in obese individuals.

2 | MATERIALS AND METHODS

Ten individuals with obesity, as defined by body mass index ≥30 kg/m2, were enrolled in a 

randomized (1:1), double-blind, placebo-controlled, cross-over, 5-day inpatient study of 

either 48 g of walnuts (approximately the recommended daily dose)5 or “placebo” 

consumption, which was approved by the Beth Israel Deaconess Medical Center (BIDMC) 

institutional review board (Figure S1). All participants provided written informed consent. 

The study design has been described previously.11 Briefly, participants were admitted at the 

Clinical Research Centre of the BIDMC for 5 days during each phase (walnut or placebo). 

Participants consumed walnuts, or placebo, in which safflower oil and walnut flavouring 

replaced walnuts, in the form of a smoothie for breakfast during the five inpatient days, with 

the same macronutrient composition, allowing double-blinding, as previously described9,12 

(Table S1). During both inpatient visits, participants followed an isocaloric diet to minimize 

variability. Baseline measurements were performed on day 1 (resting metabolic rate, body 

composition, haemodynamic and central blood pressure measures and blood draws after an 

overnight fast). The same measurements were repeated on day 5 and along with serial blood 

draws, at 0, 30, 60, 120 and 180 minutes after smoothie consumption. Fecal collection 

methods are described in File S1. Participants also had an ad libitum or weighed buffet meal 

to assess caloric consumption and food preferences (File S1). The participants were asked 

not to consume nuts during the 1-month washout period before they came back to receive 

the opposite smoothie (patients who received the walnut smoothie on the first visit received 

the placebo smoothie on the second visit and vice versa).

2.1 | Body composition and energy expenditure measurements

Body composition was measured using a dual-energy X-ray absorptiometry scanner 

(Hologic 4500; Hologic, Waltham, Massachusetts) and resting metabolic rate was measured 

using indirect calorimetry (Vmax Spectra; Yorba Linda, CA, USA, Sensor Medics). 
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Methods for cardiovascular and haemodynamic measurements and microbiome analysis are 

described in File S1.

2.2 | Biochemical measurements

Blood samples drawn through venipuncture were processed for plasma or serum and stored 

at −80 ○C until assayed in duplicate. Measurements were acquired using the following 

techniques: commercially available ELISA kits, radioimmunoassays, automated 

immunoassay analyser (Immulite 1000; Siemens Healthcare Diagnostic) or a CLIA-certified 

external laboratory (the latter for basic cholesterol panel). Lipoprotein subclass profiles were 

measured using a 400-MHz proton nuclear magnetic resonance (NMR) spectrometer13 (File 

S1).

2.3 | Omics measurements

Metabolomics and lipidomics were performed at the Whitehead Institute for Biomedical 

Research at the Massachusetts Institute of Technology, using liquid chromatography–mass 

spectrometry, as previously described.14 Glycomics were performed at the National Centre 

for Functional Glycomics at the BIDMC, as previously described15 (File S1).

2.4 | Plasma fatty acids, total antioxidant capacity, total phenolic content and fecal short-
chain fatty acid analysis

The short-chain fatty acid (SCFA) analysis was performed using gas chromatography as 

previously described.16 The analysis of total antioxidant capacity, total phenolic content and 

the quantification of plasma fatty acids using gas chromatography were performed at 

Hospital Clínic de Barcelona (File S1).

2.5 | Statistical analysis

The Statistical Package for Social Sciences, v.19 was used for statistical analysis. Results are 

presented as means ± SE. Variables were checked for normality with the Kolmogorov–

Smirnov test. Variables not normally distributed were log-transformed. A general linear 

mixed model was used to assess the treatment effect on anthropometric, clinical and 

laboratory variables with the variables of treatment, sequence and visit included as fixed 

effects, participant-within-sequence included as a random effect, and baseline values 

included as a covariate when available. The sample size has been calculated on a previously 

published functional MRI outcome11; however, the power to detect changes in other study 

variables was similar to that of our previous study,9,12 and thus, we hypothesized that 

changes would be detected in cardiometabolic outcomes, which were expanded in the 

present analysis. P values <0.05 were considered statistically significant.

Multivariate statistical analysis of the metabolomics, lipidomics and glycomic data was 

carried out using the significance analysis for microarrays algorithm in the TM4 MeV 

(version 4.9.0) data analysis software, and the partial least squares-discriminant analysis 

(PLS-DA) algorithm in the XLSTAT statistical software (version 2013.4.03). The trial was 

registered at ClinicalTrials.gov: (https://clinicaltrials.gov/ct2/show/NCT02673281).
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3 | RESULTS

3.1 | Participant characteristics

Basic characteristics of the participants (six men and four women, mean age 50.7 ± 2.3 

years) are shown in Table 1.

3.2 | Effects of walnut consumption on food preferences

Participants tended to consume fewer kilocalories and total fats (not significant) in the ad 

libitum meal, while they ate significantly less total protein (P < 0.02), with a higher 

percentage of kilocalories derived from carbohydrates (P < 0.01) in the walnut phase (Table 

S2). Notably, no change in respiratory quotient was observed between the groups (Table 1).

3.3 | Effects of walnut consumption on energy expenditure, body composition, fecal fat 
and SCFAs

No changes in resting energy expenditure or body composition were observed after 5 days of 

walnut or placebo smoothie consumption (Table 1). Total fecal fat was unchanged between 

the groups (Table S3). Fecal SCFAs showed a significant reduction of isobutyrate (P < 0.01; 

Table S3) and isovalerate (P < 0.02; Table S3) in the walnut group, without changes in 

acetate, propionate, and butyrate, compared to placebo (Table S3).

3.4 | Effects of walnut consumption on gut hormones and metabolic variables

No significant changes in fasting measures of cardiometabolic markers were observed (Table 

S4). Glucose and insulin area under the curves (AUCs) were reduced with walnut 

consumption (P < 0.02 and P < 0.04, respectively), while the peptide YY (PYY) AUC was 

increased (P < 0.03; Table 2 and Figure S2); however only the PYY post-smoothie 

incremental AUC (AUC) change remained significant (Table S5).

3.5 | Effects of walnut consumption on lipid fractionation and basic cholesterol panel

Walnut consumption, using the NMR fasting plasma lipoprotein particle measurements, 

increased medium HDL particles (P < 0.01; Table 3) and small VLDL particles (P < 0.001; 

Table 3), and decreased atherogenic small LDL particles (P < 0.02; Table 3). No significant 

changes in fasting basic cholesterol panel measures, such as total cholesterol, clusterin, 

HDL, tryglycerides, LDL or oxidized LDL were observed (Table 3).

The post-smoothie VLDL particle AUC showed a tendency towards decreased triglyceride-

enriched large VLDL particle AUC (P < 0.06; Table 3), balanced by an increase of the fewer 

triglyceride-rich, medium VLDL particle AUC (P < 0.04, Table 3). A significant decrease in 

the lipoprotein insulin resistance score AUC, an NMR lipid analysis-based and validated 

method to assess insulin resistance,17 was observed with walnuts (P < 0.01; Table 3). The 

large HDL particle AUC significantly increased in the walnut diet (P < 0.01; Table 3 and 

Figure S2). None of the aforementioned lipids showed a significant change between the two 

groups according to the incremental AUC (Table S6), indicating a contribution of baseline 

changes to the observed AUC changes.
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3.6 | Effects of walnut consumption on lipidomics and metabolomics

The multivariate statistical analysis indicated a collective significant decrease in the total 

abundance of the 19 monitored lipid classes in the walnut diet compared to the placebo diet 

(~ 4%) and identified five lipid classes which were significantly reduced in the walnut group 

(six profiles in total as CerG1 was considered with both its positive and negative ion mode 

measurements). These, in order of decreasing significance, are: hexosylceramides 

(CerG1_p) positive reading, phosphatidylinositol), ceramides, hexosylceramides ceramides 

G2 (CerG2), sphingomyelins, and hexosylceramides (CerG1) negative reading, while 

sphingosine concentration showed an increasing trend in the walnut group. No change in 

dihydroceramides concentration was observed (Figure 1). Multivariate statistical analysis of 

the metabolomic data showed no significance difference in the abundance of any of the 71 

monitored metabolites.

3.7 | Effects of walnut consumption on fasting plasma fatty acids, total antioxidant 
capacity and polyphenol content

Walnut consumption increased the proportion of ALAs in plasma (P < 0.02), while the 

placebo smoothie consumption, rich in safflower oil, led to a significant increase in the 

proportion of plasma oleic acid (P < 0.03; Table S7). No differences in total antioxidant 

capacity or polyphenol content between the two groups were observed (Table S7).

3.8 | Effects of walnut consumption on serum protein N-Glycans

A total of 58 different N-glycans structures, ranging from 1579 m/z to 4587 m/z were 

reported (Table S8). Using a paired significance analysis for microarrays, the relative 

abundance of 10 N-glycans was identified as significantly increased in the walnut diet false 

discovery rate (median = 0%; Figures S3 and S4B). These 10 N-glycans are complex N-

glycans, with eight of them carrying a core fucose (fucose attached to the first N-

acetylglucosamine residue). Four of these N-glycans are sialylated, carrying up to three 

sialic acids (N-acetylneuraminic acid).

3.9 | Effects of walnut consumption on haemodynamic and cardiovascular measures

No changes were observed in 24-hour central blood pressure and haemodynamic 

measurements (Table S9), using Mobil-O-Graph (Table S10), or in the acute flow mediated 

dilation or hyperaemic response 3 hours after walnut smoothie consumption (Table S11).

4 | DISCUSSION

We observed significant changes in insulin and glucose AUC after walnut consumption 

accompanied by a beneficial effect of walnuts on some lipid classes. We also applied, for the 

first time, an integrated approach, including multiomics and microbiome analyses, to 

broadly investigate using an untargeted approach the mechanisms underlying the positive 

cardiometabolic effect of dietary walnut consumption in people with obesity. Our results 

extend previous findings on the beneficial effects of walnut consumption on lipids7 and 

glucose.8 Additionally, in the present study, we showed for the first time that short-term 

walnut consumption significantly decreased atherogenic small and dense LDL particle levels 

and reduced harmful lipid classes such as ceramides and sphingomyelins, suggesting 
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decreased lipotoxicity, which may lead to the previously demonstrated improvements in 

cardiometabolic health.2,8

Ceramides are metabolites of sphingolipid, can contribute to metabolic-related obesity 

disorders interfering with insulin signalling, leading to insulin resistance,18 and can be 

produced via different pathways (Figure 2). Insulin resistance in adipose tissue leads to an 

increase in circulating free fatty acids which, in turn, leads to the de novo production of 

ceramides.19

To determine which ceramide synthetic pathway was regulated after walnut consumption, 

we analysed the serum concentrations of dihydroceramide (markers of de novo synthesis), 

sphingomyelins (markers of sphingomyelin hydrolysis), hexosylceramides (markers of the 

salvage pathway) and sphingosine (marker of ceramides degradation; Figure 2). Walnut 

consumption decreased total ceramides, hexosylceramides and sphingomyelins, and 

increased sphingosines without changes in dihydroceramide concentration. The general 

decrease in levels of different ceramide classes may indicate either a reduction in ceramide 

production and/or an increase of ceramide degradation. Particularly, the reduction of 

hexosylceramides and sphingomyelins may represent a decrease in the activation of the 

salvage pathway and shingomielin hydrolysis pathway, respectively, while an increase in 

sphingosines may suggest that walnut consumption could have decreased ceramide 

concentrations through increasing ceramidase activity, with subsequent increases of 

sphingosine, which is the breakdown product of ceramides.

Walnuts are rich in ALA content, and we observed the expected significant increase in 

plasma ALAs with walnut consumption. ALAs could also be a mediator of the observed 

reduction in ceramides. ALA consumption alters adipokine concentrations, particularly 

adiponectin,20,21 which can also reduce ceramide concentrations through the conversion of 

ceramides to sphingosine.22 Our group has previously shown, using a similar protocol, that 

4-day walnut consumption increased fasting concentration of adiponectin,9 confirming the 

results of Lozano et al.20 Since ALAs and linoleic acids are the main lipid components of 

the walnut and the placebo smoothies, respectively, our data could be considered as 

reflecting the results of the effect of two different dietary lipid classes on plasma metabolites 

and lipids; however, this will need to be studied in more detail in future targeted studies that 

would vary only with respect to these lipids, given that the differences between the walnut 

and placebo smoothies used in the present study also included differences in fibre and other 

phytonutrients that are present in walnuts, but not in safflower oil. It remains to also be 

studied whether other nuts may have similar effects, as expected.

In the present study, although we did not see changes in the basic cholesterol panel, we did 

observe a significant modulation of NMR-analysed lipid particles, particularly LDL, HDL 

and VLDL particles after 5 days. Our results showed a significant reduction in small LDL 

particle levels. LDL cholesterol is positively associated with CVD mortality, and small LDL 

particles are more atherogenic than large LDL particles23 and their atherogenicity is 

increased by oxidation.24 In endothelial cells, endogenously produced ceramides are 

involved in the transcytosis of oxidized LDL across the endothelial cell barrier. Moreover, 

ceramides facilitated the subendothelial retention of these oxidized LDL, additionally 
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stimulating the development of atherosclerosis.25 In the present study, we did not observe a 

significant reduction of oxidized LDL despite a significant reduction of small LDL particles, 

which are highly susceptible to oxidation.

We have shown a significant increase in large and medium HDL particles after consuming 

walnuts, and previous studies showed that circulating concentrations of large HDL particles 

are inversely related to CVD, while the opposite effect is associated with small HDL 

concentrations.26 In addition, we observed a significant reduction of triglyceride-rich 

lipoprotein VLDL AUC with walnut consumption, and this lipid class is strongly associated 

with CVD risk.27 Significant changes in the AUCs of glucose, insulin and certain NMR 

lipids were not replicated in the respective incremental AUCs (Tables S6 and S7). The 

different results for these two metrics are reasonably attributable to the distinct methods 

involved in their calculation. AUCs reflect changes in baseline values, whereas incremental 

AUCs evaluate only changes above and beyond any baseline changes. While the incremental 

AUC, which is usually used to evaluate acute glucose/lipid responses to meals relative to 

baseline values, eliminates results that drop under the baseline, the AUC does not. In 

summary, considering these differences, we propose that the significant effects observed in 

AUCs may be attributable to overall changes in the short-term 5-day effect of walnut 

consumption and less to specific only post-smoothie mixed-meal changes.

As a post-translational modification, glycans are commonly found attached to proteins 

(glycoproteins) and lipids (glycolipids) on the external surface of cells and also on 

circulating protein. They have numerous biological roles, such as immune functions and cell 

adhesion/migration. N-glycosylation is the major type of glycosylation found on circulating 

proteins. Variations or alterations of the N-glycans of serum proteins have been observed 

under physiological and pathological conditions. In the present study, we observed a 

significant increase of 10 N-glycans in the walnut group compared to the placebo group, all 

of which are complex N-glycans. Eight of them are core fucosylated and four of these are 

sialylated, carrying up to three sialic acids. With the exception of three (2418, 2968 and 

3777 m/z) of these 10 N-glycans, all of the N-glycans identified in the present study are 

among the N-glycans found to decorate the constant Fc region of human immunoglobulin G 

(IgG), one of the most abundant glycoproteins in human serum.28 Changes in IgG N-

glycans, especially changes in sialylation and core fucosylation, are known to impact the 

effector function of immunoglobulins,29 including antibody-dependent cellular cytotoxicity 

and complement-dependent cytotoxicity.30,31 Enhanced sialylation of IgG N-glycans has 

been shown to have anti-inflammatory effects, whereas increased core fucosylation was 

observed to decrease antibody-dependent cellular cytotoxicity response.30 While it remains 

to be confirmed and tested with further analyses, including of IgG N-glycans, our data 

suggest that the N-glycosylation and the effector functions of IgG may have been affected by 

the walnut diet.

No effects of walnut consumption on vascular and haemodynamic variables were observed, 

potentially because of the short timeframe, limited number of participants and the low rate 

of cardiovascular comorbidities in our population. Some limited, early changes in the 

microbiome are observed (see File S1 for details of this exploratory analysis).

Tuccinardi et al. Page 8

Diabetes Obes Metab. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The present study has some important strengths and limitations. The study is strengthened 

by its use of a previously validated and tested placebo/walnut smoothie delivery system, 

which allowed double-blinding.9,12 Another strength is the inpatient setting and the 

confirmative increase of plasma ALA proportion in the walnut arm, which ensured patient 

compliance. This may indicate that one of the primary differences between the walnut and 

placebo groups is ALA versus linoleic acid, and this is certainly a major difference; 

however, other phytonutrients also differ between the walnut and placebo groups from the 

other components of walnut versus safflower oil. Future studies will need to test directly 

whether this is attributable to only ALA versus linoleic acid differences and/or may reflect 

walnut-specific changes. The short-term 5-day effect of walnut consumption and the 180-

minute-long duration of mixed-meal tests used in the present study, although extremely 

useful as a starting point, could also be considered as limitations of the study. Longer studies 

with more weeks of walnut consumption and/or mixed-meal tests of longer duration, for 

example, 300-minute-long tests are needed to extend these observations and may provide 

stronger and more significant changes in study outcomes including plasma lipids. Despite 

the small number of participants, the a priori power calculation in this study led to 

statistically significant results. The cross-over design reduced potential baseline participant 

differences and/or uncontrolled confounders. In this study we examined many variables, 

which were treated as discrete hypotheses.

To date, multiomic studies in humans have only been correlative, comparing sphingolipid 

concentrations in serum or tissues with one or more diseases/conditions (eg, insulin 

resistance, hepatic steatosis).32 Preclinical studies in rodents have been able to use 

interventional methods (eg, ceramide synthesis inhibition) to ascertain the ceramide role in 

metabolic disorders.33 In humans, ceramide plasma concentrations correlate with 

hypertension, myocardial infarction and stroke34 and they are independent predictors of 

plaque instability and/or future mortality, also exceeding the conventional predictive value of 

LDL cholesterol.35 These data show a possible clinical use of ceramides, and our results 

suggest that dietary walnuts may represent an effective nutritional modulator of ceramide 

concentrations that, in turn, could improve cardiometabolic health in the obese. Finally, no 

major differences among mass spectrometry-detectable metabolites were found between the 

walnut and placebo phases. This was to be expected, as short-term walnut consumption is 

not thought to substantially affect the primary metabolism, but rather the secondary 

metabolism and lipid biosynthesis and degradation pathways. Increased PYY concentration 

after walnut consumption may explain the improved sense of satiety, which has been 

reported with walnuts.12

In conclusion, in the present study, we explored the effect of walnut consumption on lipids 

and insulin resistance using a multiple approach analysis to provide a more in-depth and 

comprehensive analysis of walnuts on metabolic and cardiovascular variables in obesity. 

Data from lipidomics and NMR spectroscopy measurements demonstrated a significant 

reduction in harmful ceramides and some atherogenic lipids, also in the postprandial phase. 

These findings may emphasize the relevance of the postprandial state in the understanding of 

the possible cardioprotective mechanisms associated with dietary omega-3 fatty acids. While 

lipidomic and metabolomic analysis is quite well established, the understanding of 

glycomics results need to be further investigated with future studies. Considering the 
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exploratory nature of the present study, future, larger studies are warranted to confirm 

findings of the present study on the walnut-mediated mechanisms that improve 

cardiometabolic health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Paired significance analysis for microarrays curve of standardized lipids between the walnut 

and placebo. The analysis uses standardized values of the lipid measurements (ie, the mean 

value of a lipid concentration in all samples is subtracted from the measurement in this lipid 

in a particular sample and the residual is divided by the standard deviation of this lipid class 

measurement among all samples). The x-axis represents the expected score of the function 

that depends on a lipid class quantity. The y-axis represents the observed score of the 

function that depends on a lipid class quantity. If the absolute value of (observed – expected) 

score for a lipid class is larger than δ, then this lipid class is positively (if the residual is 

positive) or negatively (if the residual is negative) significantly changed in the walnut 

compared to the placebo samples. Each dot of the graph corresponds to a lipid class used in 

the analysis. Green dots below the lower dotted line correspond to the negatively significant 

lipid classes in the walnut compared to the placebo diet samples, while those above the 

lower dotted line correspond to the negatively non significant lipid classes in the walnut 

compared to the placebo diet samples. The dark-red dots, which are all between the two 

dotted lines, correspond to the positively non-significant lipid classes in the walnut 

compared to the placebo diet samples. The more distant a dot is from the origin of the axes, 

the more negatively significant the corresponding lipid class is. The threshold of significance 

(δ) is the smallest corresponding to a zero (0). FDR, false discovery rate–median, FDR-
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median (%). CerG1_p, hexosylceramides G1 positive reading; PI, phosphatidylinositol; Cer, 

ceramides; CerG2, hexosylceramides G2; SM, sphingomyelins; CerG1, hexosylceramides 

G1 negative reading; so, sphingosine
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FIGURE 2. 
Pathways of ceramides synthesis. The schematic diagram depicts the pathways of ceramide 

metabolism. Cellular ceramide can be produced via several pathways: (1) by a de novo 

biosynthesis from precursor palmitate which is metabolized to dihydroceramides prior to 

formation of ceramides; (2) through the sphyngomyelin hydrolysis pathway; (3) through the 

“salvage pathway” consisting in the breakdown of more complex sphingolipids; ceramides 
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are degraded by ceramidase leading to the production of sphingosine. The arrows indicate 

the increasing/decreasing (arrow up/arrow down) response to walnut consumption
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TABLE 2

Post-smoothie area under the curve of metabolic biomarkers and appetite-regulating hormones after 5 days of 

treatment with walnut or placebo

Variables
a

Placebo Day 5 Walnut Day 5 P

Glucose, mg/dL*min 18 496 ± 476 17 820 ± 402 0.02

Insulin, μIU/mL*min 4822 ± 640 4678 ± 799 0.04

PYY, pg/mL*min 19 892 ± 1147 22 314 ± 1340 0.03

Leptin, pg/mL*min 7940 ± 1936 7482 ± 1681 0.07

Adiponectin, μg/mL*min 4208 ± 368 4413 ± 217 0.31

Ghrelin, pg/mL*min 91 248 ± 8330 92 241 ± 7071 0.71

Oxyntomodulin, pg/mL*min 88 583 ± 9524 90 212 ± 10 275 0.84

GLP-1, pg/mL*min 7489 ± 1038 7368 ± 756 0.97

GIP, pg/mL*min 37 622 ± 2325 35 050 ± 4109 0.61

FGF-21, pg/mL*min 13 081 ± 2651 12 039 ± 2429 0.31

C-peptide, ng/mL*min 1002 ± 152 946 ± 125 0.63

GH, ng/mL*min 74 ± 25 40 ± 6.7 0.32

IGF-1, ng/mL*min 23 971 ± 4025 24 706 ± 3408 0.68

IGFBP3, ng/mL*min 1522 ± 223 1695 ± 301 0.68

Cortisol, μg/dL*min 2189 ± 196 1840 ± 99 0.18

Abbreviations: AUC, area under the curve; FGF-21, fibroblast growth factor 21; GH, growth hormone; GIP, gastric inhibitory polypeptide; GLP-1, 
glucagon-like peptide-1; IGF-1, insulin-like growth factor 1; IGFBP3, insulin-like growth factor-binding protein 3; PYY, peptide YY.

a
AUC varibles are expressed as concentration*time (0–30–60–120–180 minutes). Data shown as means ± SEM. P values are from general linear 

mixed-model analysis of day-5 values of the walnut and placebo phases. Variables of treatment, visit and sequence were included in the model as 
fixed effects and participant-within-sequence was included as a random effect.
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