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Abstract

Aims: To assess the effects of walnuts on cardiometabolic outcomes in obese people and to
explore the underlying mechanisms using novel methods including metabolomic, lipidomic,
glycomic and microbiome analysis, integrated with lipid particle fractionation, appetite-regulating
hormones and haemodynamic measurements.

Materials and Methods: A total of 10 obese individuals were enrolled in this crossover,
randomized, double-blind, placebo-controlled clinical trial. The participants had two 5-day
inpatient stays, during which they consumed a smoothie containing 48 g walnuts or a
macronutrient-matched placebo smoothie without nuts, with a 1-month washout period between
the two visits.

Results: Walnut consumption improved aspects of the lipid profile; it reduced fasting small and
dense LDL particles (P< 0.02) and increased postprandial large HDL particles (P< 0.01).
Lipoprotein insulin resistance score, glucose and the insulin area under the curve (AUC) decreased
significantly after walnut consumption (P< 0.01, < 0.02 and P< 0.04, respectively). Consuming
walnuts significantly increased 10 N-glycans, with eight of them carrying a fucose core.
Lipidomic analysis showed a robust reduction in harmful ceramides, hexosylceramides and
sphingomyelins, which have been shown to mediate effects on cardiometabolic risk. The peptide
YY AUC significantly increased after walnut consumption (P < 0.03). No major significant
changes in haemodynamic or metabolomic analysis or in microbiome host health-promoting
bacteria such as Faecalibacterium were found.

Conclusions: These data provide a more comprehensive mechanistic perspective of the effect of
dietary walnut consumption on cardiometabolic variables. Lipidomic and lipid nuclear magnetic
resonance spectroscopy analysis showed an early but significant reduction in ceramides and other
atherogenic lipids with walnut consumption, which may explain the longer-term benefits of
walnuts or other nuts on insulin resistance, cardiovascular risk and mortality.
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INTRODUCTION

Large interventional and observational studies have repeatedly demonstrated a link between
increased walnut consumption and reductions in cardiovascular disease (CVD) risk and
mortality.12 Clinical trials on the Mediterranean diet and other dietary patterns rich in
walnuts have shown evidence of cardiometabolic benefits.3 While the majority of nuts
contain high concentrations of monounsaturated fatty acids, walnuts (Juglans regia) are
particularly rich in polyunsaturated fatty acids, primarily alpha-linolenic acid (ALA), an
omega-3 fatty acid with anti-atherogenic effects.* Walnuts are also rich in fibre and
polyphenols that are potentially cardioprotective.3 The US Food and Drug Administration
issued a qualified health claim for walnuts affirming that, in the context of a balanced diet,
the consumption of approximately 42.5 g walnut per day reduces CVD risk® and the
American Diabetes Association also currently recommend walnut consumption.® The
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beneficial effects of walnuts on CVD risk have been primarily attributed to altered lipid
profile,” glycaemic metabolism® and vascular physiology®; however, prior studies do not
fully explain the mechanisms underlying the beneficial effects of dietary walnuts on
cardiometabolic health. A more comprehensive scientific approach which could provide a
better understanding of these effects involves targeted analysis of several previously
hypothesized pathways and the untargeted agnostic analysis using omics technologies,
including changes in the relative abundance of metabolites (metabolomics), lipids
(lipidomics), N-glycans (glycomics), and host-microbial communities (microbiome).10

We performed analysis of metabolomics, lipidomics, glycomics and the microbiome,
assessed lipid fractionation and measured appetite-regulating hormones to explore
mechanisms underlying the effects of dietary walnut consumption on metabolic and
cardiovascular parameters in obese people. The present study is the first cross-over,
randomized, double-blind, placebo-controlled short-term, inpatient feeding study using this
integrated approach to evaluate the full spectrum of mechanisms underlying the
cardiovascular and metabolic effects of walnut consumption in obese individuals.

2| MATERIALS AND METHODS

Ten individuals with obesity, as defined by body mass index =30 kg/m?2, were enrolled in a
randomized (1:1), double-blind, placebo-controlled, cross-over, 5-day inpatient study of
either 48 g of walnuts (approximately the recommended daily dose)® or “placebo”
consumption, which was approved by the Beth Israel Deaconess Medical Center (BIDMC)
institutional review board (Figure S1). All participants provided written informed consent.
The study design has been described previously.1! Briefly, participants were admitted at the
Clinical Research Centre of the BIDMC for 5 days during each phase (walnut or placebo).
Participants consumed walnuts, or placebo, in which safflower oil and walnut flavouring
replaced walnuts, in the form of a smoothie for breakfast during the five inpatient days, with
the same macronutrient composition, allowing double-blinding, as previously described®12
(Table S1). During both inpatient visits, participants followed an isocaloric diet to minimize
variability. Baseline measurements were performed on day 1 (resting metabolic rate, body
composition, haemodynamic and central blood pressure measures and blood draws after an
overnight fast). The same measurements were repeated on day 5 and along with serial blood
draws, at 0, 30, 60, 120 and 180 minutes after smoothie consumption. Fecal collection
methods are described in File S1. Participants also had an ad libitum or weighed buffet meal
to assess caloric consumption and food preferences (File S1). The participants were asked
not to consume nuts during the 1-month washout period before they came back to receive
the opposite smoothie (patients who received the walnut smoothie on the first visit received
the placebo smoothie on the second visit and vice versa).

2.1| Body composition and energy expenditure measurements

Body composition was measured using a dual-energy X-ray absorptiometry scanner
(Hologic 4500; Hologic, Waltham, Massachusetts) and resting metabolic rate was measured
using indirect calorimetry (Vmax Spectra; Yorba Linda, CA, USA, Sensor Medics).
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Methods for cardiovascular and haemodynamic measurements and microbiome analysis are
described in File S1.

2.2 | Biochemical measurements

Blood samples drawn through venipuncture were processed for plasma or serum and stored
at —80 OC until assayed in duplicate. Measurements were acquired using the following
techniques: commercially available ELISA Kits, radioimmunoassays, automated
immunoassay analyser (Immulite 1000; Siemens Healthcare Diagnostic) or a CLI1A-certified
external laboratory (the latter for basic cholesterol panel). Lipoprotein subclass profiles were
measured using a 400-MHz proton nuclear magnetic resonance (NMR) spectrometer!3 (File
S1).

2.3| Omics measurements

Metabolomics and lipidomics were performed at the Whitehead Institute for Biomedical
Research at the Massachusetts Institute of Technology, using liquid chromatography—mass
spectrometry, as previously described.14 Glycomics were performed at the National Centre
for Functional Glycomics at the BIDMC, as previously described!® (File S1).

2.4 | Plasma fatty acids, total antioxidant capacity, total phenolic content and fecal short-
chain fatty acid analysis

The short-chain fatty acid (SCFA) analysis was performed using gas chromatography as
previously described.® The analysis of total antioxidant capacity, total phenolic content and
the quantification of plasma fatty acids using gas chromatography were performed at
Hospital Clinic de Barcelona (File S1).

2.5| Statistical analysis

The Statistical Package for Social Sciences, v.19 was used for statistical analysis. Results are
presented as means + SE. Variables were checked for normality with the Kolmogorov—
Smirnov test. Variables not normally distributed were log-transformed. A general linear
mixed model was used to assess the treatment effect on anthropometric, clinical and
laboratory variables with the variables of treatment, sequence and visit included as fixed
effects, participant-within-sequence included as a random effect, and baseline values
included as a covariate when available. The sample size has been calculated on a previously
published functional MRI outcomel®; however, the power to detect changes in other study
variables was similar to that of our previous study,?12 and thus, we hypothesized that
changes would be detected in cardiometabolic outcomes, which were expanded in the
present analysis. P values <0.05 were considered statistically significant.

Multivariate statistical analysis of the metabolomics, lipidomics and glycomic data was
carried out using the significance analysis for microarrays algorithm in the TM4 MeV
(version 4.9.0) data analysis software, and the partial least squares-discriminant analysis
(PLS-DA) algorithm in the XLSTAT statistical software (version 2013.4.03). The trial was
registered at ClinicalTrials.gov: (https://clinicaltrials.gov/ct2/show/NCT02673281).
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3| RESULTS

3.1| Participant characteristics

Basic characteristics of the participants (six men and four women, mean age 50.7 +£ 2.3
years) are shown in Table 1.

3.2 | Effects of walnut consumption on food preferences

Participants tended to consume fewer kilocalories and total fats (not significant) in the ad
libitum meal, while they ate significantly less total protein (P < 0.02), with a higher
percentage of kilocalories derived from carbohydrates (P < 0.01) in the walnut phase (Table
S2). Notably, no change in respiratory quotient was observed between the groups (Table 1).

3.3 | Effects of walnut consumption on energy expenditure, body composition, fecal fat
and SCFAs

No changes in resting energy expenditure or body composition were observed after 5 days of
walnut or placebo smoothie consumption (Table 1). Total fecal fat was unchanged between
the groups (Table S3). Fecal SCFAs showed a significant reduction of isobutyrate (< 0.01;
Table S3) and isovalerate (P < 0.02; Table S3) in the walnut group, without changes in
acetate, propionate, and butyrate, compared to placebo (Table S3).

3.4 | Effects of walnut consumption on gut hormones and metabolic variables

No significant changes in fasting measures of cardiometabolic markers were observed (Table
S4). Glucose and insulin area under the curves (AUCs) were reduced with walnut
consumption (P< 0.02 and P< 0.04, respectively), while the peptide YY (PYY) AUC was
increased (P < 0.03; Table 2 and Figure S2); however only the PYY post-smoothie
incremental AUC (AUC) change remained significant (Table S5).

3.5| Effects of walnut consumption on lipid fractionation and basic cholesterol panel

Walnut consumption, using the NMR fasting plasma lipoprotein particle measurements,
increased medium HDL particles (P< 0.01; Table 3) and small VLDL particles (P< 0.001;
Table 3), and decreased atherogenic small LDL particles (P < 0.02; Table 3). No significant
changes in fasting basic cholesterol panel measures, such as total cholesterol, clusterin,
HDL, tryglycerides, LDL or oxidized LDL were observed (Table 3).

The post-smoothie VLDL particle AUC showed a tendency towards decreased triglyceride-
enriched large VLDL particle AUC (P < 0.06; Table 3), balanced by an increase of the fewer
triglyceride-rich, medium VLDL particle AUC (P < 0.04, Table 3). A significant decrease in
the lipoprotein insulin resistance score AUC, an NMR lipid analysis-based and validated
method to assess insulin resistance,1’ was observed with walnuts (P< 0.01; Table 3). The
large HDL particle AUC significantly increased in the walnut diet (< 0.01; Table 3 and
Figure S2). None of the aforementioned lipids showed a significant change between the two
groups according to the incremental AUC (Table S6), indicating a contribution of baseline
changes to the observed AUC changes.
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3.6 | Effects of walnut consumption on lipidomics and metabolomics

The multivariate statistical analysis indicated a collective significant decrease in the total
abundance of the 19 monitored lipid classes in the walnut diet compared to the placebo diet
(~ 4%) and identified five lipid classes which were significantly reduced in the walnut group
(six profiles in total as CerG1 was considered with both its positive and negative ion mode
measurements). These, in order of decreasing significance, are: hexosylceramides
(CerG1_p) positive reading, phosphatidylinositol), ceramides, hexosylceramides ceramides
G2 (CerG2), sphingomyelins, and hexosylceramides (CerG1) negative reading, while
sphingosine concentration showed an increasing trend in the walnut group. No change in
dihydroceramides concentration was observed (Figure 1). Multivariate statistical analysis of
the metabolomic data showed no significance difference in the abundance of any of the 71
monitored metabolites.

3.7 | Effects of walnut consumption on fasting plasma fatty acids, total antioxidant
capacity and polyphenol content

Walnut consumption increased the proportion of ALAs in plasma (£ < 0.02), while the

placebo smoothie consumption, rich in safflower oil, led to a significant increase in the

proportion of plasma oleic acid (P < 0.03; Table S7). No differences in total antioxidant
capacity or polyphenol content between the two groups were observed (Table S7).

3.8 | Effects of walnut consumption on serum protein N-Glycans

A total of 58 different N-glycans structures, ranging from 1579 m/z to 4587 m/z were
reported (Table S8). Using a paired significance analysis for microarrays, the relative
abundance of 10 N-glycans was identified as significantly increased in the walnut diet false
discovery rate (median = 0%; Figures S3 and S4B). These 10 N-glycans are complex N-
glycans, with eight of them carrying a core fucose (fucose attached to the first N-
acetylglucosamine residue). Four of these N-glycans are sialylated, carrying up to three
sialic acids (N-acetylneuraminic acid).

3.9| Effects of walnut consumption on haemodynamic and cardiovascular measures

No changes were observed in 24-hour central blood pressure and haemodynamic
measurements (Table S9), using Mobil-O-Graph (Table S10), or in the acute flow mediated
dilation or hyperaemic response 3 hours after walnut smoothie consumption (Table S11).

4| DISCUSSION

We observed significant changes in insulin and glucose AUC after walnut consumption
accompanied by a beneficial effect of walnuts on some lipid classes. We also applied, for the
first time, an integrated approach, including multiomics and microbiome analyses, to
broadly investigate using an untargeted approach the mechanisms underlying the positive
cardiometabolic effect of dietary walnut consumption in people with obesity. Our results
extend previous findings on the beneficial effects of walnut consumption on lipids’ and
glucose.® Additionally, in the present study, we showed for the first time that short-term
walnut consumption significantly decreased atherogenic small and dense LDL particle levels
and reduced harmful lipid classes such as ceramides and sphingomyelins, suggesting

Diabetes Obes Metab. Author manuscript; available in PMC 2020 September 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Tuccinardi et al.

Page 7

decreased lipotoxicity, which may lead to the previously demonstrated improvements in
cardiometabolic health.2:8

Ceramides are metabolites of sphingolipid, can contribute to metabolic-related obesity
disorders interfering with insulin signalling, leading to insulin resistance,18 and can be
produced via different pathways (Figure 2). Insulin resistance in adipose tissue leads to an
increase in circulating free fatty acids which, in turn, leads to the de novo production of
ceramides.1®

To determine which ceramide synthetic pathway was regulated after walnut consumption,
we analysed the serum concentrations of dihydroceramide (markers of de novo synthesis),
sphingomyelins (markers of sphingomyelin hydrolysis), hexosylceramides (markers of the
salvage pathway) and sphingosine (marker of ceramides degradation; Figure 2). Walnut
consumption decreased total ceramides, hexosylceramides and sphingomyelins, and
increased sphingosines without changes in dihydroceramide concentration. The general
decrease in levels of different ceramide classes may indicate either a reduction in ceramide
production and/or an increase of ceramide degradation. Particularly, the reduction of
hexosylceramides and sphingomyelins may represent a decrease in the activation of the
salvage pathway and shingomielin hydrolysis pathway, respectively, while an increase in
sphingosines may suggest that walnut consumption could have decreased ceramide
concentrations through increasing ceramidase activity, with subsequent increases of
sphingosine, which is the breakdown product of ceramides.

Walnuts are rich in ALA content, and we observed the expected significant increase in
plasma ALAs with walnut consumption. ALAs could also be a mediator of the observed
reduction in ceramides. ALA consumption alters adipokine concentrations, particularly
adiponectin,20-21 which can also reduce ceramide concentrations through the conversion of
ceramides to sphingosine.?2 Our group has previously shown, using a similar protocol, that
4-day walnut consumption increased fasting concentration of adiponectin,® confirming the
results of Lozano et al.2% Since ALAs and linoleic acids are the main lipid components of
the walnut and the placebo smoothies, respectively, our data could be considered as
reflecting the results of the effect of two different dietary lipid classes on plasma metabolites
and lipids; however, this will need to be studied in more detail in future targeted studies that
would vary only with respect to these lipids, given that the differences between the walnut
and placebo smoothies used in the present study also included differences in fibre and other
phytonutrients that are present in walnuts, but not in safflower oil. It remains to also be
studied whether other nuts may have similar effects, as expected.

In the present study, although we did not see changes in the basic cholesterol panel, we did
observe a significant modulation of NMR-analysed lipid particles, particularly LDL, HDL
and VLDL particles after 5 days. Our results showed a significant reduction in small LDL
particle levels. LDL cholesterol is positively associated with CVD mortality, and small LDL
particles are more atherogenic than large LDL particles23 and their atherogenicity is
increased by oxidation.24 In endothelial cells, endogenously produced ceramides are
involved in the transcytosis of oxidized LDL across the endothelial cell barrier. Moreover,
ceramides facilitated the subendothelial retention of these oxidized LDL, additionally
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stimulating the development of atherosclerosis.2® In the present study, we did not observe a
significant reduction of oxidized LDL despite a significant reduction of small LDL particles,
which are highly susceptible to oxidation.

We have shown a significant increase in large and medium HDL particles after consuming
walnuts, and previous studies showed that circulating concentrations of large HDL particles
are inversely related to CVD, while the opposite effect is associated with small HDL
concentrations.28 In addition, we observed a significant reduction of triglyceride-rich
lipoprotein VLDL AUC with walnut consumption, and this lipid class is strongly associated
with CVD risk.2” Significant changes in the AUCs of glucose, insulin and certain NMR
lipids were not replicated in the respective incremental AUCs (Tables S6 and S7). The
different results for these two metrics are reasonably attributable to the distinct methods
involved in their calculation. AUCs reflect changes in baseline values, whereas incremental
AUCs evaluate only changes above and beyond any baseline changes. While the incremental
AUC, which is usually used to evaluate acute glucose/lipid responses to meals relative to
baseline values, eliminates results that drop under the baseline, the AUC does not. In
summary, considering these differences, we propose that the significant effects observed in
AUCs may be attributable to overall changes in the short-term 5-day effect of walnut
consumption and less to specific only post-smoothie mixed-meal changes.

As a post-translational modification, glycans are commonly found attached to proteins
(glycoproteins) and lipids (glycolipids) on the external surface of cells and also on
circulating protein. They have numerous biological roles, such as immune functions and cell
adhesion/migration. N-glycosylation is the major type of glycosylation found on circulating
proteins. Variations or alterations of the N-glycans of serum proteins have been observed
under physiological and pathological conditions. In the present study, we observed a
significant increase of 10 N-glycans in the walnut group compared to the placebo group, all
of which are complex N-glycans. Eight of them are core fucosylated and four of these are
sialylated, carrying up to three sialic acids. With the exception of three (2418, 2968 and
3777 m/z) of these 10 N-glycans, all of the N-glycans identified in the present study are
among the N-glycans found to decorate the constant Fc region of human immunoglobulin G
(1gG), one of the most abundant glycoproteins in human serum.28 Changes in 1gG N-
glycans, especially changes in sialylation and core fucosylation, are known to impact the
effector function of immunoglobulins,2? including antibody-dependent cellular cytotoxicity
and complement-dependent cytotoxicity.30:31 Enhanced sialylation of 19G N-glycans has
been shown to have anti-inflammatory effects, whereas increased core fucosylation was
observed to decrease antibody-dependent cellular cytotoxicity response.39 While it remains
to be confirmed and tested with further analyses, including of 1IgG N-glycans, our data
suggest that the N-glycosylation and the effector functions of 1gG may have been affected by
the walnut diet.

No effects of walnut consumption on vascular and haemodynamic variables were observed,
potentially because of the short timeframe, limited number of participants and the low rate
of cardiovascular comorbidities in our population. Some limited, early changes in the
microbiome are observed (see File S1 for details of this exploratory analysis).
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The present study has some important strengths and limitations. The study is strengthened
by its use of a previously validated and tested placebo/walnut smoothie delivery system,
which allowed double-blinding.?12 Another strength is the inpatient setting and the
confirmative increase of plasma ALA proportion in the walnut arm, which ensured patient
compliance. This may indicate that one of the primary differences between the walnut and
placebo groups is ALA versus linoleic acid, and this is certainly a major difference;
however, other phytonutrients also differ between the walnut and placebo groups from the
other components of walnut versus safflower oil. Future studies will need to test directly
whether this is attributable to only ALA versus linoleic acid differences and/or may reflect
walnut-specific changes. The short-term 5-day effect of walnut consumption and the 180-
minute-long duration of mixed-meal tests used in the present study, although extremely
useful as a starting point, could also be considered as limitations of the study. Longer studies
with more weeks of walnut consumption and/or mixed-meal tests of longer duration, for
example, 300-minute-long tests are needed to extend these observations and may provide
stronger and more significant changes in study outcomes including plasma lipids. Despite
the small number of participants, the a priori power calculation in this study led to
statistically significant results. The cross-over design reduced potential baseline participant
differences and/or uncontrolled confounders. In this study we examined many variables,
which were treated as discrete hypotheses.

To date, multiomic studies in humans have only been correlative, comparing sphingolipid
concentrations in serum or tissues with one or more diseases/conditions (eg, insulin
resistance, hepatic steatosis).32 Preclinical studies in rodents have been able to use
interventional methods (eg, ceramide synthesis inhibition) to ascertain the ceramide role in
metabolic disorders.33 In humans, ceramide plasma concentrations correlate with
hypertension, myocardial infarction and stroke3* and they are independent predictors of
plaque instability and/or future mortality, also exceeding the conventional predictive value of
LDL cholesterol.3> These data show a possible clinical use of ceramides, and our results
suggest that dietary walnuts may represent an effective nutritional modulator of ceramide
concentrations that, in turn, could improve cardiometabolic health in the obese. Finally, no
major differences among mass spectrometry-detectable metabolites were found between the
walnut and placebo phases. This was to be expected, as short-term walnut consumption is
not thought to substantially affect the primary metabolism, but rather the secondary
metabolism and lipid biosynthesis and degradation pathways. Increased PY'Y concentration
after walnut consumption may explain the improved sense of satiety, which has been
reported with walnuts.12

In conclusion, in the present study, we explored the effect of walnut consumption on lipids
and insulin resistance using a multiple approach analysis to provide a more in-depth and
comprehensive analysis of walnuts on metabolic and cardiovascular variables in obesity.
Data from lipidomics and NMR spectroscopy measurements demonstrated a significant
reduction in harmful ceramides and some atherogenic lipids, also in the postprandial phase.
These findings may emphasize the relevance of the postprandial state in the understanding of
the possible cardioprotective mechanisms associated with dietary omega-3 fatty acids. While
lipidomic and metabolomic analysis is quite well established, the understanding of
glycomics results need to be further investigated with future studies. Considering the
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exploratory nature of the present study, future, larger studies are warranted to confirm
findings of the present study on the walnut-mediated mechanisms that improve
cardiometabolic health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.

Direction of increasing significance

Paired significance analysis for microarrays curve of standardized lipids between the walnut
and placebo. The analysis uses standardized values of the lipid measurements (ie, the mean
value of a lipid concentration in all samples is subtracted from the measurement in this lipid
in a particular sample and the residual is divided by the standard deviation of this lipid class
measurement among all samples). The x-axis represents the expected score of the function
that depends on a lipid class quantity. The y~axis represents the observed score of the
function that depends on a lipid class quantity. If the absolute value of (observed — expected)
score for a lipid class is larger than 6, then this lipid class is positively (if the residual is
positive) or negatively (if the residual is negative) significantly changed in the walnut
compared to the placebo samples. Each dot of the graph corresponds to a lipid class used in
the analysis. Green dots below the lower dotted line correspond to the negatively significant
lipid classes in the walnut compared to the placebo diet samples, while those above the
lower dotted line correspond to the negatively non significant lipid classes in the walnut
compared to the placebo diet samples. The dark-red dots, which are all between the two
dotted lines, correspond to the positively non-significant lipid classes in the walnut
compared to the placebo diet samples. The more distant a dot is from the origin of the axes,
the more negatively significant the corresponding lipid class is. The threshold of significance
(8) is the smallest corresponding to a zero (0). FDR, false discovery rate—-median, FDR-
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median (%). CerG1_p, hexosylceramides G1 positive reading; P, phosphatidylinositol; Cer,
ceramides; CerG2, hexosylceramides G2; SM, sphingomyelins; CerG1, hexosylceramides
G1 negative reading; so, sphingosine
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Pathways of ceramides synthesis. The schematic diagram depicts the pathways of ceramide
metabolism. Cellular ceramide can be produced via several pathways: (1) by a de novo
biosynthesis from precursor palmitate which is metabolized to dihydroceramides prior to
formation of ceramides; (2) through the sphyngomyelin hydrolysis pathway; (3) through the
“salvage pathway” consisting in the breakdown of more complex sphingolipids; ceramides
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are degraded by ceramidase leading to the production of sphingosine. The arrows indicate
the increasing/decreasing (arrow up/arrow down) response to walnut consumption
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Post-smoothie area under the curve of metabolic biomarkers and appetite-regulating hormones after 5 days of
treatment with walnut or placebo

Variables® PlaceboDay 5 Walnut Day 5 P

Glucose, mg/dL*min 18 496 + 476 17 820 + 402 0.02
Insulin, plU/mL*min 4822 + 640 4678 £ 799 0.04
PYY, pg/mL*min 19 892 + 1147 22314+1340 0.03
Leptin, pg/mL*min 7940 + 1936 7482 + 1681 0.07
Adiponectin, pg/mL*min 4208 + 368 4413 + 217 0.31
Ghrelin, pg/mL*min 91 248 + 8330 92241 +7071 071
Oxyntomodulin, pg/mL*min 88583 +9524 90212+10275 0.84
GLP-1, pg/mL*min 7489 + 1038 7368 * 756 0.97
GIP, pg/mL*min 37622 + 2325 35050 £4109 0.61
FGF-21, pg/mL*min 13 081 + 2651 12039+2429 031
C-peptide, ng/mL*min 1002 + 152 946 £ 125 0.63
GH, ng/mL*min 74 £ 25 40+£6.7 0.32
IGF-1, ng/mL*min 23 971 + 4025 24706 +3408 0.68
IGFBP3, ng/mL*min 1522 + 223 1695 + 301 0.68
Cortisol, ug/dL*min 2189 + 196 1840 + 99 0.18

Abbreviations: AUC, area under the curve; FGF-21, fibroblast growth factor 21; GH, growth hormone; GIP, gastric inhibitory polypeptide; GLP-1,

glucagon-like peptide-1; IGF-1, insulin-like growth factor 1; IGFBP3, insulin-like growth factor-binding protein 3; PY', peptide Y.

a . — . .
AUC varibles are expressed as concentration*time (0-30-60-120-180 minutes). Data shown as means + SEM. Pvalues are from general linear
mixed-model analysis of day-5 values of the walnut and placebo phases. Variables of treatment, visit and sequence were included in the model as

fixed effects and participant-within-sequence was included as a random effect.
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