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Abstract

Aim: Recent years have witnessed a proliferation of observational research examining the 

association between glucose-lowering medications and cancer, paired with an increasing concern 

on the quality of the produced evidence. Our objective was to review published studies in this area 

to identify the most common methodological challenges and sources of bias.

Methods: We systematically searched PubMed to identify observational studies on glucose-

lowering medications and cancer published between January 2000 and January 2016. We assessed 

the design and analytical methods used in each study, with a focus on their ability to achieve study 

validity, and further evaluated the prevalence of major methodological choices over time.

Results: Out of 155 studies evaluated, only 26% implemented a new user design, 41% used an 

active comparator, 33% implemented a lag or latency period, 51% adjusted for diabetes duration. 

Potential for immortal person-time bias was identified in 63% of the studies; 55% of the studies 

adjusted for variables measured during the follow-up without appropriate statistical methods. 

Aside from a decreasing trend in adjusting for variables measured during the follow-up, we 

observed no trends in methodological choices over time.
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Conclusions: The prevalence of well-known design and analysis flaws that may lead to biased 

results remains high among observational studies on glucose-lowering medications and cancer, 

limiting the conclusions that can be drawn from these studies. Avoiding known pitfalls could 

substantially improve the quality and validity of real-world evidence in this field.
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Introduction

Cancer is rapidly becoming a major global health burden as longer lifespans lead to more 

age-related disease, and patients with diabetes, in particular, may be at an increased risk of 

cancer and cancer-related mortality.1 Since there are more than 400 million people 

worldwide with diabetes,2 the potential role of glucose-lowering therapies in cancer 

initiation or promotion has attracted substantial attention, further fueled by the rapidly-

growing access to large longitudinal databases in the form of healthcare claims data, 

electronic medical records, or disease registries. More than one hundred observational 

studies have examined the association between metformin and cancer, with many finding 

metformin protective, leading to initiation of randomized controlled trials to test the 

potential for metformin to prevent cancer or improve cancer outcomes.3 At the same time, 

higher risk of cancer has been reported in insulin users,4–8 as well as in patients on 

sulfonylurea therapies.7,9,10

Alongside the proliferation of research on the association between glucose-lowering 

treatments and cancer, there has been a growing concern about the quality of these studies 

and their potential susceptibility to bias.3,11 Many of the studies that reported a protective 

effect of metformin on cancer have been found to be afflicted with immortal time and other 

time-related biases that could, at least partially, explain the protective association.12,13 

Arguments have been made that some of the harmful effect of insulin (and other therapies) 

may represent the natural course of underlying diabetes or prodromal cancer effects.11 A 

recent systematic review that evaluated observational studies on the association between 

long-acting insulin analogs and cancer found important methodological shortcomings in 

most of them.14 The Outcomes Reduction with Insulin Glargine Intervention (ORIGIN) 

randomized controlled trial and subsequent analyses of post-trial effects during an additional 

2.7 years reported no effects of insulin glargine on the outcome of any cancer.15,16

Nonrandomized studies of drug effects are often not straightforward to conduct and can be 

affected by methodological challenges that compromise the validity of findings. Medications 

are not prescribed at random in clinical practice, and the decisions to initiate, monitor, stop 

or change therapy may be based on factors associated with the outcome.17–19 Assessing 

long-term drug effects, such as cancer, and differentiating them from the consequences of 

the natural progression of the underlying chronic disease, particularly in the context of ever 

changing therapy, brings in even more complexity. Nevertheless, with randomized controlled 

trials presenting their own challenges in the evaluation of long-term outcomes, real-world 

data, i.e., healthcare data from sources outside of traditional clinical trials, represent a 
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valuable source of information on the safety of medications as they are used in real-world 

settings.20–22 A thorough understanding of particular methodological flaws that most 

commonly occur in nonrandomized studies of glucose-lowering medications and cancer 

could help improve the quality of evidence produced in this area, its critical appraisal by 

clinical community and regulators, and, ultimately, treatment decisions.

The objective of this study was to review the methodology of observational studies that 

examined the association between glucose-lowering therapies and cancer occurrence, with 

the goal of identifying the most common challenges and sources of bias. We further 

evaluated whether key methodological choices changed over time.

Methods

Literature search and study selection

We conducted a systematic search in PubMed database for observational studies that 

examined the association between glucose-lowering medications and cancer, and were 

published from January 2000 to January 2016. The search strategy included a combination 

of terms related to glucose-lowering agents, cancer, and key methodological components of 

observational studies, such as cohort or case-control design (Appendix 1). We excluded 

studies in a language other than English, studies conducted in patients with secondary, i.e., 

caused by another disease or drug-induced, diabetes or gestational diabetes, studies in 

oncological patients, and studies not conducted in humans. Two investigators (KB and EP) 

screened the titles and abstracts of all identified articles, and further reviewed full texts for 

eligibility. In addition, we hand-searched relevant reviews and meta-analyses for articles not 

identified through the systematic search.

Data extraction and review

The included studies were categorized based on their study design, i.e., cohort or case-

control (Glossary). Relevant information was extracted using data collection forms 

customized to the specific study design (Appendix 2). Two investigators independently 

reviewed and extracted information from each article. Disagreements were resolved by 

consensus between the two investigators, and among all investigators, if necessary.

We extracted basic study characteristics: publication year, data source, geographic region, 

exposure evaluated, and type of cancer assessed. In addition, the forms contained a set of 

pre-specified questions assessing study design, analytical methods, transparency of 

reporting, and potential for bias. While some tools for assessing quality of observational 

studies have been proposed, most of them are poorly suited to evaluate the variety of design 

options and possible sources of bias present in pharmacoepidemiologic research.23 In 

addition, they are often not specific enough for a particular clinical research area. Thus, we 

developed a customized list of questions, that was compiled based on the authors’ expertise 

and published literature.11,12,14,20,24,25 In short, we assessed each study on inclusion of 

incident or prevalent users, choice of comparator/control group, reporting of how follow-up 

or exposure risk windows (for cohort and case-control designs, respectively) were defined, 

exclusion of patients with a prior history of cancer, consideration of lag and latency periods, 
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assessment of time-varying risks and cumulative duration effects, type of analytical 

approach (as-treated or intention-to-treat), confounding adjustment, investigation of 

differential surveillance during follow-up, and outcome identification. For confounding 

adjustment, we assessed whether the authors adjusted for age and sex, diabetes-related 

complications, diabetes therapy intensity (in studies where patients had prior treatment with 

glucose-lowering agents), obesity, HbA1c levels, diabetes duration, cardiovascular disease, 

smoking, alcohol, and medical surveillance prior to start of follow-up. We further evaluated 

whether the authors adjusted for any variables that were measured during the follow-up – 

and if they did, whether appropriate statistical methods, such as inverse probability 

weighting of marginal structural models or g-estimation, were implemented.26 These 

methods do not rely on stratification for confounding control and are recommended when 

adjustment for variables that may be on the causal pathway between exposure and outcome 

(e.g., HbA1c levels measured after initiation of treatment) is needed. Conventional 

adjustment methods, such as including variables in the regression model, may adjust for the 

effect of treatment on outcome operating through these variables and lead to biased 

estimation of the overall effect.26,27

Since immortal time, defined as period of follow-up during which, by design, outcomes 

cannot occur (Glossary), can result in strong bias in observational studies of medications 

and has been implicated in a number of studies on glucose-lowering medication and cancer,
12,28 each study was also evaluated for potential for immortal time bias based on whether the 

authors determined study inclusion or exposure status using information collected during 

follow-up and whether the follow-up started at the same time for both comparison groups.

Case-control studies were additionally evaluated on selection and treatment of controls: type 

of control sampling, whether cases were eligible to be controls, whether controls were 

matched to cases on duration of follow-up (to avoid time-window bias)29 and whether 

patients with pre-cancerous conditions (e.g., adenomas or cervical dysplasia) were included.

All analyses (including sensitivity and secondary) performed within each study were 

considered in the assessment. Since some design and analytical choices may have more 

impact on the validity of findings than others, and the degree of an impact is hard to predict 

for a specific study unless a bias analysis is implemented, we assessed each component 

individually rather than creating an aggregate quality score.

We further plotted the prevalence of methodological characteristics that may have substantial 

impact on study validity, such as new user design, active comparator, potential for immortal 

time bias, and adjustment for variables measured during follow-up without use of 

appropriate statistical methods, over time. In addition, we plotted the prevalence of the 

cohort design. Since there were few studies published prior to 2009, prevalence over time 

was evaluated over 2009–2015 period only, using logistic regression model with yearly 

prevalence as a dependent variable and time (in years) as an independent variable.
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Results

Eligible studies

Our search yielded 1613 articles. A total of 155 studies satisfied our inclusion criteria and 

were included in the review (Appendix figure 1 and Appendix 3).

Study characteristics

Basic study characteristics are presented in Table 1. The most common data sources were 

administrative health insurance claims (30%) and medical records (28%). Insulin 

monotherapy was the most frequently evaluated exposure (52%), followed by metformin 

(50%). More than 10% of studies evaluated exposure to either any glucose-lowering drug or 

any glucose-lowering drug from a pre-specified group of therapeutic classes. Most of the 

studies concentrated on a specific cancer; however, a third of the studies evaluated any 

cancer, either as their primary or secondary outcome of interest.

Methodology assessment

The methodological aspects evaluated in these studies are presented in Table 2 and are 

described in detail below.

Design choices

Of the 155 studies reviewed, 65% used a cohort design while the remaining 35% were case-

control studies. In half of the case-control studies, a nested case-control design was 

implemented (N = 27).

Less than a third of the studies utilized a new user design, which was a more common choice 

in cohort studies than in case-control studies (36% vs 9%, respectively). Cohort studies were 

also more likely to have an active comparator (54% of cohort studies vs 16% of case-control 

studies). Twelve percent of the studies compared patients exposed to the drug(s) of interest 

to non-diabetic patients, and 7% to non-pharmacologically treated diabetes patients. Case-

control studies were more likely to include non-diabetic patients or non-pharmacologically 

treated diabetic patients in their control groups (78%). The majority of the studies (92%) 

excluded patients with a prior history of cancer (either any cancer or a specific type of 

cancer).

In regard to methodological choices specific to case-control design, most case-control 

studies implemented random control sampling (84%) and risk-set sampling (82%). Only 

40% of case-control studies matched cases and controls on duration of follow-up, and in 

56% of studies with risk set sampling, cases were eligible to be controls prior to outcome 

occurrence (Appendix table).

As a consequence of their design choices, more than half of the studies (63%) were found to 

have potential for immortal time bias. In cohort studies, the potential for immortal time bias 

was most commonly arising due to assigning exposure status based on prescriptions 

dispensed during the follow-up (N = 46). For case-control studies, it was assessing study 
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inclusion based on information collected during the follow-up that was the most common 

mechanism.

Outcome definition and assessment

In 88 studies (57%) identification of outcome was based on healthcare claims only, while the 

remaining 43% of the studies utilized medical records or cancer registries either as the only 

or a supplemental source of outcome information. Among the studies that were relying on 

claims only, 17% required additional procedure or care (chemotherapy, surgery, radiation, 

bone marrow transplant, or palliative care), 16% utilized a previously validated algorithm 

and 13% validated their algorithm within their study population.

Only one-third of studies considered either lag or latency periods in their analyses to allow 

for development and detection of malignancy. Sixty-eight percent of studies evaluated either 

cumulative exposure or the effect of the duration of treatment. Most cohort studies (88%) 

conducted an intention-to-treat analysis, either as the main analysis or in addition to the as-

treated analysis.

Confounding adjustment

Almost all studies adjusted for age and sex (99%), but only half adjusted for diabetes 

duration (51%), diabetes therapy intensity (in studies where patients were not completely 

naïve to glucose-lowering therapy prior to cohort entry; 55%), smoking (44%), and obesity 

or BMI (62%). Adjustment for diabetes-related complications or HbA1c was implemented in 

less than one-third of the studies. Few studies adjusted for medical surveillance prior to drug 

initiation (19%) or evaluated differential surveillance (to avoid detection bias) during follow-

up (21%). Case-control studies were more likely to adjust for variables that were measured 

during follow-up (87% vs 37% of cohort studies); none of the studies that adjusted for 

variables measured during follow-up implemented statistical methods that are appropriate 

for such adjustment (g-methods).

Prevalence over time

Appendix Figure 2 presents the prevalence of studies with 1) a cohort design, 2) an active 

comparator, 3) potential for immortal time bias, 4) new user design, and 5) adjustment for 

variables measured during follow-up without proper statistical methods. The prevalence of 

studies with adjustment for variables measured during follow-up decreased during the study 

period. We did not observe any noticeable trends in the prevalence of other characteristics. 

Appendix Figures 3–6 present the prevalence of these characteristics among cohort studies 

and case-control studies separately.

Discussion

In our review of 155 observational studies that examined the association between glucose-

lowering therapy and cancer, we found that more than 60% of the studies had a potential for 

immortal time bias, at least half of the studies did not control for confounding due to 

diabetes duration and severity, only a third considered a lag or latency period, most studies 

grouped patients at various stages of their treatment, and none of the 85 studies that adjusted 
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for variables measured during follow-up used the appropriate statistical methods. While 

some of these shortcomings may be driven by limitations of the specific data sources utilized 

(e.g., lack of information on important confounders in healthcare claims data), many of the 

methodological flaws observed in this review could have been avoided through careful study 

design and analysis. Moreover, we found that the prevalence of suboptimal methodological 

decisions exhibited little change over time.

The persistence of suboptimal design and analytical choices is particularly disconcerting, 

given that most biases we have focused on in this review have been previously described, 

including in the context of glucose-lowering medications and cancer.11,12,24,28,30 There 

could be various reasons behind the slow penetration of established epidemiological 

principles into the design and analysis of real-world data. And yet, some of these principles 

are straightforward and can significantly improve the validity of a study, even when 

information on important risk factors is missing.

We have provided some recommendations for design and analysis of nonrandomized, 

observational studies in Table 4. As treatments are not given at random in clinical practice, 

accounting for confounding through study design and analytical strategies is paramount in 

observational research. While unexposed comparator groups are possible, comparing treated 

patients to untreated may introduce bias due to risk factors, often unavailable to researchers, 

that have led to treatment initiation.31 In addition, since diabetes itself may be a risk factor 

for cancer, patients treated with medications may have had diabetes for longer and be at a 

more advanced stage as compared to untreated patients. For that reason, active comparators 

are preferred, and in the context of glucose-lowering treatments, it is also important to 

compare treatments that are given at the same stage of the disease. Comparisons restricted to 

treated patients at a similar stage of diabetes may not only improve confounding control, but 

will also reduce potential for immortal time bias by providing a well-defined cohort entry 

(treatment initiation) for both groups.

A new user design, which starts following patients as they initiate treatment, is similar to 

randomized clinical trials that randomize patients to treatment initiation. The new user 

design “anchors” the study timeline so that study inclusion criteria and covariates are 

assessed before treatment initiation, and exposure is assessed prior to the start of follow-up. 

In our review, the most common reason for immortal time bias potential was treatment group 

assignment based on prescriptions dispensed during follow-up, making all the time from the 

cohort entry (start of follow-up) until that first prescription immortal. The second most 

common reason was assessing study inclusion based on information collected during follow-

up. Applying the new-user design with a clear temporal sequencing of study inclusion, 

covariates evaluation, treatment group assignment and outcomes assessment will safeguard 

not only against immortal-time bias, but also numerous other biases, such as bias due to 

confounding by differential baseline risk and selection bias due to depletion of patients 

susceptible to the outcome.20,32,33 Thus, while requiring patients to be new users may 

restrict the size of a cohort, as well as the total follow-up and the number of outcomes, the 

threats to internal validity caused by immortal time bias, confounding, and selection bias 

outweigh considerations about sample size and reduced power. In addition, the new-user 
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design allows evaluation of drug effects that vary over time or depend on duration of 

treatment.

While a new-user design with active comparator may generate cohorts of patients who are 

very similar in regard to baseline characteristics, adjusting for potential confounders in the 

analysis is still essential. Many techniques to adjust for variables exist, however, propensity 

score methods are particularly beneficial in high-dimensional data as they allow balancing 

many variables even when the number of outcomes is low, which may be the case with many 

cancers.34 A propensity score is an estimated probability of receiving one treatment over the 

other given the complete set of all selected covariates.35 The score can be further used via 

matching, stratification, regression or weighting.36,37 A propensity score approach that 

incorporates many clinical and healthcare utilization variables may substantially reduce 

confounding and could even balance important, but unmeasured, confounders by proxy.38 It 

will balance the unmeasured confounders, however, only to the extent that they are 

correlated with the measured variables included in the propensity score. Thus, confounding 

can never be completely ruled out in observation studies, although it can be reduced to 

minimal when an appropriate active comparator, along with propensity score methods, is 

utilized. Researchers who need to adjust for variables measured after the start of follow-up 

(either post-initiation confounders or adherence) should consult the appropriate resources on 

g-methods,26,27,39 since adjustment for variables on the causal pathway between exposure 

and outcome without the appropriate statistical modeling may lead to biased estimation.

Some additional points to consider when designing a study of glucose-lowering medications 

and cancer include differential surveillance, bias due to reverse causation, when either 

treatment initiation or discontinuation is a consequence of prodromal cancer symptoms, the 

reliability of outcome ascertainment (high specificity is preferred) in the data, and exposure 

or covariate misclassification. Only a third of the reviewed studies considered a lag period in 

their analyses. And yet most cancers require time to develop and manifest, which should be 

reflected in exposure risk window definition. The use of a lag period also reduces bias due to 

reverse causation, when worsening of a patient’s condition due to yet undiagnosed cancer 

triggers a change in therapy. While exact length of a lag or a latency period may be 

unknown, sensitivity analyses can be implemented to address the uncertainty.

Analyzing data using intention-to-treat (ITT) approach, when initial exposure status is 

carried forward regardless any treatment changes that occur during the follow-up, is another 

safeguard against reverse causation bias or informative censoring, particularly when 

compared to as-treated analysis, when patients are censored upon treatment change or 

discontinuation. In addition, ITT approach is more appropriate when effects are suspected to 

persist long after treatment discontinuation or to be irreversible, which could be the case 

with some cancers. It is worth noting, however, that ITT analysis is still open to bias due to 

differential loss to follow-up, and may make unsafe therapies appear safe when the rate of 

treatment changes and non-adherence is high.40 Thus, we would recommend both ITT and 

as-treated analyses when evaluating the effects of glucose-lowering medications on cancer. 

If data on reasons for non-adherence and treatment changes are available (in as-treated 

analysis) or when adjustments for differential loss to follow-up are needed (in either ITT or 
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as-treated analyses), adjustments should be done using methods that can handle post-

treatment-initiation confounders (g-methods).40

Since a third of the studies reviewed were case-control studies, we would like to point out 

that although a case-control study can provide unbiased estimates when rigorously 

conducted,25 ensuring appropriate temporal sequence of study inclusion, covariate 

assessment, and treatment group assignment is more challenging with case-control design as 

compared to cohort design. Almost 90% of the case-control studies we reviewed assessed 

exposure and covariates during the same period preceding an outcome. Some of these 

covariates could have been impacted by the exposure at the time of measurement and many 

represent variables on the causal pathway from treatment to outcome. Some additional 

issues we identified in case-control studies included potential for differential length of 

follow-up between cases and controls, which can lead to time-window bias,29 and potential 

for selection bias when choosing controls. Thus, unless restricted by data available, a cohort 

design may present a more intuitive and less error-prone approach.

In summary, while our review may have brought into question the quality of most 

observational studies on the cancer risk associated with glucose-lowering medications, it 

should not be interpreted as questioning the value of observational studies in clinical 

research and decision making. Quite to the contrary, since randomized clinical trials are 

often underpowered for long-term or rare safety endpoints and may suffer from their own 

challenges, such as differential dropout and short follow-up, real-world data may be our best 

source of relatively quick and inexpensive information on the link between medications and 

cancer. In addition, real-world data often reflect experiences of a wide spectrum of patients, 

many of whom would not be included in highly-selective clinical trials. With long-term data 

accumulating and additional data sources, such as electronic medical records and genetic 

data, becoming available and linkable between each other, and with our understanding on 

how to conduct observational studies of medications constantly growing, the value of real-

world data for evidence generation is only expected to increase. With growing access to 

these data, however, it is vital to apply rigorous study design and analysis principles to 

maximize study validity.

A few limitations of our review should be noted. Our review period ended in January 2016; 

thus, we did not evaluate whether the prevalence of methodological choices has changed in 

more recent years. While we evaluated the design and analytic choices in each study, we did 

not evaluate the amount of bias or confounding that resulted from these choices, which could 

range from minimal to substantial. Our review was based on our current understanding of 

biases and challenges in observational studies on medications and long-term outcomes, and 

as that understanding and knowledge is constantly evolving, we may have missed some 

important considerations. Finally, as with any systematic review, there is potential for 

publication bias. If studies with positive findings are more likely to be published, and 

positive findings are associated with biases and suboptimal study design, it is possible that 

the high prevalence of suboptimal design choices in published literature has been, at least 

partially, driven by publication bias.
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In conclusion, our review indicates that most observational studies on the association 

between glucose-lowering medications and cancer published prior to 2016 suffered from 

major methodological flaws that could have been avoided through the use of rigorous design 

and analysis. The clinical research community should strive to increase awareness of 

methodological missteps and addressable biases in observational studies of medications so 

that real-world data are effectively leveraged to provide the needed and valid information on 

the safety of treatments.
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Table 1.

General characteristics of the reviewed studies

Characteristic All (N = 155) Cohort studies (N = 100) Case-control studies (N = 55)

N (%) N (%) N (%)

Publication year

  2000–2008 11 (7%) 4 (4%) 7 (13%)

  2009 10 (6%) 5 (5%) 5 (9%)

  2010 11 (7%) 5 (5%) 6 (11%)

  2011 18 (12%) 12 (12%) 6 (11%)

  2012 34 (22%) 27 (27%) 7 (13%)

  2013 33 (21%) 18 (18%) 15 (27%)

  2014 26 (17%) 21 (21%) 5 (9%)

  2015 12 (8%) 8 (8%) 4 (7%)

Geographic region of study population

  North America 36 (23%) 21 (21%) 15 (27%)

  Europe 65 (42%) 38 (38%) 27 (49%)

  Southeast Asia 51 (33%) 39 (39%) 12 (22%)

  Middle east 1 (1%) 1 (1%) 0 (0%)

  Multiple regions 2 (1%) 1 (1%) 1 (2%)

Data source

  Administrative insurance claims 47 (30%) 38 (38%) 9 (16%)

  Medical records 44 (28%) 21 (21%) 23 (42%)

  Disease registry 6 (4%) 5 (5%) 1 (2%)

  Longitudinal survey/Secondary data analysis
† 8 (5%) 7 (7%) 1 (2%)

  Primary data collection
‡ 10 (6%) 0 (0%) 10 (18%)

  Multiple linked data sources 40 (26%) 29 (29%) 11 (20%)

Exposure§

  Alpha-glucosidase inhibitors 12 (8%) 8 (8%) 4 (7%)

  Dipeptidyl peptidase-4 inhibitors 2 (1%) 1 (1%) 1 (2%)

  Injectable glucagon-like peptide-1 receptor agonists 2 (1%) 1 (1%) 1 (2%)

  Insulin 80 (52%) 49 (49%) 31 (56%)

  Meglitinides 8 (5%) 4 (4%) 4 (7%)

  Metformin 77 (50%) 41 (41%) 36 (65%)

  Sulfonylureas 48 (31%) 25 (25%) 23 (42%)

  Thiazolidinediones 55 (35%) 34 (34%) 21 (38%)

  Any glucose-lowering medication 11 (7%) 8 (8%) 3 (5%)

  Any agent from a pre-specified group of therapeutic classes 8 (5%) 6 (6%) 2 (4%)

  Polytherapy with multiple therapeutic agents 11 (7%) 8 (8%) 3 (5%)
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Characteristic All (N = 155) Cohort studies (N = 100) Case-control studies (N = 55)

N (%) N (%) N (%)

Outcomes§

  Lip, oral cavity and pharynx cancer 3 (2%) 3 (3%) 0 (0%)

  Digestive organs cancer 60 (39%) 31 (31%) 29 (53%)

  Respiratory and intrathoracic organs cancer 15 (10%) 11 (11%) 4 (7%)

  Skin cancer 4 (3%) 4 (4%) 0 (0%)

  Breast cancer 27 (17%) 22 (22%) 5 (9%)

  Female genital organs cancer 10 (6%) 8 (8%) 2 (4%)

  Male genital organs cancer 26 (17%) 19 (19%) 7 (13%)

  Urinary tract cancer 28 (18%) 22 (22%) 6 (11%)

  Eye, brain and other parts of central nervous system cancer 1 (1%) 0 (0%) 1 (2%)

  Thyroid and other endocrine glands cancer 3 (2%) 3 (3%) 0 (0%)

  Lymphoid, hematopoietic and related tissue cancer 4 (3%) 4 (4%) 0 (0%)

  Any cancer
¶ 49 (32%) 42 (42%) 7 (13%)

  Any cancer from a pre-specified group of cancer types 2 (1%) 2 (2%) 0 (0%)

†
Secondary data analyses: analyses of data collected from clinical trials, prospective cohort studies or case-control studies conducted for a different 

research question

‡
Primary data collection: prospective cohort studies, case-control studies with recruitment, interview, questionnaire or follow-up

§
Categories are not mutually exclusive

¶
Including studies that evaluated any cancer except nonmelanoma skin cancer (NMSC) (7 cohort and 0 case-control studies)
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Table 2.

Methodological characteristics of the reviewed studies

Characteristic Total (N=155) Cohort studies (N=100) Case-control studies 
(N=55)

New user design 41 (26%) 36 (36%) 5 (9%)

Comparator

  Active comparator 63 (41%) 54 (54%) 9 (16%)

  Non-diabetic patients 19 (12%) 13 (13%) 6 (11%)

  Non-pharmacologically treated diabetic patients 11 (7%) 7 (7%) 4 (7%)

  Comparator group that includes either non-diabetic patients or 
non-pharmacologically treated diabetic patients, in addition to 
pharmacologically treated patients with diabetes

88 (57%) 45 (45%) 43 (78%)

Exclusion of patients with any or specific cancer history 142 (92%) 95 (95%) 47 (85%)

Potential for immortal person-time bias 98 (63%) 66 (66%) 32 (58%)

Clear definition of follow-up period (cohort) or exposure 
assessment window (case-control) provided in the manuscript 124 (80%) 91 (91%) 33 (60%)

Inclusion of lag and/or latency period 51 (33%) 33 (33%) 18 (33%)

Duration/cumulative exposure analysis 105 (68%) 68 (68%) 37 (67%)

Intention-to-treat analysis 88 (57%) 88 (88%) 0 (0%)

Adjustment for confounders

  Age and sex 154 (99%) 99 (99%) 55 (100%)

  Diabetes-related complications 43 (28%) 37 (37%) 6 (11%)

  Diabetes therapy intensity
† 84 (55%)a 55 (56%)a 29 (53%)

  BMI/obesity 96 (62%) 61 (61%) 35 (64%)

  HbA1c level 42 (27%) 29 (29%) 13 (24%)

  Diabetes duration 79 (51%) 47 (47%) 32 (58%)

  Cardiovascular disease 47 (30%) 39 (39%) 8 (15%)

  Smoking 68 (44%) 43 (43%) 25 (45%)

  Alcohol 42 (27%) 20 (20%) 22 (40%)

Adjustment for medical surveillance prior to drug initiation 29 (19%) 21 (21%) 8 (15%)

Investigation of differential surveillance during follow-up 32 (21%) 12 (12%) 20 (36%)

Adjustment for variables measured during follow-up without 
appropriate statistical models 85 (55%) 37 (37%) 48 (87%)

Source of information of cancer outcome

  Healthcare claims 88 (57%) 62 (62%) 26 (47%)

  Medical records and/or cancer registry, with or without claims 67 (43%) 38 (38%) 29 (53%)

Cancer outcome definition in claims-based studies (N=62 for cohort studies, N=26 for case-control studies)

  1 code of diagnosis 82 (93%) 57 (92%) 25 (96%)

  At least 2 diagnosis codes (within a specified time-period) 6 (7%) 5 (8%) 1 (4%)

  Additional information of surgery, chemotherapy, radiation, 
bone marrow transplantation, or palliative care 15 (17%) 4 (6%) 11 (42%)

Validation of outcomes in claims-based studies (N=62 for cohort studies, N=26 for case-control studies)
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Characteristic Total (N=155) Cohort studies (N=100) Case-control studies 
(N=55)

  Previously validated algorithm 14 (16%) 9 (15%) 5 (19%)

  Validated within the study 11 (13%) 4 (6%) 7 (27%)

†
Among cohort studies that allowed treatment with glucose-lowering agents prior to start of follow-up (N=98).
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Table 3.

Glossary of terms

Term Definition

Active comparator 
design

A study design that compares the effect of the drug of interest to another drug used in clinical practice instead of 
non-use.

As-treated analysis An analytical approach that terminates exposure to a medication and follow-up when a patient discontinues that 
medication

Case-control design A study design in which cases (patients with the disease) are identified and compared with controls (patients 
without the disease) with respect to the exposure of interest

Cohort design A study design in which a group of patients (a cohort) is identified and followed to ascertain the occurrence of an 
outcome

Confounding A mixing of effects that arises when patients with different baseline risks are compared – the resulting effect 
measure is a mix of drug effects and risk factor effects

Detection bias Bias that occurs when the degree of outcome surveillance is related to exposure and is differential among the 
exposure groups

Exposure risk window The time period during which a drug of interest puts a patient at risk of a harmful or beneficial effect with regard 
to a specific outcome

Immortal time bias Bias that derives from including a period of follow-up during which, by design, outcomes cannot occur

Intention-to-treat 
analysis

An analytical approach that carries forward the initial exposure status and disregards changes in treatment status 
over time

Lag period A time period following drug initiation during which a specific outcome cannot be attributed to the initiated drug

Latency period A time period after drug discontinuation during which a specific outcome can still be attributed to the discontinued 
drug

New user design A study design that starts following patients at the time they initiate a new drug (also known as incident user 
design)

Selection bias Bias that occurs when patient inclusion is related to both treatment and outcome, e.g., when prevalent users of a 
drug are compared to nonusers or incident users
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Table 4.

Recommendations for design and analysis of observational studies on glucose-lowering medications and 

incidence of cancer

- Include patients who initiate the drug(s) of interest (new user design) which increases the chances of identifying more comparable patients 
with respect to the underlying risk of cancer, and is particularly suited to detect and evaluate medication effects that vary over time

- Identify comparison groups of new users of medications with similar medical indications and disease stage (active comparator)

- Follow a well-defined temporal sequence of study inclusion, covariate assessment, exposure definition, and start of follow-up, to reduce the 
chances of immortal time bias

- Consider specific cancers and specific glucose-lowering medications; consider validating the outcomes if previously validating algorithms are 
not available

- Exclude individuals with prior cancer history

- Consider lag and latency times based on cancer biology and use sensitivity analyses to explore and identify the optimal exposure risk window 
with regard to the lag time between exposure and start of follow-up and the grace period after drug discontinuation

- Adjust adequately for all baseline factors associated with the choice of treatment and the risk of specific cancers. Consider implementing 
techniques that guarantee a high-dimensional confounding adjustment, such as propensity score methodology

- Investigate the possibility of differential surveillance and detection bias prior to and following diabetes therapy initiation and account for it in 
the analysis or in the interpretation of the results

- Include intention-to-treat analyses that do not censor patients when a treatment is stopped or changes, but also consider analyses accounting 
for adherence to the initial treatment over follow-up. If data on the drivers of adherence and treatment changes are reliably collected, 
adjustments should be done using methods that allow for control for time-varying confounders (marginal structural models and other g-
estimation methods).

- Consider multiple sensitivity analyses to assess robustness of findings
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