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Summary

Wearable device technology allows continuous monitoring of biological markers and thereby 

enables study of time-dependent relationships. For example, in this paper, we are interested in the 

impact of daily energy expenditure over a period of time on subsequent progression toward obesity 

among children. Data from these devices appear as either sparsely or densely observed functional 

data and methods of functional regression are often used for their statistical analyses. We study the 

scalar-on-function regression model with imprecisely measured values of the predictor function. In 

this setting, we have a scalar-valued response and a function-valued covariate that are both 
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collected at a single time period. We propose a generalized method of moments-based approach 

for estimation while an instrumental variable belonging in the same time space as the imprecisely 

measured covariate is used for model identification. Additionally, no distributional assumptions 

regarding the measurement errors are assumed, while complex covariance structures are allowed 

for the measurement errors in the implementation of our proposed methods. We demonstrate that 

our proposed estimator is L2 consistent and enjoys the optimal rate of convergence for univariate 

nonparametric functions. In a simulation study, we illustrate that ignoring measurement error leads 

to biased estimations of the functional coefficient. The simulation studies also confirm our ability 

to consistently estimate the function-valued coefficient when compared to approaches that ignore 

potential measurement errors. Our proposed methods are applied to our motivating example to 

assess the impact of baseline levels of energy expenditure on BMI among elementary school-aged 

children.

Keywords

Accelerometers; Energy expenditure; Functional data; Generalized method of moments; 
Measurement error

1 | MOTIVATING EXAMPLE

It is estimated that about 20% of the U.S. child population suffer from obesity and the 

percentage of childhood obesity has more than tripled in the last 40 years1. The 

consequences of childhood obesity include reduced healthy physiological, behavioral and 

psychological development during childhood. Obesity in children and adolescents also leads 

to adverse health outcomes such as type 2 diabetes and cardiovascular diseases in adulthood. 

To combat this epidemic, targeted environmental and behavioral school-based interventions 

designed to increase physical activity among school-aged children have gained widespread 

interest. Examples of these school-based interventions include activity permissive learning 

environments and the use of stand-biased desks in classrooms2,3,4,5.

In a recent study, stand-biased desks were introduced to a Texas school district as a means of 

increasing school day physical activity. A research question of interest was to quantify the 

association between daily energy expenditure and subsequent progression toward obesity 

among children. The children were given accelerometer armbands to approximate their daily 

energy expenditure. Since the levels of true daily energy expenditure is not directly 

observable, it is calculated as a function of the observed physical activity behavior from the 

devices. In this manuscript, we assume that the objective measures of energy expenditure 

obtained from physical activity monitors are prone to measurement error and develop a 

method of analysis that calibrates the measurement error and is easily applicable for 

assessing the effects of daily energy expenditure on 18-month change in BMI.

Technological advances on wearable or implantable devices enable continuous monitoring 

of biological markers resulting in complex data designed to answer scientific questions such 

as questions related to energy expenditure levels obtained from activity monitors6,7,8,9,10,11. 

The resulting data appear as either sparsely or densely observed functional data and 

techniques for functional data analysis are often used for their statistical analyses12,13. 
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Functional data analysis focuses on the analysis of infinite dimensional data that appear as 

curves, trajectories, shapes or images12,13. Methods developed for functional data analysis 

are based on extensions of ideas from multivariate analysis, nonparametric regression, 

functional analysis, dimension reduction techniques and square integrable processes14,12.

In determining the role of energy expenditure in obesity development among children, we 

consider the linear scalar-on-function regression model with a scalar-valued outcome Y and 

an imprecisely observed function-valued covariate, X(t). In this setting, X(t) is a latent 

function-valued covariate that is not directly observable. Instead, it is unbiasedly measured 

by W(t) prone to some measurement error. Linear scalar-on-function regression models 

extend classical regression methods to allow function-valued covariates with scalar-valued 

outcomes in regression settings and many statistical methods have been proposed to estimate 

the model15,16,17,18,13,12,19,20 when the covariate is measured with negligible error.

When functional data are contaminated with errors, measurement errors were often treated 

as additional error terms associated with the function-valued responses. For example,21 

considered nonparametric estimation of longitudinal data where the responses were 

longitudinally observed and contaminated with errors. Under independence error structures 

for the measurement errors, scatter plot smoothing methods were used to estimate the mean 

and covariance functions of the response curves21.22 provided methods for nonparametric 

estimation of response curves contaminated by random noise. The mean functions were 

estimated through the use of B-splines and functional principal component analysis. While22 

discussed the presence of measurement errors under independent realizations from a random 

process, the measurement errors considered were associated with random response curves.23 

assumed uncorrelated error structures and provided Gaussian and generalized shrinkage 

estimates for the functional principal components scores to improve the variance of the 

errors associated with the function-valued responses prone to errors.24 considered 

measurement error in the functional smooth random-effects model where the responses were 

curves with vector-valued covariates. The error process considered were random errors 

associated with the response curves and the model was estimated through quasi-score 

estimating equations24.25 proposed a nonparametric approach for the analyses of sparsely 

observed longitudinal data using functional principal component analyses in the presence of 

measurement errors. However, the measurement errors considered were errors associated 

with the observed responses25.

Most work addressing measurement error in functional data have treated these errors as 

additional error terms in the models as discussed above. To our knowledge, there is limited 

research on functional regression models when the functional covariate is contaminated with 

measurement error. A common practice in the literature is to pre-smooth each contaminated 

functional covariate, then use the smoothed curves to build and estimate regression models. 

However, our simulation studies show that the pre-smoothing step does not correct the 

attenuation bias in regression coefficient estimation caused by measurement error and it has 

similar numerical performances as the naive estimator which uses the contaminated 

functional covariate directly without any pre-smoothing. Similar findings were also 

discussed in26. More recently, some authors have considered treating these error terms as 

classical measurement errors. These recent developments27,26,28 extend methods for 
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addressing measurement errors in linear regression models to functional regression settings. 

Using the smoothing spline mixed model to estimate the measurement error variance,27 

developed a two-stage nonparametric regression calibration method for the partial functional 

linear model. The method proposed in27 relies on the assumption that the measurement 

errors are independent and identically distributed normal random variables. However, in 

practice, the measurement errors from the same curve can be correlated and not necessarily 

follow the normal distribution.26 provided a simulation-extrapolation approach for 

addressing imprecisely observed function-valued covariates with scalar outcomes. The 

authors allowed correlated measurement error structures, but required its covariance 

structure to be of a pre-determined parametric form. We recently developed methods for 

reducing measurement error biases associated with function-valued covariates prone to 

measurement error in regression models involving multiple function-valued outcomes28. We 

estimated the model parameters using the EM algorithm, while functional principal 

components were used to estimate the variance of the classical measurement error.

In this paper, we propose a different approach to incorporate measurement errors and allow 

unspecified error structures. A function-valued instrumental variable belonging in the same 

parameter space as X(t) is used for model identification, and the generalized method of 

moments-based approach is proposed to consistently estimate the functional coefficient, β(t), 
in the presence of functional measurement errors. Our proposed method for functional 

measurement errors do not treat the imprecisely observed function-valued covariate as 

longitudinal or time series data. Rather, we consider the functional covariate as a single 

function that is used to estimate a latent variable such as true energy expenditure. Under our 

newly developed methods, estimation of the measurement error covariance is not required 

for parameter estimation. To the best of our knowledge, the use of function-valued 

instrumental variables in the functional linear regression model is novel. We illustrate the 

impacts of measurement error and covariance structures on the estimated parameters through 

simulation studies. With the increasing use of wearable or activity monitoring devices to 

study biological phenomenon in biomedical research, it is critical that statistical methods 

that allow their accurate and unbiased assessments be developed.

The rest of the paper is organized as follows. Our proposed methodology is introduced and 

described in Section 2. We provide relevant asymptotic results in Section 3; while the 

simulation results and the application to our motivating example are provided in Sections 4 

and 5, respectively. Finally, discussions and concluding remarks are provided in Sections 5.2 

and 6, respectively.

2 | MODELS

Let (Y, X) be a pair of scalar-valued random variable and a random function assumed to be 

square integrable and defined on [0, 1] such that X = {X(t), t ∈ [0,1]}. The scalar-on-

function regression model with a mis-measured functional covariate for the ith subject is
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Y i = ∫
0

1

β(t)Xi(t)dt + εi, (1)

W i t = Xi t + Ui t , (2)

where β(t) is an unknown functional coefficient. The Xi(t) is a function-valued covariate that 

is not directly observable but measured by Wi(t). The Wi(t)’s serve as unbiased measures for 

Xi(t) subjected to measurement errors Ui(t) that are possibly correlated over time. For 

notation simplicity, we leave out the intercept α in (2) and assume both response Yi and 

functional covariate Xi are centered with ∑i = 1
n Y i = 0 and ∑i = 1

n Xi(t) = 0 for t ∈ [0, 1].

We first approximate β(t) in (1) using polynomial splines and write β(t) ≈ ∑k = 1
Kn γkbk(t)

where γk k = 1
Kn  are unknown spline coefficients, while bk(t)

k = 1
Kn  are a set of spline basis 

functions on [0,1]. In this manuscript, B-spline basis functions are used due to their 

flexibility and computational efficiency. These basis functions can be efficiently constructed 

using the Cox-De Boor recursion formula29. In the spline approximation provided above, the 

number of basis, Kn, is allowed to increase with the sample size and the corresponding 

spline functions provide better approximations for larger sample sizes. For large n, Kn is 

often chosen to be large enough to reasonably approximate the patterns in β(t). In subsection 

4.2, we propose a data driven method to automatically select Kn for finite samples.

Following the spline approximations, Model (1) becomes

Y i ≈ ∑
k = 1

Kn
γk∫

0

1

Xi(t)bk(t)dt + εi . (3)

Let Xik = ∫
0

1
Xi(t)bk(t)dt, W ik = ∫

0

1
W i(t)bk(t)dt, and Uik = ∫

0

1
Ui(t)bk(t)dt. The measurement error 

model in (2) becomes Wik = Xik + Uik and the full model is re-written as

Y i ≈ ∑
k = 1

Kn
γkXik + εi (4)

W ik = Xik + Uik k = 1, …, Kn, (5)
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where Ui1, …, UiKn
 are correlated errors. Under this representation, the proposed model 

reduces to a variation of multivariable linear regression model with measurement errors. 

However, the main difference is that the number of linear covariates in (4) and (5) is not 

fixed, instead it increases with the sample size.

2.1 | Instrumental variables

The presence of measurement errors in predictor variables of regression models renders the 

model unidentifiable without additional information30. Such additional information can 

come in the form of replicates of W(t), assumption of a known covariance function of the 

measurement error ΣUU, or the presence of instrumental variables for X(t) in the data. An 

instrumental variable is a variable that is correlated with X(t) but is, uncorrelated with U(t). 
The presence of an instrumental variable for X(t) in the data allows for consistent estimation 

of β(t) when X(t) is subjected to error. While the use of instrumental variables has been well 

studied in generalized linear regression models with measurement errors31,30,32,33,34,35,36,37, 

use of instrumental variables in functional linear regression settings with measurement 

errors are limited.38 considered the use of instrumental variables in scalar on function 

regression when X(t) is endogenous (i.e. corr{X(t), ε} ≠ 0). Using a function-valued 

instrumental variable, the authors extended the generalized method of moments approach to 

high dimensional settings to estimate the function-valued model parameter. While our 

proposed models also consider scalar on function regression, the current application focuses 

on the case where X(t) is imprecisely observed, rather than it being an endogenous covariate.
26 estimated the covariance matrix of the measurement error in the scalar on function models 

by treating the function-valued covariate as longitudinal data. In our proposed methods, we 

do not consider X(t) longitudinal. Rather, it is considered a function obtained at one time 

point to describe a latent variable or a true covariate. In this paper, an instrumental variable 

approach is proposed for model identifiability while generalized method of moments is used 

to consistently estimate β(t).

For i = 1, …, n, let Mi(t) i = 1
n  be a function-valued instrumental variable observed for the ith 

individual. Assume Mi(t) i = 1
n  are independent across subjects with {Mi(t)} independent of 

{Mj(t)}, for i ≠ j. Also, cov {Mi(t), Ui(s)} = 0 and cov {Mi(t), εi} = 0 for any t, s ∈ [0,1], 

while {Mi(t)} is correlated with {Xi(t)}. The independence assumption between Mi(t) and 

Ui(s) is often referred to as instrument exogeneity across time. While a strong assumption, 

this condition cannot be directly tested or assessed since Ui(t) is unobserved. Therefore, 

theoretical considerations regarding the application are often used in the selection of an 

instrumental variable in practice.

In addition to equations (1) and (2), we add the model equation for the instrumental variable 

as Mi(t) = δXi(t) + ωi(t), for some constant δ ≠ 0 and a mean zero error {ωi(t)}, which is 

uncorrelated with {Xi(t)}. While Mi(t) is correlated with Xi(t), it is not necessarily an 

unbiased measure for Xi(t). We reformulate our final model below with all the assumptions
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Y i = ∫
0

1

β(t)Xi(t)dt + εi (6)

W i t = Xi t + Ui t , (7)

Mi(t) = δXi(t) + ωi(t), (8)

where E(εi) = 0, E{Ui(t)} = 0 and E{ωi(t)} = 0. In addition, we assume cov{Xi(t), εi} = 0, 

cov {Mi(t),εi} = 0, cov {Mi(t), Ui(s)} = 0, for t, s ∈ [0,1] and i = 1, ⋯ , n. Our methodology 

is described next.

2.2 | Proposed method for estimating the functional coefficient

Let Mik = ∫ 0
1 Mi(t)bk(t)dt, for k = 1, …, Kn, and Mi = Mi1, …, MiKn

T
. Then one has

 cov  Y i, Mi ≈  cov  Xi, Mi γ, (9)

 cov Wi, Mi =  cov  Xi, Mi , (10)

where γ = γ1, …, γKn

T
. Therefore,

cov  Wi, Mi
Tcov  Y i, Mi ≈  cov  Wi, Mi

Tcov  Wi, Mi γ (11)

γ ≈  cov  Wi, Mi
Tcov  Wi, Mi

−1cov  Wi, Mi
Tcov  Y i, Mi , (12)

and the unknown coefficients γ can be estimated by

γ = ΩWM
T ΩWM

−1ΩWM
T ΩMY, (13)
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where ΩWM and ΩMY are sample estimates of cov(Wi, Mi) and cov(Yi, Mi) respectively, 

defined as

ΩWM = 1
n ∑

i = 1

n
 WiMi

T, (14)

ΩMY = 1
n ∑

i = 1

n
MiYi

T, (15)

and Mi, Yi and Wi, are centered variables, each with a sample mean of zero. When Mi and 

Wi, are of the same dimension, and ΩMW is an invertible square matrix, then γ  is reduced to 

γ = ΩMW
−1ΩMY. As a result, for any t ∈ [0, l], the estimator of the regression coefficient 

function is defined as

β(t) = ∑
k = 1

Kn
γ kbk(t) . (16)

The proposed β(t) is a generalized method of moments based estimator. While no 

distributional assumptions are required for Ui(t), the estimation of β(t) depends on the 

assumption that an instrument, Mi(t), exists in the data. Additionally, estimation of the 

covariance matrix for the measurement error is not required for the successful 

implementation of our proposed methodology. Under current functional data methodology, a 

naive estimator of β(t) would be based on Wi(t) and Yi with Wi(t) being treated as the true 

value for Xi(t). Simulation studies in Section 4 show that failure to account for potential 

measurement errors can substantially bias the results. The strength of our β(t) is that while 

Xi(t) might not be directly observed, estimation of its effect on the response is based on its 

unbiased measure as well as additional information provided in the data in the form of Mi(t).

3 | ASYMPTOTIC PROPERTIES

In this section, we establish the L2 consistency of β(t). We summarize the needed 

assumptions as follows:

1. We assume (Yi, Xi(t), Wi(t), Mi(t), t ∈ [0, l]) for i = 1, …, n are independent with 

the same distribution as (Y, X(t), W(t), M(t), t ∈ [0, l]).

2. The instrument variable M = {M(t), t ∈ [0, l]} is uncorrelated with regression 

error ϵ and the measurement error U = {U(t), t ∈ [0, l]} with cov{M(t), ϵ} = 0 

and cov{M(t), U(s)} = 0 for any s, t ∈ [0, l].

3. The latent functional covariate X = {X(t), t ∈ [0, 1]} is independent of the 

regression error ϵ with cov{X(t), ϵ} = 0 for t ∈ [0, l], but is correlated with 
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instrument variable M. Let ΣXM (t, s) = cov{X (t), M (s)}. We assume that for 

any positive functions h1, h2, h3, h4, there exist constants λ1, λ2 > 0 such that

λ1 ≤
∫ ⋯∫ h1(t)ΣXM(t, s)h2(s)h3 t′ ΣXM t′, s′ h4 s′ dtdsdt′ds′

∫ h1(t)h2(t)dt∫ h3 t′ h4 t′ dt′ ≤ λ2 .

4. We assume supt [E |M (t)|l + E |W (t)|l + E |U (t)|l] < +∞ for some sufficiently 

large l > 0.

5. The variance of the error term σε
2 = 𝔼 ε2  is bounded.

6. We assume ΣXX (t, s) = Cov {X (t), X (s)}, ΣMM (t, s) = Cov {M (t), M (s)}, ΣUU 

(t, s) = Cov {U (t), U (s)} are all positive definite bivariate functions and there 

exist positive constants λ1 and λ2 such that for any positive functions a1 (t), a2 

(t) ∈ L2[0, 1],

λ1∫ a1(t)a2(t)dt ≤ ∬ a1(t)ΣMM(t, s)a2(s)dtds ≤ λ2∫ a1(t)a2(t)dt,

λ1∫ a1(t)a2(t)dt ≤ ∬ a1(t)ΣUU(t, s)a2(s)dtds ≤ λ2∫ a1(t)a2(t)dt .

7. The coefficient function β(t) is (p + 1)-times continuously differentiable with β(t) 
∈ ℂp+1[0, 1].

8. The number of knots Nn ⩆ n1/(2p + 3) and interior knots k1, …, kNn
 satisfy that

min
j ∈ 1, …, Nn

|k j + 1 − k j|

max
j ∈ 1, …, Nn

|k j + 1 − k j|
> c

for some constant c > 0.

Assumptions (A1), (A4)-(A5) and (A7)-(A8) are standard in polynomial spline regression 

literature. Similar assumptions were also used in39,40,41. Assumption (A3) requires that 

{X(t)} and {M(t)} be correlated and {M(t)} contains information about {X(t)}. Assumption 

(A3) fails if {X (t)} and {M (t)} are independent of each other with ΣXM (t, s) = 0 for all t, s 
∈ [0, 1]. This is required to guarantee the invertibility of the matrix in (13) and the proposed 

generalized method of moments estimator to be well defined. Assumption (A6) implies that 

the covariance functions of random processes {X(t)}, {M(t)} and {W(t)} all are positive 

definite.

Theorem 1.

Under assumptions (A1)-(A8), the coefficient function estimator β(t) in (16) is L2–consistent 

with
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‖β(t) − β(t)‖2 = Op
1

Nn
p + 1 +

Nn
n ,

where ||·||2 is the functional L2 norm.

Theorem 1 establishes the L2 rate of consistency for β(t) in the presence of measurement 

errors. Our asymptotic result is comparable to the rate of convergence results given in42 

and43 when the functional covariates are measured without errors. Here we assume the 

functional covariates are observed continuously. As argued in43, the rate of convergence 

obtained in Theorem 1 does not change when the functional covariates are observed 

discretely at a sequence of grid points, provided that the maximum distance between any 

neighboring grid points converges to zero sufficiently quickly. The proof of our asymptotic 

results are provided in the Appendix.

4 | SIMULATION

In this section, we discuss our simulation results and describe the tuning parameter selection.

4.1 | Simulation Results

We now describe our simulation experiments and study the numerical performance of our 

proposed methodology. All data in our simulations were independently generated from the 

functional linear regression model

Y = ∫
0

1
β(t)X(t)dt + ε,

where we consider two forms for β(t) with β1 (t) = sin (2πt) and β2(t) = sin(π(8(t−.5))/2)/

(1+(2(8(t−.5))2)(sign(t−.5)+1)), and sign(a) = 1 and sign(−a) = −1, for a > 0. We only 

present the result for the case β1(t) and defer the simulation results for β2(t) in the 

Supplementary Material. The regression errors, ε, were simulated independently and follow 

a N (0, σ2). While the observable functional covariate X (t) = sin (2πt) + εX (t), where εX(t) 

denotes a mean zero Gaussian process with constant marginal variance σX
2  and cor{εX(t1), 

εX(t2)} = ρX for any t1 ≠ t2. We generated the observed functional covariate W (t) = X (t)+u 
(t) and the instrumental variable M (t) = X (t)+ ω (t) where errors u (t) and ω (t) are also 

mean zero Gaussian processes with constant marginal variances σu
2 and σω

2 , and correlations 

ρu and ρM respectively. All the error terms were generated to be independent of each other. 

In all our simulations, the number of replications considered were nr = 1000. For the 

methods described in this section, the number of knots were selected using a tailored cross-

validation approach as discussed in Section 4.2.
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Since we only report the results for β1(t), we will simply use β(t) and drop the subscript. Let 

βr(t) be the estimator of β(t) in rth replication and β(t) = 1
nr

∑l = 1
nr βr(t). Let tl l

ngrid be a 

sequence of equally spaced grid points on (0, l) to evaluate the performance of proposed 

estimator. We define the averaged squared bias of β(t) as

ABias2(β) = 1
ngrid

∑
l = 1

ngrid
β tl − β tl

2,

the averaged sample variance as

Avar(β) = 1
nr

∑
r = 1

nr 1
ngrid

∑
l = 1

ngstd
βr tl − β tl

2,

and averaged integrated mean square error as

AIMSE(β) = ABias2(β) +  Avar(β) .

We first generated data with σ = 1, σX = 4, σu = 4, σω = 1, ρX = ρu = ρM = 0 and four 

different sample sizes n = l00, 200, 500, l000. We estimated the regression coefficient 

function using the proposed methodology. However, the matrix inversion in the definition of 

the proposed method of moments estimator can be unstable. Therefore, we adopted the small 

sample modification30 to improve the finite sample performance of our proposed method. In 

addition to our approach, four additional approaches were also considered for estimating β 
in the simulation studies. In the first scenario, we assumed X(t) was observed and βX was 

estimated by regressing {Yi} on {Xik} directly in Equation (4). The second estimator, βW, 

ignored the measurement error and estimated the spline coefficients by regressing {Yi} on 

{Wik} instead. The third estimator βWRS is a variant of the second approach and obtained 

using individually pre-smoothed W i based on polynomial splines regression. The fourth 

estimator, βWS, is obtained by pre-smoothing each Wi using smoothing spline approach 

instead. Note that βX was not available in the real data analysis. However, it served as a 

benchmark to assess the performance of our estimator in the simulation studies. The naive 

estimators, βW, βWRS, βWS, ignored the measurement error in the data. The estimator βIV

was obtained using our proposed instrumental variable based method.

Table 1 reports the ABias2, Avar and AIMSE values for different estimators. For our 

proposed instrumental variable based estimator, βIV, we clearly see that ABias2, Avar and 

AIMSE all decrease with increasing sample sizes, supporting our asymptotic convergence 

result. Furthermore, the biases of βX and βIV are similar and much smaller than the bias of 

βW. Furthermore, the bias of βW was non-ignorable even when the sample size was 
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increased to l000. This suggests that failure to account for measurement error can lead to 

biased estimation of the functional coefficient. In addition, similar to βW, both βWRS and 

βWS have non-ignorable bias, which indicates that pre-smoothing step does not take care the 

attenuation bias. Comparing Avar, βW had the smallest sample variance due to larger 

variability in W and the fact that the variance of regression coefficient is inversely related to 

the variability in the covariates. Our proposed method of moment estimator βIV had the 

largest sample variance due to variability in both W and M. However, for relatively large 

sample sizes (n=500, or 1000), the proposed βIV had better overall performance than all the 

approaches based on W with smaller AIMSE values.

To investigate the performance of the proposed estimator when the response Yi follows a 

non-normal distribution, we now allow the regression error ε have a non-symmetric 

distribution centered at 0. Namely, the regression errors are independently and identically 

simulated from a Gamma(1.0, l.5) and then shifted to have mean 0. We report the simulation 

result in Table 2. Although, the approaches based on W tend to have smaller AIMSEs for 

smaller sample sizes, our approach tend to do comparably well for sample size 500 and 

dominates for large sample size (1000) in term of AIMSE. Our approach (βIV) along with 

βX also have have very low bias. Again, the naive approaches βW, βWRS and βWS preform 

poorly and have non-diminishing biases.

We now assess how the size of error terms of u(t) and W(t) affect the proposed estimation 

method. For ρX = ρu = ρM = 0, σ = 1, σX = 4, n = 500, we consider different combinations 

of (σu, σω) with potential values of σu, σω ranging from 0.5, l, 4 to l6. Thus, the signal to 

noise ratio in the measurement error and instrumental variable equation were 8, 4, 1 or 0.25. 

Table 3 summarizes our simulation results from the various set-ups. We found that 

increasing the error sizes associated with either the measurement error or the instrumental 

variable lead to larger AIMSEs. In addition, the error in the instrumental variable had a 

larger effect on the accuracy of our estimated β(t) when compared to the impact of the 

measurement errors. We also note that the AIMSEs for (σu = 1, σω = 16) was more than four 

times larger than those for (σu = 16, σω = 1). Although the naive and IV approaches tended 

to perform comparably for smaller values of σu, our IV approach dominates the naive 

approaches for larger measurement error and βs has the worse performance. But changes in 

the IV error variance have little effect on the AIMSE estimates for the naive approaches 

since IVs are completely ignored in the naive estimation. Therefore, it is not surprising naive 

approaches have smaller AIMSEs than our IV approach. We report the performance of the 

naive estimator in Section S.2 of the supplementary Material.

We are also interested in investigating the impact of the correlation in the error terms affect 

on our estimated coefficient. To do this, we simulated data with σ = 1, σX = σu = 4, σω = 1 

and n = 500, under varying degrees of correlations in εX(t), u(t), and W(t) with ρX, ρu, ρω = 

0, 0.25, 0.5 or 0.75, corresponding to none to strong correlation in the error terms. Table 4 

indicates that larger correlation in εX(t) lead to larger AIMSEs and less accurate estimate of 

the coefficient function, due to increased multi-collinearlity in predictor variables. However, 
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correlations in the measurement error u(t) and instrument error W(t) have less impact on the 

coefficient function estimation. This is due to the fact that these errors are independent of 

each other and of the covariate X(t). Similar to βX, the degree of correlation in X(t) is more 

relevant for the performance of our proposed estimator.

4.2 | Tuning parameter selection

Our proposed method requires specification of the number of bases beforehand by the 

practitioner. In non-parametric settings, selection of the number of basis functions amounts 

to a model selection problem. Additionally, it is well known that model selection in 

measurement error settings are complex44. In this manuscript, we provide an approach based 

on a 5-fold cross- validation for the selection of the number of basis functions. For each 

choice of possible number of bases, the original data set is divided into 5 non-overlapping 

subsets. The model parameters are then estimated repeatedly by excluding one of the subsets 

of the original data under each estimation. The mean prediction error of the fitted model, 

using W(t) in lieu of X(t), is estimated based on each data subset withheld, averaging over 

the 5 data subsets. Subsequently, the number of basis functions associated with the smallest 

mean prediction error is selected as the number of bases. Plots of the estimated mean 

prediction error for the function considered in our simulation studies were obtained. As an 

example, we plotted the prediction errors for one simulation run with sample size n = 500. 

Based on this plot, the number of bases selected was 5, see Figure 1.

5 | APPLICATION

In this section, we describe the application of our methods to the motivating example. 

Students enrolled in the study were followed over an eighteen month period. The study 

design was a cluster randomized trial where teachers within three schools in the College 

Station Independent School District were randomly assigned to receive either the treatment 

(stand-biased desks) or control (traditional desks)5. The data contain measurements obtained 

at baseline and at the beginning of each semester over two academic years. An objective of 

the study was to investigate the relationship between energy expenditure behavior at baseline 

and the 18-month change in body mass index (BMI) from baseline among the students. 

Thus, an outcome of interest was the difference or change in BMI values from baseline to 18 

months post follow up. The count of steps represents the number of steps taken over a given 

period of time and is an indicator of a subject’s physical activity levels. Current guidelines 

for recommended daily physical activity levels are based on the duration of time spent in 

either moderate or vigorous intensity activity levels and number of steps per day7,45,46,47,48. 

For example,47 indicated that activity levels of 12,000 steps/day and 15,000 steps/day for 

boys and girls, respectively were recommended for maintenance of healthy body 

composition for children between the ages of 6–12 years. While daily energy expenditure is 

defined as the total number of calories or energy used by the body to perform daily bodily 

functions.

In our application, energy expenditure and step counts were both collected per minute from 

the SenseWear Armband® (Body-Media, Pittsburgh, PA) among the 374 children enrolled in 

the study who wore accelerometers while in school for one week at baseline. The children’s 
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body weight, height, age, and sex were all collected at baseline, while their BMI’s were 

calculated at the beginning of each semester over the study period. True daily energy 

expenditure behavior, X(t), was considered the latent covariate. The surrogate measure for 

X(t) was the energy expenditure taken per hour obtained from the device, W(t). Step counts 

measured by the device was treated as the instrumental variable in this application, M(t). We 

assume that cov{X(t), M(t)} ≠ 0 and cov{M(t), U(t)} = 0. Justification of the use of 

instrumental variables is challenging in practice. However, an instrumental variable may be 

based on a separate independent measure of X(t). In our application, both M(t) and W(t) 
were obtained from the same device. But their measured or calculated measures were 

obtained separately. The SenseWear Armband® obtained the step count based on a 3-axis 

accelerometer and pattern recognition. While the calculation of total energy expenditure was 

based on heat flux, skin temperature, galvanic skin response, and anthropometrics49. A 

description of the final analytic sample is provided in Table 5.

To assess impacts of energy expenditure obtained at baseline on the difference in BMI 

values among the enrolled students, we first assumed that both W and M were discretely 

observed on a time interval [0, T]. On average, the students wore the devices for six hours on 

each school day during the week it was worn at baseline. Since the accelerometry data were 

collected per minute, we combined all the data for the week the device was worn and 

averaged all the minute-level data collected within the week to hourly-level data to reduce 

any potential noise associated with the data collection. Figure 2 provides the plot of Wi(t) 
and Mi(t) against time for all subjects included in the study. The grey lines illustrate the 

individual trajectories while the blue solid line is the smoothed mean for the observed 

energy expenditure and step counts among all the subjects.

Two sets of analyses were performed to illustrate our developed methods. We first assessed 

the relationship between energy expenditure and BMI at baseline. The second analysis 

involved investigating the impact of energy expenditure at baseline on changes in BMI 

values at 18 months follow up. Due to loss of follow up or missing data, 255 and 156 

students contributed to the baseline and the 18-month follow up analyses, respectively.

The average BMI values at baseline was 17.4 kg/m2(SD = 2.98) and 17.6 kg/m2(SD = 3.2) 

during the spring semester of the second academic year. The mean step counts per hour at 

baseline was 13.16 (SD = 11.5) and the mean energy expenditure at baseline was 1.21 kcal/

hour (SD = 0.41), while the average age of the children at baseline was 7.9 years (SD = 

0.80). About n = 174(68.24%) were whites, blacks n = 34(13.33%), Hispanics n = 25(9.8%) 

and others n = 22(8.63%). See Table 5 for additional details.

5.1 | Results

5.1.1 | Impacts of error-free covariates on outcomes—The error free covariates 

collected from the study include the student’s school, teacher, ethnicity, grade, age, gender 

and treatment assignment group. To adjust for these error free covariates as well as the 

cluster randomized setting of the study design, we first performed random effects analyses 

of the error free covariates against the outcomes. A random intercept for the nested effects of 

teachers nested within schools was included in the models. We also fitted a random effect 

term for both schools and teachers nested within schools, however, the models failed to 
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converge. The error free adjusted residuals were subsequently obtained from the regression 

fits from the mixed effects model with the random intercept term for teacher within school.

Two sets of mixed effects analyses were performed. The first analysis focused on BMI at 

baseline as the outcome. The second analysis focused on 18-month change in BMI from 

baseline as the outcome. The results from the error free analyses of both the baseline and 

follow up data are included in Table 6. Overall, we found that age had a significant impact 

on the BMI values at both baseline and at 18 months post baseline (p < 0.0001 and p = 

0.04). Additionally, there were statistically significant differences in the race effect when we 

compared the differences in BMI between students from ethnically minority populations 

(blacks and Hispanics) to the white students at both baseline and follow up (p < 0.0001). 

Specifically, we found that after controlling for all other covariates included in the model, 

the BMI values for the black and Hispanic students were 0.08 and 0.06 higher on average 

than the BMI values for the white students at baseline. While at follow-up, we found the 

BMI values for the black and Hispanic students to be 0.06 and 0.03 higher on average than 

the BMI values for the study students after controlling for age, school, teacher, baseline 

levels of BMI, and treatment assignment. No statistically significant difference was observed 

between the other race category when compared to the white students included in the study 

at baseline and follow up (p = 0.15 and p = 0.07). There were also no differences in the 

average BMI values between the schools, teachers, grades, and treatments at both baseline 

and follow up (p > 0.05).

5.1.2 | Impact of baseline levels of energy expenditure on BMI—Residuals 

obtained from the mixed effects assessments of the impacts of the error free covariates on 

the outcomes at were obtained from the baseline and follow up analyses the following model

E Yi jk bk( j) = Zi jk
T βz + bk( j) + ϵik( j)

where ϵik( j)   𝒩 0, σw
2 , bk( j)   𝒩 0, σb

2  Y i jk  =   log BMISpring16 , Zijk =(log(BMIFall14) 

ethnicity, grade, age, gender, treatment, teacher, school)⊤, i = 1, …,157 students, j = 1, …,3 

schools, k = 1, …,8 teachers (nested within schools). These residuals were subsequently 

used as the outcomes in our measurement error models. Thus, the outcome assessing the 

effects of energy expenditure on BMI were the error free and cluster randomized design 

adjusted residuals for the baseline measures of BMI for the first analyses and for the 

difference between BMI obtained at baseline and the BMI obtained at end of the study for 

the second analyses. Six knots were used in the application, while nonparametric bootstraps 

were used for computing the 95% point-wise confidence intervals for β(t).

We provide the results from the baseline analyses and the follow up analyses in Figure 3. 

Plots of the estimated functional coefficient and the estimated 95% point-wise confidence 

intervals are provided in the figure. For assessments of the impact of energy expenditure on 

BMI at baseline, the bootstrap confidence intervals did not contain the zero line completely, 

indicating that the functional coefficient was not zero across the whole time space. Similarly, 

in determining the impacts of baseline measures of energy expenditure on the 18-month 

change in BMI over the study period, the estimated bootstrap confidence intervals did not 
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contain the zero line completely. Because the function-valued coefficient was not completely 

zero across time, there was some statistical evidence of a relationship between baseline 

measures of energy expenditure and BMI values obtained at a future time, such as 18 

months post baseline. Additionally, the relationship observed depended on both the level of 

energy expenditure and time.

5.1.3 | Impact of measurement error on the analyses—In addition to our method 

of moments-based instrumental variable estimator, we also obtained naive estimators of the 

effects of energy expenditure on BMI see Figure 3. As illustrated in both sets of analyses, 

the approaches obtained without accounting for measurement error appeared notably 

different from the estimators obtained from the instrumental variable based approaches. 

Based on Figure 3, the impacts of measurement error on both sets of analyses depended on 

time. While it is well known in simple linear regression models that the effects of 

measurement on estimation is to attenuate its effects towards zero, its impact in this 

functional linear regression setting is more complex. For both sets of analyses, we found that 

the measurement error adjusted function-valued coefficients tended to be larger than the 

naive coefficient. However, the naive estimate of β(t) at baseline was found to be larger than 

the measurement error adjusted at the beginning and the end of the observational period.

5.2 | Discussion
50 recently studied the relationship between baseline energy expenditure and the three-year 

change in BMI among 182 five to ten year old children with overweight and obesity health 

conditions in Australia. Using regression analysis and change in BMI Z-scores, the authors 

concluded that baseline measures of energy expenditure significantly impacted the three-

year change in BMI among the children. However, our current results indicated that baseline 

levels of energy expenditure did have some statistically significant relationships on the 

future body weights among children, however, these impacts depended on activity levels and 

the time of activity.

In this manuscript, we developed an instrumental variable approach for addressing potential 

measurement errors associated with function-valued covariates in scalar on function 

regression models. The developed methods can be used for assessments of the impacts of 

data collected on biological markers obtained repeatedly over a dense time space on health 

outcomes. A limitation of our current approach is that the instrumental variable must be 

collected on the same time period as the unbiased measure for the true covariate. Thus, the 

developed methods are applicable for devices that collect data on multiple biological 

markers over the same time period.

Our current approach does not allow inclusion of random effects of error-free covariates 

directly into (1) to account for cluster randomized or impacts of demographics. Some future 

work in this area include accounting for multi-level designs as well allowing the inclusion of 

error free covariates. Finally, the current methods are based on assessing impacts of energy 

expenditure on health outcomes using mean regression methods. It will be interesting to 

discover how accounting for measurement errors associated with function-valued covariates 
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work in model settings that permit robust modeling of BMI such as quantile regression or 

other generalized robust model settings.

6 | CONCLUSION

We studied the scalar on function regression model with measurement error. In this setting, 

we considered a scalar valued outcome with a functional covariate that was corrupted by 

measurement error. Most existing methods either implicitly assume the measurement errors 

are independent over time, or the measurement error covariance is known or can be 

estimated. However, the measurement errors are likely to be correlated over time. In 

addition, the measurement error variances are never known and estimates are seldom 

available. In this paper, we took advantage of the additional information provided in an 

instrument variable and developed a generalized methods of moments-based approach to 

identify and consistently estimate the functional regression coefficient. To our knowledge, it 

is the first in the literature to use instrument variable approach to address the measurement 

error problem in the scalar on function regression model. Using B-spline basis expansions, 

we re-parameterized the functional linear regression model to a multiple linear regression 

model with measurement error. The function-valued coefficient was estimated by first 

identifying the model using a function-valued instrumental variable observed on the same 

time space as the surrogate measure, while the generalized methods of moments approach 

was used for estimation. The proposed methodology was motivated by a childhood obesity 

study focused on assessing the relationship between energy expenditure and subsequent 

progression to obesity among elementary school-aged children. We successfully applied our 

proposed model to conclude that the estimated association between baseline measures of 

energy expenditure and the 18-month change in BMI was sometimes significant. This 

association indicated that school programs and policies that increase physical activity among 

students might have some beneficial impact. In an effort to combat childhood obesity, 

physical activity policies within school are implemented to encourage more physical activity 

behavior among children. Our developed methods improves on the current statistical 

approaches used to evaluate the effectiveness of such policies.

Finally, our simulation studies indicated the importance of accounting for measurement 

errors when a function-valued covariate in functional linear regression model is suspected to 

be imprecisely observed. Failure to account for the measurement errors can lead to severely 

biased estimates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

A SKETCH OF TECHNICAL ARGUMENTS

We denote the B-spline basis of degree p on [0, 1] as bk(t)
k = 1
Kn . For notational 

convenience, we use a scaled B-spline basis in the proof, which is defined as Bk(t) = Nnbk(t)

for k = 1, …,Kn. With some abuse of notation, we still denote 

Xik = ∫
0

1
Bk(t)Xi(t)dt, W ik = ∫

0

1
Bk(t)W i(t)dt, uik = ∫

0

1
Bk(t)ui(t)dt for the scaled B-spline basis for 

simplicity.

By29, there exists a set of coefficients γ* = γ1*, …, γKn
*

T
 and a spline function 

βn*(t) = ∑k = 1
Kn γk*Bk(t) such that sup

t
|β(t) − βn*(t)| ≤ cNn

−(p + 1) for some constant c > 0. Let 

Qn(t) = β(t) − βn*(t). Then one can write

Y = α0 + ∫
0

1
β(t)X(t)dt + ε = α0 + ∫

0

1
βn*(t) + Qn(t) X(t)dt + ε

= α0 + ∑k = 1
Kn γk*Xk + ∫

0

1
Qn(t)X(t)dt + ε .

Therefore,

γ − γ* = ΩWM
⊤ ΩWM

−1
ΩWM

⊤ ΩMY − γ*

= ΩWM
⊤ ΩWM

−1
ΩWM

⊤ ΩWM − ΩUM γ* + ΩεM + ΩQM − γ*

= ΩWM
⊤ ΩWM

−1
ΩWM

⊤ −ΩUMγ* + ΩεM + ΩQM ,

where ΩUM = 1
n ∑i = 1

n UiMt
T, ΩεM = 1

n ∑i = 1
n εiMi, ΩQM = 1

n ∑i = 1
n QniMi and Ui, εi, Qni are 

centered versions of Ui = ui1, …, uiKn

T
, εi, and Qni = ∫

0

1
Qn(t)Xi(t)dt respectively. Thus, by 

Lemma 1 in supplementary materials included in the Web Appendix, there exists a constant 

c > 0, such that

β(t) − βn*(t)
2

= ∑ j = 1
Kn γ j − γ j* B j(t)

2
≤ c‖γ − γ*‖2

= c ΩWM
⊤ ΩWM

−1
ΩWM

⊤ −ΩUMγ* + ΩεM + ΩQM

2

= c −ΩUMγ* + ΩεM + ΩOM
⊤ΩWM ΩWM

⊤ ΩWM
−2 × ΩWM

⊤ −ΩUMγ* + ΩεM + ΩQM

By Lemma 4 in the Web Appendix, there exist c,C > 0 such that

Tekwe et al. Page 18

Stat Med. Author manuscript; available in PMC 2019 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



‖β(t) − βn*(t)‖2 ≤ c −ΩUMγ* + ΩεM + ΩQM
⊤ −ΩUMγ* + ΩεM + ΩQM

≤ C γ * ⊤ΩUM
⊤ ΩUMγ* + ΩεM

⊤ ΩεM + ΩQM
⊤ ΩQM .

By Lemmas 2,3,6 in the Web Appendix, one has 

β(t) − βn*(t) 2 = OP Nn/n + OP Nn/n + OP Nn
−(2p + 1) = OP Nn/n + Nn

−(2p + 1) .

Finally, an error decomposition gives that

β(t) − β(t) 2 ≤ β(t) − β*(t) 2 + ‖β*(t) − β(t)‖2

= OP Nn/n + Nn
−(2p + 1) + OP Nn

−(2p + 2)

= OP Nn/n + Nn
−(2p + 1) □ .
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FIGURE 1. 
Plots of the estimated mean prediction error for the function considered in our simulation 

studies.
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FIGURE 2. 
Plots of observed energy expenditure {W (t)} and mean step counts {M (t)} vs. time for all 

subjects at baseline from our motivating example. The figure confirms that the relationship 

between W(t) with time is nonlinear. In this setting W(t) is assumed to be an unbiased 

measure of X(t), while M(t) is an instrumental variable for X(t).
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FIGURE 3. 
Plots of measurement error adjusted and naive estimates of β(t) at baseline and also at 18 

months. In (a), we estimate the effects of energy expenditure on BMI at baseline and in (b) 

we obtain plots of the effects of energy expenditure on 18-month change in BMI for the 

students included in our motivating example. The shaded regions are the 95% point-wise 

Bootstrap confidence intervals, the blue line represents measurement error adjusted 

coefficients, while the pink line is the naive estimator that ignores potential measurement 

error.
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TABLE 1

This table assesses the impact of sample sizes on the estimators. It reports the averaged squared bias (ABias2), 

averaged sample variance (Avar) and averaged integrated mean squared error (AIMSE) for different sample 

sizes n. The response error is assumed to follow Normal distribution. The true parameter function is β1(t).

βX

n ABias2 Avar AIMSE

100 0.0017 0.1764 0.1781

200 0.0011 0.0864 0.0875

500 0.0001 0.0408 0.0408

1000 0.0000 0.0198 0.0199

βW

n ABias2 Avar AIMSE

100 0.0394 0.1121 0.1515

200 0.0400 0.0534 0.0934

500 0.0392 0.0246 0.0638

1000 0.0394 0.0121 0.0515

βWRS

n ABias2 Avar AIMSE

100 0.0393 0.1117 0.1510

200 0.0400 0.0538 0.0938

500 0.0392 0.0247 0.0638

1000 0.0393 0.0122 0.0515

βWS

n ABias2 Avar AIMSE

100 0.0145 0.3806 0.3951

200 0.0149 0.1676 0.1825

500 0.0144 0.0867 0.1011

1000 0.0147 0.0448 0.0595

βIV

n ABias2 Avar AIMSE

100 0.0017 0.2144 0.2161

200 0.0011 0.1044 0.1055

500 0.0001 0.0497 0.0498

1000 0.0000 0.0244 0.0245
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TABLE 2

This table assesses the impact of sample sizes on the estimators. It reports the averaged squared bias (ABias2), 

averaged sample variance (Avar) and averaged integrated mean squared error (AIMSE) for different sample 

sizes n. The response error is assumed to have a Gamma(1, 1.5) distribution, where Gamma(α, β) denotes a 

distribution with mean αβ. The true parameter function is β1(t).

βX

n ABias2 Avar AIMSE

100 0.0009 0.3963 0.3972

200 0.0014 0.1887 0.1901

500 0.0001 0.0895 0.0895

1000 0.0000 0.0438 0.0438

βW

n ABias2 Avar AIMSE

100 0.0380 0.2301 0.2681

200 0.0395 0.1078 0.1474

500 0.0390 0.0519 0.0909

1000 0.0391 0.0252 0.0642

βWRS

n ABias2 Avar AIMSE

100 0.0380 0.2306 0.2686

200 0.0395 0.1079 0.1474

500 0.0389 0.0520 0.0910

1000 0.0391 0.0254 0.0645

βWS

n ABias2 Avar AIMSE

100 0.0140 1.0100 1.0241

200 0.0145 0.3434 0.3579

500 0.0148 0.1974 0.2121

1000 0.0145 0.0941 0.1086

βIV

n ABias2 Avar AIMSE

100 0.0012 0.4335 0.4346

200 0.0013 0.2122 0.2135

500 0.0001 0.1012 0.1013

1000 0.0001 0.0496 0.0497
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TABLE 3

Impacts of varying magnitudes of measurement error and instrumental variable variance on our proposed 

estimator. The averaged squared bias (ABias2), averaged sample variance (Avar) and averaged integrated mean 

squared error (AIMSE) of β for sample size n = 500.

σω = 1 σu = 1

σu ABias2 Avar AIMSE σω ABias2 Avar AIMSE

0.5 0.0001 0.0506 0.0507 0.50 0.0001 0.0488 0.0489

1 0.0001 0.0504 0.0505 1.00 0.0001 0.0504 0.0505

4 0.0001 0.0497 0.0498 4.00 0.0001 0.0794 0.0795

16 0.0028 0.1070 0.1097 16.00 0.0003 0.4784 0.4787
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TABLE 4

The impact of correlation structures on the parameter estimates. The averaged squared bias (ABias2), averaged 

sample variance (Avar) and averaged integrated mean squared error (AIMSE) of β for sample size n = 500.

ρX ρu ρM

0 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

ABias2 0.0001 0.0001 0.0002 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Avar 0.0497 0.0540 0.0775 0.1521 0.0485 0.0483 0.0482 0.0552 0.0603 0.0652

AIMSE 0.0498 0.0541 0.0776 0.1524 0.0486 0.0484 0.0483 0.0553 0.0604 0.0653
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TABLE 5

Descriptive statistics for the study sample at baseline (n=255). “Other”=Asians/Native Americans, EE= energy 

expenditure, s.d.=standard deviation.

Variable Mean(s.d.)/ N(%)

BMI at baseline (kg/m2) 17.40(2.98)

BMI in Spring Year 2 (kg/m2) 17.55(3.18)

Average Step Counts/hour 13.16(11.51)

Average EE (kcal/hour) 1.2(0.41)

Age (years) 8.79(0.76)

Whites 174(68.24 %)

Blacks 34(13.33 %)

Hispanics 25(9.80 %)

Other 22(8.63 %)

Boys 132(51.76 %)

Girls 123(48.24 %)

Treatment 148(58.04 %)

Control 107(41.96 %)
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