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Abstract

Major depressive disorder is a chronic debilitating mental illness. Its pathophysiology at cellular 

and molecular levels is incompletely understood. Increasing evidence supports a pivotal role of the 

mitogen-activated protein kinase (MAPK), in particular the extracellular signal-regulated kinase 

(ERK) subclass of MAPKs, in the pathogenesis, symptomatology, and treatment of depression. In 

humans and various chronic animal models of depression, the ERK signaling was significantly 

downregulated in the prefrontal cortex and hippocampus, two core areas implicated in depression. 

Inhibiting the ERK pathway in these areas caused depression-like behavior. A variety of 

antidepressants produced their behavioral effects in part via normalizing the downregulated ERK 

activity. In addition to ERK, the brain-derived neurotrophic factor (BDNF), an immediate 

upstream regulator of ERK, the cAMP response element-binding protein (CREB), a transcription 

factor downstream to ERK, and the MAPK phosphatase (MKP) are equally vulnerable to 

depression. While BDNF and CREB were reduced in their activity in the prefrontal cortex and 

hippocampus of depressed animals, MKP activity was enhanced in parallel. Chronic 

antidepressant treatment readily reversed these neurochemical changes. Thus, ERK signaling in 

the depression-implicated brain regions was disrupted during the development of depression, 

which contributes to the long-lasting and transcription-dependent neuroadaptations critical for 

enduring depression-like behavior and the therapeutic effect of antidepressants.
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Introduction

Major depressive disorder is one of the most common neuropsychiatric illnesses. As a 

chronic debilitating disorder, depression affects millions of people worldwide yearly and 

represents a major economic and medical burden. Despite its high prevalence, brain 

mechanisms underlying the development of depression-like behavior are far from clear. 

Accumulating evidence from extensive studies on humans and experimental animals 

indicates that adaptations of distinctive signaling pathways in neurons of brain regions 

implicated in depression occur during the progression of depression. These long-lasting 

adaptive changes in the signaling pathways participate in the remodeling of different forms 

of neuronal and synaptic plasticity critical for enduring depression-like behavior.

An essential family of serine/threonine protein kinases is the mitogen-activated protein 

kinase (MAPK). These kinases function to regulate cellular growth, differentiation, and 

survival in proliferative cells [1]. In addition, MAPKs are expressed in postmitotic neurons 

of the adult mammalian brain, where MAPKs respond to changing synaptic input and 

regulate neuronal activity and synaptic plasticity via a transcription-dependent or –

independent manner [2]. Activation of the MAPK cascade requires four sequential events 

involving small GTPases (Ras and Rac proto-oncogenes), MAPK kinase kinases (Raf or 

MEKK), MAPK kinases (MEK), and MAPKs. After activation, MAPKs become a highly 

efficient signaling pathway linking a variety of extracellular signals to cytoplasmic, 

intranuclear, or synaptic responses [2-4].

A prototypic subfamily of MAPKs is the extracellular signal-regulated kinase (ERK) [1]. 

The Ras-Raf-MEK1/2 pathway is responsible for activating ERK via the dual function 

MEK-mediated threonine and tyrosine phosphorylation of ERK, whereas the dual-specificity 

MAPK phosphatase (MKP) and the serine/threonine protein phosphatase (PP) such as PP1 

and PP2A dephosphorylate and thereby deactivate ERK [5-7]. Among several ERK isoforms 

(ERK1/2/3/4/5/7), ERK1/2 have been most thoroughly investigated and characterized in the 

central nervous system [8]. Available data show that ERK1/2 play a pivotal role in various 

neuropsychiatric disorders, including depression.

Increasing evidence shows that the ERK pathway in the brain regions implicated in major 

depression is vulnerable to chronic stressors. ERK activity in the prefrontal cortex and 

hippocampus was reduced in suicide subjects. Various chronic stressors caused a reduction 

of the cortical and hippocampal ERK signaling in experimental rodents. The MEK inhibitors 

induced depression-like behavior and blocked the effect of antidepressants. Various 

antidepressants reversed the hypoactivity of ERK and alleviated depression-like behavior. 

Altogether, these data support a model that the ERK pathway is downregulated in the cortex 

and hippocampus of depressed humans and animals, which contributes to the development 

of depression and serves as a substrate of antidepressants. In addition, brain-derived 

neurotrophic factor (BDNF), an immediate upstream regulator of ERK, and cAMP response 

element-binding protein (CREB), a transcription factor downstream to ERK, were 

downregulated in parallel and play a similar role as ERK in depression. This review, by 

focusing on recent data, discusses the sensitivity and responsiveness of forebrain ERK to 

depression and roles of ERK in the pathogenesis of depression and antidepressant action.
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Changes in the ERK pathway in response to depression

Among initial attempts toward understanding the possible roles of ERK in depression, 

Dwivedi et al. assayed changes in expression and catalytic activity of ERK1/2 and 

expression of MKP-2 in various postmortem brain regions of suicide subjects with major 

depression as compared to non-psychiatric control subjects [9]. They found that ERK1/2 

expression at both mRNA and protein levels and kinase activity of ERK1/2 were reduced in 

the prefrontal cortex and hippocampus, two major brain regions implicated in depression 

[10], but not in the cerebellum. In parallel, MKP-2 that dephosphorylates and deactivates 

ERK1/2 was enhanced in its expression in the prefrontal cortex and hippocampus. Similarly, 

the upstream activator of the ERK pathway, i.e., a Raf kinase, was altered by depression. 

Among three Raf kinases, i.e., A-Raf, B-Raf and C-Raf (Raf-1), B-Raf but not Raf-1 was 

selectively reduced in its catalytic activity and protein expression in the prefrontal cortex and 

hippocampus of suicide subjects [11]. In addition to Raf kinases, MEK1, an immediate 

upstream activator of ERK1/2, was downregulated in its catalytic activity and 

phosphorylation and in its interactions with B-Raf [12]. These results from a series of human 

studies demonstrate the abnormality of the ERK pathway in defined brain regions of subjects 

with major depression.

In preclinical animal studies, the responsiveness of the ERK pathway to depression was also 

investigated mainly in the frontal cortex and hippocampus. ERK phosphorylation and 

expression in the hippocampus were not significantly altered in an acute animal model of 

depression (acute restraint stress) [13]. In different studies, a single acute session of restraint 

stress or other stressors increased ERK phosphorylation in the frontal cortex and 

hippocampus [14,15]. In contrast to the acute model, ERK activity in the hippocampus was 

inhibited in a chronic animal model of depression [16]. A large number of subsequent 

studies reported the similar downregulation of ERK in various chronic models of depression. 

For instance, ERK2 phosphorylation was reduced in the prefrontal cortex and hippocampus 

of rats showing depression-like behavior following chronic forced swim stress [17,18]. A 

downregulated level of ERK phosphorylation and expression occurred in the frontal cortex 

and hippocampus of adult rats that have received neonatal treatment with clomipramine, a 

chronic model of depression persisting throughout adulthood [19]. These neurochemical 

changes in the ERK system correlated well with depression-like sexual behavior[19]. Many 

other stressors that consistently induced depression-like behavior reduced ERK1/2 

phosphorylation in the frontal cortex and/or hippocampus [14, 20-34]. These data support a 

notion that the ERK pathway was downregulated in the prefrontal cortex and hippocampus 

following chronic stress. In further support of this notion, MKP-1 expression was elevated in 

the hippocampus of depressed mice [23]. Intra-hippocampal infusion of the MKP-1 inhibitor 

prevented depression-like behavior and normalized local MKP-1 expression and ERK 

phosphorylation. However, while prenatal restraint stress induced depression-like behavior 

and reduced ERK2 expression in the prefrontal cortex and hippocampus of one-month 

offspring rats [35], ERK phosphorylation and expression in the frontal cortex and 

hippocampus remained unchanged at 3 months of age following the prenatal stress [36]. 

There were the two other subclasses of MAPKs, the Jun N-terminal kinase (JNK) and p38 

kinase, which exhibited a decrease in their phosphorylation in the frontal cortex or 
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hippocampus. Thus, MAPK subclasses may differentially respond to depression, depending 

upon the specific model of depression, the developmental stage of depression, and other 

experimental conditions.

In addition to the prefrontal cortex and hippocampus, the lateral septum is a central site 

implicated in depression. As a major target of monoaminergic projections, the lateral septum 

receives the strongest noradrenergic and serotonergic input [37,38]. Early evidence indicates 

the association of deficiencies in monoaminergic transmission with depression. 

Antidepressant treatment markedly altered serotonin release and serotonin receptor signaling 

in the lateral septum in different animal paradigms of depression [39,40]. As a common 

signaling pathway downstream to serotonin receptors, ERK in the serotonin receptor-

enriched lateral septum is reasoned to be vulnerable to depression. In fact, in a rat model of 

depression, ERK phosphorylation was reduced in the lateral septum [13]. This indicates that 

inhibition of ERK in the lateral septum is also implicated in the development of depression.

Mechanisms underlying plastic changes in the ERK pathway

How adaptive changes in the ERK pathway in response to depression occur is incompletely 

studied. The less activation of ERK seen in depressed humans and animals could occur as a 

result of the concurrent downregulation of upstream elements that are responsible for 

activating ERK. At the receptor level, ERK is coupled to various neurotransmitter receptors, 

including serotonin, adrenergic, dopamine and glutamate receptors [8,41]. Activation of 

distinct subtypes of these receptors leads to phosphorylation of ERK. Intracellularly, ERK is 

subjected to the positive regulation by several common protein kinases, such as protein 

kinase A (PKA) and protein kinase C (PKC), and generally PKA and PKC activators 

activated ERK1/2 in the hippocampus [42]. Thus, the hypoactive state of any receptors or 

effectors (PKA or PKC) in response to depression may subsequently result in the less 

activation of ERK. Consistent with this, the activity level of PKA, PKC, and adenylyl 

cyclase was reduced in the postmortem brain of suicide subjects or patients with major 

depression [43-46] or in the brain of depressed animals [47,48]. The PKA activator exhibited 

the antidepressant activity [49], whereas the PKA and PKC inhibitors blocked the effect of 

antidepressants [50,51]. In addition, MEK1 was downregulated in its phosphorylation and 

catalytic activity in the prefrontal cortex and hippocampus of suicide subjects [12]. MEK1/2 

phosphorylation was decreased in the medial orbital cortex and dorsal endopiriform nuclei 

of the prefrontal cortex of stressed mice [24]. These data indicate that abnormal MEK1/2 

activity may be linked to aberrant responses of ERK1/2 to depression.

In addition to the elements catalyzing phosphorylation of ERK, dephosphorylation of ERK 

could be another layer of mechanisms underlying the downregulation of the ERK pathway. 

The phosphatases that dephosphorylate and thereby deactivate ERK could undergo adaptive 

changes in response to depression, which thereby results in corresponding changes in ERK. 

It has been reported that expression of phosphatases (MKP-1, MKP-2, PP1) was elevated in 

the prefrontal cortex and hippocampus of depressed humans or animals [9,19,23,52,]. 

Intracranial injection of the MKP-1 inhibitor reversed the reduced hippocampal ERK 

phosphorylation and reduced behavioral responses to stress [23,53]. Chronic antidepressant 

treatment normalized the responses of MKP-1 and behavior to stress, and mice lacking 
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MKP-1 were resilient to stress [52]. Thus, accelerated dephosphorylation of ERK due to 

hyperactive phosphatases contributes to the inactivation of the ERK pathway during the 

development of depression. It is likely that both activation and deactivation mechanisms 

work in concert to accurately control the responsiveness of ERK and depression-like 

behavior.

Roles of ERK in depression-like behavior and antidepressant effects

Plastic changes in the ERK pathway in depressed humans and animals imply a possible role 

of ERK in the development of depression. It is reasoned that direct inhibition of ERK may 

induce depression-like behavior if the loss of ERK activity is causally linked to the 

pathogenesis and symptomatology of depression. Indeed, while the acute behavioral effect 

of the ERK inhibition was inconsistent [54-58], chronic pharmacological inhibition of the 

ERK pathway by repeated infusions of U0126, a specific MEK inhibitor, into the dorsal 

hippocampus induced anhedonia and anxiety-like behavior [59]. U0126 after infusions into 

the medial prefrontal cortex also produced anhedonia. These results support that the lowered 

ERK activity in the frontal cortex and hippocampus contributes to mediating depression-like 

behavior. Consistent with this, while conventional ERK2 knockouts were not viable [60], 

conditional and region-specific ERK2 knockout in the central nervous system caused deficits 

in social behavior [61]. Overactivation of ERK2 in ERK1-deficient mice reduced 

depression-like behavior, which was fully reversed by the MEK inhibitor SL327 [56].

If inducible inhibition of ERK plays a role in mediating depression, restoration of the 

reduced ERK activity may be of an antidepressant property. In fact, a number of studies 

reveal that various antidepressants possess the common ability to reverse the loss of ERK 

activity in the frontal cortex and hippocampus of depressed animals. Antidepressants 

(amitriptyline and fluoxetine) reversed the inhibition of ERK1/2 phosphorylation in the 

frontal cortex and hippocampus when they suppressed depression-like behavior [18,20,21, 

although 62]. The antidepressant quetiapine in combination with transcranial magnetic 

stimulation also reversed the diminished hippocampal ERK1/2 phosphorylation and 

produced antidepressant effects [63]. Other antidepressants showed similar effects 

[24,27,28,31,33,34, 64-67]. In addition to antidepressants, a selective MKP-1 inhibitor 

sanguinarine injected into the hippocampus or ventrolateral orbital cortex increased ERK 

activation and reduced depressive immobility [23,53]. The effect of several antidepressants 

was blocked by a systemic, intracerebroventricular, or intrahippocampal injection of an 

MEK inhibitor U0126, SL327, or PD98059 [58,68-74]. The MEK inhibitor PD184161 also 

blocked the antidepressant effect of desipramine and sertraline [55]. These data altogether 

support the role of ERK in mediating the effect of antidepressants.

The ERK pathway serves as an information superhighway between the surface membrane 

and the nucleus and effectively links environmental signals to genomic responses. After 

activation, cytoplasmic ERK translocates to the nucleus where ERK activates specific 

transcription factors to regulate gene transcription [75]. The transcription factor Elk-1 is a 

nuclear substrate of ERK [75]. Another transcription factor CREB is also a downstream 

target of ERK [76]. Several studies reveal a role of the ERK-CREB coupling in depression-

like behavior and antidepressant action. Chronic stress induced depression behavior and 
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reduced ERK and CREB phosphorylation (activation) in the rat prefrontal cortex and 

hippocampus, which was reversed by fluoxetine [18]. Other studies also found that CREB 

phosphorylation was decreased in the frontal cortex and/or hippocampus of stressed humans 

and animals, which was usually accompanied by a decrease in ERK activity 

[30,34,65,77-80]. Antidepressants reversed the reduction of CREB phosphorylation in 

stressed animals [25,34,66,69,78,] or increased CREB phosphorylation in naive rats [81-84]. 

Infusion of U0126 into the medial prefrontal cortex or hippocampus induced depression-like 

behavior and reduced local CREB phosphorylation [59]. There results support a model that 

the ERK-CREB pathway is downregulated in the prefrontal cortex and hippocampus during 

the development of depression, which might participate in mediating depression-like 

behavior. As such, restoration of downregulated CREB could yield an antidepressant effect. 

Of note, the role of CREB in the nucleus accumbens seems to be different. Prolonged social 

isolation induced anxiety- and anhedonia-like symptoms in adult rodents [85]. Only the 

anxiety phenotype and its reversal by an antidepressant were mediated by CREB in the 

nucleus accumbens shell, while the anhedonia-like symptoms were not.

The BDNF-ERK pathway in depression

Neurotrophic factors are critical for the etiology and treatment of depression [86]. The 

MAPK cascade, including the ERK pathway, is one of the best-characterized signaling 

transduction pathways downstream to the BDNF-activated TrkB receptor [3]. Since ERK 

was downregulated in the prefrontal cortex and hippocampus of depressed humans and 

animals (see above), the BDNF signaling is likely reduced in depression. In fact, BDNF 

expression or TrkB phosphorylation was reduced in the prefrontal cortex and/or 

hippocampus of depressed humans and animals [25,29,34,74,87-91]. The reduction of TrkB 

phosphorylation occurred along with a decrease in ERK phosphorylation [20,66]. These 

results imply that BDNF could serve as a biomarker of depression as reduced BDNF 

indicates a higher state of vulnerability to depression. Indeed, a higher vulnerability to stress 

and depression was seen in humans with a decreased release of BDNF due to carrying a 

BDNF polymorphism (Val66/Met) [92]. A decreased volume of the hippocampus in 

depressed patients is consistent with the likelihood of a reduced neurotrophic factor support 

in the brain [93,94].

Antidepressants normalized the reduction of BDNF expression in the hippocampus of 

depressed patients and animals [25,29,34,70,74,91,95-97] or upregulated hippocampal 

BDNF expression [98-102], indicating a role of BDNF in the behavioral response to 

antidepressants. The role of BDNF is further supported by the following findings. Chronic 

peripheral administration of BDNF enhanced ERK and CREB phosphorylation in the mouse 

hippocampus and produced antidepressant effects in cellular and behavioral models of 

depression [103]. Direct injection of BDNF into the midbrain or hippocampus mimicked the 

antidepressant effect of BDNF administered systemically [104-106] and increased local 

ERK phosphorylation [106]. Inhibition of ERK with U0126 blocked the antidepressant 

effect of BDNF directly infused into the hippocampus [105]. The TrkB inhibitor K252a also 

caused a loss of effects of antidepressants [28,66,70]. In addition, heterozygous BDNF null 

mice were resistant to antidepressants [107] and displayed a depressive phenotype when 

combined with a low-dose of the MEK inhibitor or mild stress exposure [55]. Loss of 
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function of BDNF in transgenic mice [108,109] or depletion of hippocampal BDNF by 

transfecting lentivirus-derived shBDNF [110] suppressed the behavioral response to 

antidepressants, indicating that normal BDNF signaling is required for the effect of 

antidepressants. Collectively, BDNF has a potential to serve as an etiological and therapeutic 

biomarker for depression. While the precise mechanisms(s) underlying BDNF involvements 

are unclear, the ERK pathway seems play a role in linking BDNF to depression as well as to 

antidepressant properties.

Conclusions

ERK is enriched in postmitotic neurons in brain regions implicated in major depression. 

Long-lasting adaptive changes in ERK phosphorylation, expression, and function occur in 

the prefrontal cortex and hippocampus during the course of the development of depression. 

In addition to ERK, the ERK-linked BDNF and CREB are sensitive to depression and 

display comparable changes in their expression and function (Fig. 1). In fact, as sequential 

and coherent events, BDNF may be initially reduced in its expression and function in the 

prefrontal cortex and hippocampal, which subsequently leads to a decrease in downstream 

elements, i.e., ERK and CREB. Through the BDNF-ERK-CREB pathway as well as other 

pathways, extracellular signals are transmitted to the nucleus to regulate a network of the 

depression-associated genes, which transcriptionally determines the pathogenesis and 

severity of depression-like behavior [111]. In addition, the BDNF-ERK-CREB cascade is a 

substrate of antidepressants. Various antidepressants act to reverse the downregulated 

BDNF-ERK-CREB pathway to alleviate depression-like behavior. Thus, the BDNF-ERK-

CREB system represents a current target for developing new pharmacotherapies for 

depression.

While a traditional view is that ERK once activated translocates into the nucleus to regulate 

gene expression and thereby transcriptionally regulate cellular and synaptic activities, a sub-

pool of ERK also notably resides in peripheral structures of neurons, such as postsynaptic 

dendritic spines, in various brain regions surveyed [112-115]. A complete set of all MAPK 

cascade components are present in the postsynaptic density microdomain [116,117]. 

Moreover, synaptic ERK is readily activated in response to changing synaptic input [2]. 

Functionally, ERK interacts with and regulate a number of synaptic proteins, including 

scaffold proteins, ion channels and G protein-coupled receptors, to determine the strength 

and efficacy of synaptic plasticity [2]. Apparently, ERK resides and functions at synaptic 

sites in addition to the nuclear location. To date, whether and how synaptic ERK responds to 

depression and plays a role in the pathophysiology of depression and antidepressant action is 

unclear. Future studies need to elucidate accurate roles of synaptic ERK in the reshape of 

excitatory transmission and plasticity critical for the progression of depression.
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Figure 1. A schematic diagram illustrating the role of the BDNF-ERK-CREB pathway in the 
development of depression-like behavior.
Chronic stressors that cause depression-like behavior induce a reduction of BDNF 

expression in the brain regions implicated in the pathogenesis of depression, including the 

prefrontal cortex and hippocampus. This leads to downregulation of the ERK pathway 

downstream to TrkB, a receptor which BDNF interacts with. Chronic stressors also induce 

an increase in MKP activity in the same brain regions, which contributes to the 

downregulation of the ERK pathway. The downregulated ERK pathway results in a less 

amount of active ERK translocating from the cytoplasm to the nucleus, leading to 

hypoactivation of transcription factors such as CREB. Lowered CREB activity causes long-

lasting adaptive changes in expression of a discrete set of genes associated with depression 

and transcriptionally contributes to enduring depression-like behavior.
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