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Purpose: Scatter is a major factor degrading the image quality of cone beam computed tomography
(CBCT). Conventional scatter correction strategies require handcrafted analytical models with ad
hoc assumptions, which often leads to less accurate scatter removal. This study aims to develop an
effective scatter correction method using a residual convolutional neural network (CNN).
Methods: A U-net based 25-layer CNN was constructed for CBCT scatter correction. The establish-
ment of the model consists of three steps: model training, validation, and testing. For model training,
a total of 1800 pairs of x-ray projection and the corresponding scatter-only distribution in nonanthro-
pomorphic phantoms taken in full-fan scan were generated using Monte Carlo simulation of a CBCT
scanner installed with a proton therapy system. An end-to-end CNN training was implemented with
two major loss functions for 100 epochs with a mini-batch size of 10. Image rotations and flips were
randomly applied to augment the training datasets during training. For validation, 200 projections of
a digital head phantom were collected. The proposed CNN-based method was compared to a conven-
tional projection-domain scatter correction method named fast adaptive scatter kernel superposition
(fASKS) method using 360 projections of an anthropomorphic head phantom. Two different loss
functions were applied for the same CNN to evaluate the impact of loss functions on the final results.
Furthermore, the CNN model trained with full-fan projections was fine-tuned for scatter correction
in half-fan scan by using transfer learning with additional 360 half-fan projection pairs of nonanthro-
pomorphic phantoms. The tuned-CNN model for half-fan scan was compared with the fASKS
method as well as the CNN-based method without the fine-tuning using additional lung phantom
projections.
Results: The CNN-based method provides projections with significantly reduced scatter and CBCT
images with more accurate Hounsfield Units (HUs) than that of the fASKS-based method. Root
mean squared error of the CNN-corrected projections was improved to 0.0862 compared to 0.278 for
uncorrected projections or 0.117 for the fASKS-corrected projections. The CNN-corrected recon-
struction provided better HU quantification, especially in regions near the air or bone interfaces. All
four image quality measures, which include mean absolute error (MAE), mean squared error (MSE),
peak signal-to-noise ratio (PSNR), and structural similarity (SSIM), indicated that the CNN-cor-
rected images were significantly better than that of the fASKS-corrected images. Moreover, the pro-
posed transfer learning technique made it possible for the CNN model trained with full-fan
projections to be applicable to remove scatters in half-fan projections after fine-tuning with only a
small number of additional half-fan training datasets. SSIM value of the tuned-CNN-corrected
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images was 0.9993 compared to 0.9984 for the non-tuned-CNN-corrected images or 0.9990 for the
fASKS-corrected images. Finally, the CNN-based method is computationally efficient — the correc-
tion time for the 360 projections only took less than 5 s in the reported experiments on a PC
(4.20 GHz Intel Core-i7 CPU) with a single NVIDIA GTX 1070 GPU.
Conclusions: The proposed deep learning-based method provides an effective tool for CBCT scatter
correction and holds significant value for quantitative imaging and image-guided radiation therapy.
© 2019 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13583]
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1. INTRODUCTION

Cone beam computed tomography (CBCT) is widely used in
clinical practice and other fields. Its image quality is, how-
ever, degraded due to scatter. In general, scatter intensity is
related to scanning geometry, scanning parameters, imaged
object, and even detectors. Photons scattered at the detector
front wall, which are often called glare,1 also blur projections
and affect intensity quantification in reconstructed images. A
method commonly sought after for scatter intensity calcula-
tion is Monte Carlo (MC) simulations,2–4 but it is computa-
tionally intensive to apply to routine clinical practice.

Many scatter correction strategies have been proposed in
literature.2,5–10 These methods can be divided into hardware
based solution and algorithmic approach. A significant
advantage of the latter strategy is that no modification in sys-
tem design is required for CBCT imaging. Along with this
line, analytical scatter estimation models have been pro-
posed,5–8 which provide a fast solution as compared with
MC-based techniques. A scatter kernel model by Ohnesorge
et al.9 was proposed with the assumption that scatter can be
described by convolutional operations with a symmetric filter
representing scatter blurring effect called scatter kernels. Due
to the complexity of the problem, scatter-corrected images
with this model may contain residual artifacts.10 Sun and
Star-lack10 proposed an approach called the adaptive scatter
kernel superposition (ASKS) method to better handle the
symmetry problem. The fast adaptive scatter kernel superpo-
sition (fASKS) method, one of the ASKS methods, distorts
symmetric scatter kernels according to surrounding pixels.
However, the model assumes that all of the materials are
made of water or water-equivalent materials. As thus, while
the approach provides better images than the original scatter
kernel method, it is difficult to completely remove the inaccu-
racy in the final results, especially in a region containing air
or bony structures. Ultimately, the performance is fundamen-
tally limited by the achievable accuracy of the model.

Deep neural networks have recently attracted much atten-
tion for its unprecedented ability to learn complex relation-
ships and incorporate existing knowledge into the inference
model through feature extraction and representation learning.
Through an appropriate training by using large numbers of
paired projection and scatter images, the approach is able to
provide a powerful nonlinear predictive model of scatter dis-
tribution. Inspired by the superior performance of convolu-
tional neural network (CNN) in dealing with

multidimensional data, the approach has been widely used
for image classification,11 segmentation,12,13 super-resolu-
tion,14,15 and denoising.16 Specific to medical imaging, vari-
ous CNN models have been developed for low-dose fan-
beam CT image restoration,16,17 MR-to-CT image symthe-
sis,18,19 PET image segmentation,20,21 and so on.22 Recently,
Maier et al.23 proposed a CNN-based scatter correction for
industrial CBCT applications, and Hansen et al.24 demon-
strated that CNN-based CBCT intensity correction improved
photon dose distribution calculation accuracy.

This study aims to develop a fast and accurate deep learn-
ing-based CBCT scatter correction method. The proposed
method utilizes CNN to learn how to model the behavior of
scatter photons in the projection domain and then use the
model for subsequent scatter removal in the projection
images. We show that the performance of the deep learning
model is superior over the conventional scatter correction
method by using a few experiments. We also demonstrate that
the CNN model trained with projections acquired in full-fan
scan can be readily fine-tuned for scatter correction of CBCT
imaging with half-fan scan by using a transfer learning,
which is a general approach to apply a deep learning-based
model of a domain to another domain with a small amount of
additional training. Given the superior performance and high
computational efficiency of the approach in scatter correc-
tion, the proposed deep learning technique holds significant
value for future CBCT imaging and image-guided radiation
therapy (IGRT).

2. MATERIALS AND METHODS

2.A. Workflow of deep learning-based scatter
correction

Training of a deep learning model requires a large number
of annotated datasets, and this often presents a bottleneck
problem in the realization of a deep learning method. Instead
of empirically measuring a large number of paired x-ray pro-
jections and scatter distributions for supervised training, we
produce projection images and corresponding scatter-only
projection images using the MC technique. Details of the MC
simulations are discussed in Section 2.B.

Our deep learning-based scatter correction workflow is
summarized in Fig. 1. Training and evaluation processes
require three different datasets. First, the model is trained
using a training dataset. During the training, the validation
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dataset is used to monitor the model. To avoid any bias in the
performance monitoring with the validation dataset, indepen-
dent test datasets are carried out to test the generalization
capability of the model for completely new data.

Our CNN was trained to derive the scatter-only projection
Isc from measured projection I so that the scatter-free (i.e., the
primary) projection Ipr can be derived. Hence, we first obtain
training datasets consisting of a large number of paired input
and output data labeled as I and Isc, respectively, for super-
vised learning. Given a set of I, Isc and Ipr, we have

I ¼ Ipr þ Isc (1)

Subtraction of the output from input gives the scatter-free
projection Ipr. Although obtaining Ipr is our primary target of
the task and the CNN is capable of computing them, our
model was designed to output the residual scatter-only pro-
jections Isc. This approach is generally referred to as residual
learning, which performs superior to modeling the target
image directly when the input and target images are
close.25,26 I is relatively closer to Ipr than Isc, and the average
scatter-to-primary ratio over all dataset was 22.9% in this
study. Therefore, the residual learning is considered to be
suitable for this problem. Details of the CNN architecture are
described in Section 2.C.

2.B. Monte Carlo simulation and generation of
datasets

The MC simulation package GATE,27 which is wrapper
codes of GEANT4,28 was used to collect projection datasets.
CBCT geometry was simulated based on a CBCT machine
integrated with a proton therapy system (PROBEAT-RT,
Hitachi, Japan) and listed in Table I. The CBCT uses a flat-
panel detector (FPD) with 0.6 mm thickness of CsI crystal
arrays and a 298 9 298 mm2 surface area with 372 9 372
pixels. An energy spectrum of 125 kVp CBCT x-ray beams
was calculated with a software SpekCalc.29 The focal spot
size of the source was 1.2 9 1.2 mm2. Neither a bow-tie

filter nor grid was included between the source and a scanned
object. Source-to-detector distance and source-to-object dis-
tance were 2178 and 1581 mm, respectively.

A total of 6.25 9 108 photons were tracked for each pro-
jection, and the energies deposited to CsI crystal arrays and
the number of scatter interaction with both the scanning
object and the detector were recorded. Measured projections
I were defined as accumulated energy over all detected pho-
tons, including that of the scattered photons. Scatter-only pro-
jections Isc were calculated by summing the deposited energy
from the scattered photons. Scatter-free projections Ipr were
defined as the deposited energy from the primary photons.

Five digital phantoms were constructed to generate projec-
tions for deep learning model training (Fig. 2). For each
phantom, 360 projections were computed over one rotation
with an interval of 1° in full-fan scan mode. Chemical com-
positions of materials in the phantoms were obtained from
Hudobivnik et al.30 and White et al.31 First, a cylindrical digi-
tal phantom (phantom-1), which consists of PMMA of 18 cm
in diameter and eight cylindrical inserts of air, adipose, water,
breast 50/50, muscle, trabecular bone 200, bone 400, and
bone 1250, was constructed. The diameter of all the inserts
was 3.0 cm. The phantom-2 was also a cylindrical PMMA
phantom of the same diameter, but with five different inserts,
including four bone 1250 rots, one adipose, one water, one
muscle, and one breast 50/50. We note that the geometry of
the phantom-1 and phantom-2 is the same as the CIRS phan-
tom model 62 (CIRS, Inc., Norfolk, USA). Third, a cylindri-
cal digital phantom (phantom-3) of 20 cm in diameter with
seven cylindrical insert rods of 2.8 cm in diameter, with the
composition of muscle, adipose, water, blood, rib bone,
brain, and lung tissue, respectively, was constructed. The
geometry of this phantom is the same as that of the Gammex
phantom (Gammex, Middleton, USA), but the material com-
positions are different. The length of the digital phantom-1 to
-3 was set to be 20 cm to accommodate the CBCT recon-
struction geometry. Next, a spherical soft tissue phantom
(phantom-4) of 20 cm in diameter with eight randomly

FIG. 1. Diagram of our scatter correction workflow. Input and output were set to measured (I) and scatter-only (Isc) projections, respectively. I�SC illustrates label
obtained using the MC simulations. During validation and test phases, subtraction of the outputs from the inputs should be scatter-free projections Ipr. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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placed small spheres made of water (5.0 cm diameter), brain
tissue (4.0 cm in diameter), muscle (3.0 cm), bone (3.0 cm),
air (3.0 cm), lung tissue (2.0 cm), blood (2.0 cm), and adi-
pose (1.0 cm) were constructed. The phantom-5 was a cube
phantom with the geometry of a QUASAR Penta-Guide
phantom (Modus Medical Devices Inc., London, Ontario,
Canada). This phantom was made of PMMA with an inclu-
sion of air spheres. Aliasing errors when calculating the pro-
jections from the simulations were removed by median
filtering. A total of 1800 pairs of full-fan I and Isc were gener-
ated from the five phantoms. Data augmentations were
applied to the images during training, which increased train-
ing projection pairs to a total of 14 400 (see Section 2.C.).

For validation of the deep learning model, a digital head
phantom was constructed. Two hundred projections were
generated with the x-ray source rotating from posterior to
left-anterior oblique with an interval of 1°. The phantom was
generated from CT images of a head phantom (PH-3 head
phantom ACS, Kyoto Kagaku Co., Ltd., Kyoto, Japan).
The CT images have a spatial resolution of
0.977 9 0.977 9 2.5 mm3/voxel, with no noticeable arti-
facts. After all voxel intensity outside of the phantom was set
to �1000 Hounsfield Unit (HU), multilevel image

thresholding was performed to categorize voxels V into air
(V ≤ �400 HU), epoxy (�400 HU < V ≤ 20 HU), BRN-
SR230 (20 HU < V ≤ 130 HU), and rib bone31

(130 HU < V).
Similar to the validation datasets, two test datasets were

generated (Fig. 3). First, 360 projections of an anthropomor-
phic digital head phantom were collected for the full-fan test
dataset. This phantom was made from a patient’s treatment
planning CT image dataset with all the involved structures
segmented.32 The intensity outside of the body contour was
assigned to be �1000 HU, and regions encompassed by
the body contour were segmented into air (V ≤ �400 HU),
adipose (�400 HU < V ≤ 0 HU), muscle (0 HU <
V ≤ 200 HU), and rib bone (200 HU < V). Second, 360
half-fan projections of an anthropomorphic digital lung phan-
tom were simulated. Original CT images of a patient were
selected from The Lung CT Auto-segmentation Challenge
archive33 in TCIA database.34 After removing the couch
intensity manually, voxels were segmented into air
(�400 HU ≤ V), adipose (�400 HU < V ≤ 0 HU), soft tis-
sue (0 HU < V ≤ 130 HU), and rib bone (V ≤ 130 HU)
except for lung. The lung volume was specifically segmented
as lung tissue. Chemical compositions of each region were
obtained from White et al.31

2.C. Network architecture and details

Figure 4 illustrates the CNN architecture used in this
study. The main structure is inspired by U-net35 that has pro-
duced remarkable results in several image regression prob-
lems.19,36,37 The input and output projections had the
dimension of 372 9 372 9 1, and the third dimension repre-
sents channel size. Each two-dimensional (2D) convolutional
layer calculated feature map with a filter size of k and stride
of 1. The padding size was set to (k�1)/2 to keep feature map
dimensions unchanged. The first two 2D max pooling and
the last two 2D unpooling layers had a filter size of 2 whereas
others were 3. The 2D max pooling layer and the 2D unpool-
ing layer before and after the deepest layers had a stride of 2

TABLE I. Scan geometry of simulated cone beam computed tomography
(CBCT) machine.

Parameters

Values

Full-fan scans Half-fan scans

Source-to-detector
distance

2178 mm

Source-to-origin
distance

1581 mm

FPD matrix 372 9 372

FPD size 298 9 298 mm2

Image matrix 256 9 256 pixels 9 86 slices

Image size 215 9 215 9 215 mm3 392 9 392 9 215 mm3

FPD, flat-panel detector.

FIG. 2. Diagrams of the phantom-1 to -5 for training. Each color represents a material name listed on the right table.
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while others were the same as filter size. Concatenations
along the channel dimension were applied between the same
resolution layers to improve learning efficiency. Batch nor-
malization38 layers were applied after each convolutional
layer except for the first and the last layers. Rectified linear
units (ReLU)39 layers were applied for all layers. The ReLU
layer was also applied after the last convolutional layer
because Isc should not have negative values. Biases in all con-
volutional layers followed by the batch normalizations were
excluded manually because they were canceled out during
normalization.

The CNN model was constructed using the deep neural
network package Chainer40 version 4 with a GPU-based sci-
entific computing package CuPy.41 The CNN was trained
using backpropagation with Adam optimizer42 (a = 0.001,
b1 = 0.9, b2 = 0.999), and weight decay regularization
which coefficient value was set to 10�4. Data augmentations
of image 90°-rotations and flips were randomly performed
during training, which virtually increases training projection
pairs to 14 400 in total.

Two different loss functions were applied for the same net-
work structure to compare the performance of the CNN
model. The mean absolute error (MAE) and mean squared
error (MSE), which are commonly used as loss functions for
CNN regression problems, were chosen to assess the differ-
ence from the labeled data. MAE and MSE were, respec-
tively, computed by,

MAE ¼ 1
mN

X
n

Isc � I�sc
�� �� (2)

MSE ¼ 1
mN

X
n

Isc � I�sc
� �2

(3)

where m and n 2 [1, mN] are mini-batch size and pixel index,
respectively. Scatter-only intensity with * indicates the label
calculated using the MC simulations. In reality, the MAE is
known to find a sharper image than the MSE, whereas the
MSE is robust against noise.36,43,44 Although some papers44–
46 explored to determine the optimal loss function for a speci-
fic problem, no effective criteria have been yet proposed.

2.D. Evaluations of correction accuracy

To assess the CNN scatter correction model and effective-
ness of different loss functions, Ipr of the full-fan test dataset
were compared with the actual scatter-free projection Ipr

* in
four different scenarios (Table II). The first scenario was an
uncorrected case in which I was directly used. In the second
scenario, Ipr calculated using an analytical scatter correction
method called the fASKS-based correction was performed
(see appendix). The third scenario used Ipr obtained by the
CNN trained with loss function of MSE. The fourth scenario
applied Ipr with the trained CNN that has the same network
architecture as that in scenario 3 but was trained with MAE.
Note that all the trainings were implemented with the same
initial seeds of random generators. All of the image process-
ing and evaluations of this study were done using MATLAB
version 2017b (The MathWorks Inc., Natick, MA, USA).

The CNN correction model was evaluated with two differ-
ent metrics. First, intensity quantification accuracy of Ipr in

FIG. 3. Head and lung phantom diagrams. Gray-scale images are original computed tomography image, while color images show segmented phantom image.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. CNN architecture diagram. Yellow and red arrows represent two-dimensional (2D) convolutional layers with filter size of 3 and 7, respectively. Green and
light blue arrows indicate 2D max pooling and unpooling layers, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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negative log scale was compared for the four scenarios.
Because normalized negative-logged projections are used for
reconstructions, the accuracy of Ipr is much more important
for reconstructed images than those in linear scale. Compar-
ison between the scenarios 3 and 4 shows which loss function
is sensitive to the difference in negative log scale. Both MAE
and MSE consider the difference between the output and the
label in linear scale [Fig. 5(a)]. When they are regarded with
respect to the differences in negative-logged scatter-free pro-
jections Dnlog, Eqs. (2) and (3) are rewritten by,

MAE ¼ 1
mN

X
n

I � e�DnlogI�pr � I�sc
��� ���

¼ 1
mN

X
n

I�pr 1� e�Dnlog
�� �� (4)

MSE ¼ 1
mN

X
n

I � e�DnlogI�pr � I�sc
� �2

¼ 1
mN

X
n

I�pr
� �2

1� e�Dnlog
� �2

(5)

And Dnlog ¼ log
1
Ipr

� log
1
I�pr

¼ log
I � I�sc
I � Isc

(6)

These equations suggest that the absolute and squared
errors are functions of linear and squared I�pr, respectively
[Figs. 5(b) and 5(c)]. The second metric was the comparison

between reconstructed images from Ipr and I�pr. Median filter-
ing with a filter size of 5 9 5 was applied for all projections
before image reconstruction to reduce noise. The Feldkamp–
Davis–Kress reconstruction method with the Hanning filter
was applied for all scenarios using a GPU-based CBCT
reconstruction toolbox TIGRE.47 These images were then
converted to HU by,

HU ¼ l� lw
lw

� 1000 (7)

where l denotes the reconstructed linear attenuation coeffi-
cient images. lw indicates the reference water intensity and
calculated by the scatter-free reconstructed images of the
phantom-1. The CNN-corrected reconstructed images were
further evaluated by comparing with the fASKS-corrected
images using four different quality measures; MAE, MSE,
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM).48 The PSNR and SSIM are calculated by,

PSNR ¼ 10log10
max I�sc

� �2
MSE

 !
(8)

SSIM ¼
2lIsclI�sc þ C1

� �
2rIsc;I�sc þ C2
� �

l2Isc þ l2I�sc þ C1

� �
r2Isc þ r2I�sc þ C2

� � (9)

And C1 ¼ 0:01lð Þ2
C2 ¼ 0:03lð Þ2 (10)

where lX and r2X denote the mean and variance of X, respec-
tively. rXY is the covariance of X and Y. max(I�sc) returns the
maximum pixel value of I�sc. l is a dynamic range of projec-
tion images and was set to (216�1) in this study. These mea-
sures were calculated over all slices, and paired t-test was
performed for each measure to assess statistical significance
between CNN-corrected and fASKS-corrected images. A
value of P < 5% was considered to be statistically significant
in this study.

TABLE II. List of scenarios compared. MSE = mean squared error,
MAE = mean absolute error.

Scenarios Input projections Loss function

1 Uncorrected –

2 fASKS-corrected –

3 CNN-corrected MSE

4 CNN-corrected MAE

Ground truth Scatter-free –

(a) (b) (c)

FIG. 5. Comparisons of absolute and squared errors. Figure (a) shows the loss functions with function of linear difference. Figure (b) compares normalized loss
functions with function of negative-logged difference. Figure (c) illustrates the loss functions with function of the real scatter-free projection I�pr at Dnlog = �1.
[Color figure can be viewed at wileyonlinelibrary.com]
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2.E. Transfer learning of trained CNN model with
half-fan projections

To demonstrate the capability of the CNN model for dif-
ferent scan conditions, the CNN model trained with the
full-fan projection pairs was fine-tuned with a small
amount of half-fan projections for scatter correction of
large-sized patients. To generate additional training datasets
for half-fan scans, four new phantoms were constructed by
making two different modifications to the phantom-1 to -3.
The diameter of these phantoms was extended to
35.0 9 30.0 cm2, and the diameter of the phantom-3 was
extended to 25.0 9 20.0 cm2. 60 half-fan projections of
the modified phantoms, phantom-4 and phantom-5, were
collected over one rotation with an interval of 6°, providing
360 projection pairs in total. Assuming that the CNN
model trained for full-fan projections is capable of extract-
ing enough features to reconstruct half-fan Isc, the parame-
ters of last two convolutional layers and the last batch
normalization layer were tuned, while other parameters
were kept unchanged during training. To moderate learning
rate, the a value in the Adam optimizer was changed to
10�5. Data augmentation of image flips perpendicular to
the rotation axis was randomly performed. Other training
strategies for the transfer learning are the same as those in
the Section 2.C. To evaluate the impact of the transfer
learning, the accuracy of the test lung phantom images cor-
rected using the CNN models with and without the transfer
learning were compared.

3. RESULTS

3.A. Comparisons of scatter-corrected projections
in negative-logged scale

Figure 6 shows training curves of the scenarios 3 and 4
with MAE values of the full-fan validation dataset. The train-
ing loss values of both scenarios converge well, despite of the
fluctuating behavior during training. The CNN was trained
for 100 epochs with a mini-batch size of 10 for both scenar-
ios. Computation time for the training was about 10 h with a
PC installing single NVIDIA GTX 1070 GPU and 4.20 GHz
Intel Core-i7 CPU. Computation time required to correct 360
projections is approximately 4.8 s with the same PC.

Figure 7 compares the model calculation with the ground
truth I�pr in negative log scale for different scenarios. The dif-
ference maps between the two are also displayed for two pro-
jection angles. Because of scatter contamination, the scenario
1 has negative errors, especially in high intensity regions. In
the scenario 2, the accuracy of projection intensity in the soft
tissue regions is improved. However, as can be seen from the
second angle in Fig. 7, accurate prediction of scatter contribu-
tions in the bony regions remains challenging because the
fASKS method assumes that all of the scanned materials are
made of water or water-equivalent materials. In the scenario
3, the image is less noisy, but the accuracy in the bony
regions is worse than that of the scenario 2. The CNN model
in the scenario 4 leads to markedly improvement in quantifi-
cation accuracy. Almost all of the negative errors disappear.
Root mean squared errors of 360 projection intensities
against the ground truth in negative log scale were 0.278,
0.117, 0.100, and 0.0862 for the scenarios 1–4, respectively.

To further evaluate the influence of loss function on the
performance of CNN-based scatter correction, all projection
pixels were categorized into five groups according to I�pr
intensity [Fig. 8(a)]. For each group, mean squared errors of
Ipr with respect to I�pr in scenarios 3 and 4 were compared. In
both scenarios, the mean squared errors at low I�pr intensity
groups are relatively large due to the existence of large pho-
ton noise [Fig. 8(b)]. However, smaller errors were observed
at low I�pr groups in scenario 4 than scenario 3. In general, it
seems that the MAE is more sensitive loss function to errors
at low I�pr as compared to the MSE.

3.B. Scatter-corrected reconstruction

Figure 9 shows the scatter-corrected reconstructed images
together with the ground truth images in two different slices.
The HU value around the image center is lower in scenario
1 than that in the ground truth, which is often called cup-
ping artifact caused by the scatter. Furthermore, the scenario
1 has noticeable errors in low or high intensity areas such as
the nasal cavity and bone. In contrast, the HU value accu-
racy is visually improved in the scenario 2, but it contains a
negative error as well as streaking artifacts at bony structure.
Similarly, the scenario 3 has no cupping artifacts, but is con-
taminated by localized errors in air cavities and bony struc-
tures. A uniform negative error inside of the phantom is

FIG. 6. Training curves of the scenarios 3 (left) and 4 (right). Solid blue lines are loss function values of training data, and dotted orange lines illustrate MAE val-
ues of the validation data during training. [Color figure can be viewed at wileyonlinelibrary.com]
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observed. In scenario 4, almost all of the artifacts and regio-
nal errors are not observed. HU value difference is close to
zero among all pixels. These results demonstrate that the
CNN model can correct for scatter with high accuracy and
provides images that are visually comparable to the scatter-
free images.

The scatter-corrected images shown in the first slice in
Fig. 9 were further compared quantitatively. The histogram of
HU difference (Fig. 10) indicates that the median values are
�54.7, �13.1, �8.38, and �1.60 HU, respectively, for the
scenarios 1–4. A long, negative tail observed in the histogram
of scenario 1 is a reflection of the cupping artifact. The

FIG. 7. Comparison of the scatter-corrected projections with the ground truths in negative log scale for two projection angles. Color maps on the bottom row rep-
resent difference maps against the ground truths. [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

FIG. 8. (a) Histogram of I�pr pixel intensity. Dotted lines illustrate thresholds of different groups for (b). Figure (b) shows box plots of mean squared errors over
projection. Each category along the x-axis indicates group whereas “All” covers all projection pixels. Central red lines indicate medians, and box edges are 25%/
75% percentiles. Outliers were marked as red crosses independently. [Color figure can be viewed at wileyonlinelibrary.com]
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histogram of scenario 2 has a narrower width, but its center is
shifted to negative, indicating that the fASKS correction
improves HU value precision but not the accuracy of HU

value. The negative tail of scenario 3 indicates that the HU
value inside of the phantom or in the bony structures is lower
than that of the ground truth. The scenario 4 has a narrow
width and a median value close to 0. The scatter-corrected
images at other slices show similar results as Fig. 10. Since
the scenario 4 provides the best accuracy, we will focus on
the CNN model with the MAE loss function in the following.

The image quality of the CNN-based reconstruction (sce-
nario 4) is further compared with the fASKS calculation (sce-
nario 2) using four image quality measures (Table III). All of
the measures show that the CNN-corrected images lead to
better image quality. These results indicate that the CNN-

FIG. 9. Comparison of the scatter-corrected reconstructed images with the ground truths in two different slices. Color maps illustrate difference maps against the
ground truths. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 10. Histograms of the Hounsfield Unit intensity difference for differ-
ent study scenarios illustrated at the second row of Fig. 9. Pixels outside
of field-of-view were excluded.

TABLE III. Comparison of image quality of the head phantom images
between the fast adaptive scatter kernel superposition (fASKS) and convolu-
tional neural network (CNN) corrections (mean + SD). Mean absolute error
(MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) were used.

MAE (HU) MSE (HU2) PSNR (dB) SSIM

fASKS 21.8 � 5.9 1069 � 613 35.6 � 2.3 0.9995 � 0.0003

CNN 17.9 � 5.7 779 � 511 37.2 � 2.6 0.9997 � 0.0003

P-value 1.38 9 10�5 9.13 9 10�4 6.27 9 10�5 9.48 9 10�7
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based reconstruction can accurately represent the scatter-free
reconstructed images.

3.C. Transfer learning and its impact on correction
accuracy

The transfer learning was applied to the trained CNN
model of scenario 4. The CNN was trained for 15 epochs

with loss function of MAE using the half-fan training dataset.
The CNN-corrected images with and without the transfer
learning are shown in Fig. 11. The CNN model without tun-
ing provides more accurate images than the uncorrected
images although it was trained only with the half-fan projec-
tion pairs. The tuned-CNN-corrected images have better HU
value accuracy and less artifacts than the non-tuned-CNN or
the fASKS-corrected images. Comparison of the four image

FIG. 11. Comparison of the scatter-corrected lung phantom images with the ground truths for two different slices. Two different convolutional neural network
(CNN)-corrected images, obtained using the scenario 4 CNN model with and without the transfer learning, are shown. Color maps illustrate difference maps
against the ground truths. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE IV. Comparison of image quality of the lung phantom images between the tuned-convolutional neural network (CNN) correction and the fast adaptive
scatter kernel superposition (fASKS) and non-tuned-CNN corrections (mean + SD). Mean absolute error (MAE), mean squared error (MSE), peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) over central 70 slices were used.

MAE (HU) MSE (HU2) PSNR (dB) SSIM

fASKS 32.5 � 3.2 2423 � 559 30.6 � 0.9 0.9990 � 0.0003

CNN w.o. tuning 31.8 � 3.8 2699 � 974 30.2 � 1.2 0.9984 � 0.0005

CNN w. tuning 29.0 � 2.5 1882 � 376 31.7 � 0.8 0.9993 � 0.0002

P-value (vs fASKS) 2.41 9 10�11 4.72 9 10�10 1.71 9 10�12 6.98 9 10�17

P-value (vs CNN w.o. tuning) 5.91 9 10�7 1.11 9 10�9 7.36 9 10�15 2.80 9 10�32
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quality metrics further indicates that the tuned CNN model
outperforms both fASKS and non-tuned CNN models with
high statistical significance (Table IV). These results show
that the trained CNN model is expandable for other scan con-
ditions with transfer learning.

4. DISCUSSION

This study establishes a projection-domain scatter correc-
tion technique for CBCT using a residual CNN. The CNN-
corrected projection offers more accurate intensity quantifica-
tion and better image quality than the conventional fASKS
approach. The deep learning-based approach is able to take
prior knowledge into account efficiently and correct for scat-
ter contamination in the projections of the various imaged
subject. By avoiding using any handcrafted features, CNN is
able to learn and provide a sophisticated scatter correction
model without any assumptions. Once trained, the method is
computationally efficient, taking around 13 ms per projection
on a desktop computer with a single GPU.

We compared the performance of CNN model with two
major loss functions and found that MAE outperforms MSE
in recognizing negative-logged intensity difference Dnlog
from the label. Although the loss functions of the negative-
logged output from the negative-logged label can penalize
Dnlog, they were not successful in our experiments because

logarithm computation amplifies photon noise in the label
and it degrades the training efficiency. Label noise should be
taken into consideration for determining appropriate loss
functions.49 Though the final results are dependent on vari-
ous other factors such as quality of dataset, optimizer, or
training strategy, one possible reason responsible for the per-
formance variations is that MAE and MSE are differently
weighted by I�pr in negative log scale [Eqs. (4) and (5)]. As
illustrated in Fig. 5, the squared error is prominent at high
I�pr, which occurs mainly at pixels less attenuating, whereas
the same Dnlog at pixels with low I�pr is not penalized well.
In contrast, the absolute error is less dependent on I�pr than
the squared error and can better penalize Dnlog at low I�pr.
This explains why the scenario 3 has both larger error at pix-
els with lower I�pr than scenario 4 [Fig. 8(b)] and the negative
error inside of the phantom in the reconstructed images
(Fig. 9). To assess the impact of Ipr

* in the loss functions to
the residual errors, we introduce a loss function L,

L ¼ 1
mN

X
n

I�pr
� �k

Isc � I�sc
� �2

¼ 1
mN

X
n

I�pr
� �2þk

1� e�Dnlog
� �2

(11)

where k is a parameter to control the weight of I�pr. The same
CNN trainings were performed with a few different values of
k, ranging from 0, which is the original MSE, to 5, with an

FIG. 12. (top) Projection images obtained using with different k's. Color maps illustrate difference of the projection against the ground truth. (bottom) Compar-
ison of mean squared errors over all test data with different k's. Category along the x-axis indicates the same groups as that in Fig. 8. Central red lines indicate
medians, and box edges are 25%/75% percentiles. Outliers were marked as red crosses independently.
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interval of 1, and the calculated Ipr were compared with I�pr.
As illustrated in Fig. 12, the projection is degraded especially
at high I�pr with increasing k. Projections at other gantry
angles behave similarly. The selection of loss functions is
generally a challenging46,49,50 task, and needs to be refined in
the future.

The novelty of this study is reflected in four aspects. First,
our CNN model corrects both scatter and glare, while other
studies correct only scatter. Since the glared intensity can be
removed only using software-based scatter estimation tech-
niques,1,8 our CNNmodel is unique in this aspect. Second, this
study indicates that the features characterizing scatter distribu-
tions in anthropomorphic phantoms can be learned from
nonanthropomorphic digital phantom projections. Some pre-
vious studies19,24 investigated using image pairs of patients for
CNN-based image synthesis or restoration. It was noted that a
difficulty in using the patient dataset is that the paired images
are not always matched because of body movement or time lag
between images. Although the problem can, in principle, be
solved by applying image registration, it is difficult to guaran-
tee that all image pairs are perfectly matched.19 Moreover, the
MC simulations of patient images require rough approxima-
tions of body density and chemical compositions, which may
cause uncertainty in labeling the scatter-only projections.51

These mismatched pairs adversely influence the accuracy of
learning and inference. Nonanthropomorphic phantoms are,
on the other hand, static and made of known materials, and it
is not necessary to prealign the image pairs. Scanning of the
phantom with various scanning conditions is fairly straightfor-
ward and expand the distribution of training dataset. Learning
by using nonanthropomorphic phantom data thus improves
the quality of training dataset. Third, our study provides an
effective criterion for selecting appropriate loss functions for
deep learning-based corrections in projection domain.
Although this study only focuses on the CBCT-based scatter
correction, the criterion can be applied to other projection-do-
main corrections and other imaging modalities such as SPECT
or PET. Finally, we evaluated the feasibility of transfer learning
for large field-of-view (FOV) scans by fine-tuning a CNN
model obtained using smaller phantoms.

This study applied scatter correction in the projection
domain. Scatter correction in the image domain can also be
accomplished.16,17,37 In general, projection-domain scatter cor-
rection is advantageous for three reasons. First, the thickness
of the attenuation object is important for scatter estimation as
the scatter-to-primary ratio increases with the thickness. The
reconstructed image does not provide the thickness for pho-
tons passing through multiple slices. Projection domain calcu-
lation takes the volumetric contributions of scatter photons
more accurately. Second, the projection-domain correction is
well-adjusted to the network structure of CNN. CNN is
designed to connect only center and surrounding neurons to
enhance feature localizations and learning efficiency.52,53 It
hence provides superior results for problems in which infor-
mation required for inference is localized like image deblur-
ring,54 super-resolution,14,15 and denoising.16,17 Scatter effects
generally appear in a wide area of images and are difficult to

be inferred using a small area in image domain. In contrast,
scatter in a projection is well localized, and input pixel values
have a much larger influence on the inference of the output
pixel values at the same position. Finally, the number of pro-
jections is generally larger than reconstructed images for one
scan. The number of reconstructed images is limited by FOV,
and thin slice thickness increases the image number but leads
to image noise. The projection number is easily increased with
a smaller rotation interval, and projection quality is indepen-
dent of the number of projection. This advantage also holds
for other CBCT problems including beam hardening, metal
artifacts and CBCT-FBCT image synthesis.

We have only used MC simulations instead of real experi-
mental data for evaluation. The scatter-only or scatter-free
projections are not attainable in CBCT experiments. Avail-
able solutions are to use projections calculated by pre-evalu-
ated MC simulations,23 to use higher quality images like fan-
beam CT images24 or to apply image-to-image translation
networks with unsupervised learning.18,55,56 Our MC simula-
tion setups were referenced from specifications of a real
CBCT machine, but the FPD grid was not considered
because the data were not available. The best solution should
use projections considering all the geometrical parameters of
the imaging system during the training of CNN model. When
the grid information are available, the grid effect on the input
projections can be removed using theoretical models10,57

before applying the CNN correction. When the grid is com-
pletely unknown as in this study, the trained CNN model
needs to be fine-tuned to adjust for actual scans. Interpreta-
tions of all hyperparameters in the CNN is very difficult
because, unlike other machine learning algorithms, each
hyperparameter do not have effective correspondence (or
meanings) to the final results. Thus, their transparency is not
easily available. Interpretability of the deep learning tech-
niques is still a challenge and there are progressive efforts in
mitigating the “black box” nature of neural network.58,59

5. CONCLUSION

We developed an effective CBCT scatter correction
method using residual CNN. We demonstrated that the CNN-
corrected reconstruction outperforms the conventional
fASKS-based method. Computation of the model is fast and
suitable for real-time clinical use. This technique promises to
provide scatter-free CBCT images for IGRT and adaptive
radiation therapy.
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APPENDIX (A1)

FAST ADAPTIVE SCATTER KERNEL
SUPERPOSITION MODEL

The fASKS correction10 is one of the conventional projec-
tion-domain scatter estimation methods. It has a model in
which scatter intensity Isc of each projection is convolutional
intensity of primary intensity Ipr with an adaptive scatter ker-
nel hs.

Isc u; vð Þ ¼
ZZ
U

Ipr u0; v0ð Þhs u� u0; v� v0ð Þdu0dv0 (A1)

And hs u� u0; v� v0ð Þ ¼
X
i

ci u0; v0ð ÞRi u0; v0ð Þ � gi

u� u0; v� v0ð Þ��
1� c � sðu; vÞ � sðu0; v0Þð Þ�

(A2)

where Φ denotes the sensitive detector area. Symmetric
scatter kernel adapts to various thickness of a scanned
object and varies according to water-equivalent thickness
(WET) s of photon beams. i represents the number of
symmetric scatter kernels and R is a weighting function
switching the symmetric scatter kernels. Each symmetric
kernel is composed of an amplitude factor c and a form-
function g. A parameter c is an adaptive factor of sym-
metric scatter kernels. This model also considered glare,
and its effect is also represented using a filter called
glare kernel. Final measured intensity I is, therefore,
modeled as,

I u; vð Þ ¼
ZZ
U

Ipr u0; v0ð Þ þ Isc u0; v0ð Þ� �
hg

u� u0; v� v0ð Þdu0dv0
(A3)

where hg is a glare kernel. The scatter and glare kernels
should be obtained before taking scans and are mainly
obtained by either MC simulations or experiments.60 The
fASKS model assumes that all of the scanned materials are
made of water or water-equivalent materials. In this study, in-
house fASKS correction61 with scatter and glare kernels
acquired using edge-spread function measurements were per-
formed. c was set to 0.02 that was the optimal value for inten-
sity uniformity in reconstructed images of water cylinder
phantoms. Computation time of the fASKS method required
to correct 360 projections is around 5.5 min with our equip-
ment.
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