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Abstract The global contamination with persistent organic
pollutants (POPs), or compounds with similar characteristics,
is well known. Still there are data gaps for POP concentrations
frommany areas in the world. The aim of the present study is to
assess several legacies POPs and also hexabromocyclododecane
(HBCDD) and methoxylated polybrominated diphenyl ethers
(MeO-PBDEs) in shellfish from three locations in the Yellow
Sea and East China Sea. The sources of the contaminants are
discussed. Pooled samples were treated by liquid-liquid ex-
traction and acid and column cleanup prior to analysis by gas
chromatogram equipped with electron capture detector (GC-
ECD) and gas chromatography-mass spectrometry (GC-MS).
The by far most abundant environmental contaminant origi-
nates from dichlorodiphenyltrichloroethane (DDT), indepen-
dent of species analyzed or sampling site. The results indicate
ongoing or at least recent discharges of DDT. The second
highest concentrations were reported for HBCDD (21–

40 ng/g fat) in the shellfish, independent of sampling sites.
The two natural products, 6-MeO-BDE-47 and 2′-MeO-BDE-
68, were also present in the shellfish (1.3–22 and 1–14 ng/g
fat, respectively). The polychlorinated biphenyl (PCB) con-
gener CB-153 (0.8–6.5 ng/g fat), hexachlorobenzene (HCB)
(1.1–3.6 ng/g fat), and β-hexachlorocyclohexane (β-HCH)
(2.3–4.9 ng/g fat) were all higher than the concentrations of
other HCH isomers, β-endosulfan, PBDE congeners, and
mirex. Apart from the DDTs and HBCDDs, it is evident that
the pollution of shellfish was similar to, or lower than, the
contamination of shellfish in other parts of the world.
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Introduction

Persistent organic pollutants (POPs) are lipophilic organic
chemicals with low chemical reactivity allowing them to
undergo long-range transport, making them bioaccumulative
and toxic to wildlife and humans (UNEP 2014). POPs can be
classified in three categories according to their sources: pesti-
cides, industrial chemicals, and by-products. Large amount of
organochlorine pesticides (OCPs), polychlorinated biphenyls
(PCBs), and polybrominated diphenyl ethers (PBDEs) have
been manufactured and used in China for several decades.

Being the country with the world’s largest population,
China has produced and consumed large amount of pesticides
for crop protection and disease vector control (Wong et al.
2005). For instance, 400 thousand tonnes of dichlorodiphe-
nyltrichloroethane (DDT) and 4.9 million tonnes of hexachlo-
rocyclohexanes (HCHs) from the 1950s to 1983 were pro-
duced for agricultural use (Fu et al. 2003; Li et al. 1998). Even
though China initiated bans of pesticides for certain uses from
1980s and ratified the Stockholm Convention in 2004, some
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specific exemptions were requested. For example, DDT is still
used for malaria control while mirex and chlordane have been
used as termiticides (Wong et al. 2005). Pesticides residue
level detected in China environment and human are still
relatively high even if some data indicated descending tem-
poral trends (Wong et al. 2002). There is, however, a shortage
of data from China to make any firm conclusions on general
levels spatial and temporal trends of POPs in China.

PCBs have been used for their good electrical insulating
properties since the 1930s. However, it was not until 1966 that
PCBs were detected in wildlife from the marine environment
(Jensen et al. 1969). In 1968, the Yusho incident occurred in
Japan (Yoshimura 2003). One thousand and eight hundred
people were poisoned by PCB-contaminated rice oil. It was
reported that 8,000 tons of PCBs had been manufactured from
the 1960s to 1970s (Jiang et al. 1997; Qiu et al. 2012) in
China, and technical mixtures named #1 PCB (chlorine con-
tent 42 % similar to Aroclor 1242) and #2 PCB (chlorine
content 56 % similar to Aroclor 1254) were produced. PCBs
were restricted from the 1970s in China. PCB concentrations
in environmental media in China are relatively low on a
national scale, and it still could be a risk for humans and
wildlife due to exposure to PCB-containing equipment and
by-product from combustion (Xing et al. 2005).

PBDEs and hexabromocyclododecanes (HBCDDs) are
brominated flame retardants used in primarily polymeric ma-
terials for improving their fire safety. It was reported that the
domestic production demand of brominated flame retardants
was 10,000 tonnes in 2000 and has increased by an annual rate
of 8 % (Mai et al. 2005). Materials and goods are sources of
general PBDE and HBCDD contamination, while e-waste
recycling has created severe hot spots.

Methoxylated PBDEs (MeO-PBDEs) are neutral
chemicals that seem to primarily originate from natural
sources, particularly if the methoxy group is located to the
ortho-position to the diphenyl ether bridge. They can be also
formed from the metabolism of PBDEs (Feng et al. 2010).
MeO-PBDEs have been identified in algae, blue mussel, and
seals (Haglund et al. 1997; Lofstrand et al. 2011; Malmvarn
et al. 2005). It has been suggested as a potential source of
hydroxylated PBDEs (Wan et al. 2009).

Shellfish (e.g., mussels and clams) are popular seafood for
people living around the coastline of China. Mussels have
been widely used as a biomarker for detecting pollutants and
monitoring the contamination all over the world, due to their
wide distribution, low mobility, and high filtration capacity
(Goldberg et al. 1978; O’Connor 2002; Ramu et al. 2007a).
They live attached to rocks by its byssus and feed on plankton
and other primary producers. Similar to mussels, clams feed
on plankton by filter feeding. However, clams are kinds of
cave sediment bivalves rather than attaching to rocks.

The Yellow Sea (YS) and East China Sea (ECS) are two of
the continental seas of China. The two longest rivers, Yangtze

River and Yellow River, are flowing into the ECS and YS,
respectively. The coasts of the YS and ECS are densely
populated and the most developed in China. The seawater
has been used for fishing for a long time. For example,
Zhoushan fishing ground, located in ECS, is the biggest fish
ground in China. It is famous for croceine croaker, octopus,
and cuttlefish. However, the seawater quality in YS and ECS
according to national seawater quality standard has become
increasingly worse. Moreover, there is limited information on
levels of POPs in seafood and accordingly health risk assess-
ments are hampered.

The aim of the present study was integrating a high con-
sumption rate of shellfish and their contamination degree of a
selected number of POPs, to determine residual concentra-
tions of OCPs, PCBs, PBDEs, HBCDDs, andMeO-PBDEs in
shellfish from a few locations along the eastern coastline of
China. In addition, the potential sources and the extent of
pollution are discussed.

Materials and methods

Samples

The shellfish were collected from three locations from eastern
China. The sampling information is shown in Fig. 1 and
Table S1. Blue mussels (Mytilus edulis) (ME) were taken from
the North Yellow Sea, Weihai city (WH) and the East China
Sea, Zhoushan city (ZS) in July 2010 and 2011, respectively.
The blue mussels from ZS were collected from natural (ZS1)

Fig. 1 Sampling locations of shellfish for the present study
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and cultivated source (ZS2). Three kinds of clams which are
Cyclina sinensis (CS), Ruditapes philippinarum (RP), and
Sinonovacula constricta (SC) were taken from the south
Yellow Sea, Nantong city (NT) in July 2011. The clams, CS
and RP, are the predominant clam species in the Yangtze River
Estuary. All samples were packed in aluminum foil and kept
frozen at −20 °C until the start of analysis.

Chemicals

All solvents and chemicals used were of highest commercially
available quality. Authentic reference standards of dichlorodi-
phenyltrichloroethanes (DDTs), including 4,4′-DDT, 4,4′-
DDE, 4,4′-DDD, 2,4′-DDT, 2,4′-DDE, and 2,4′-DDD;
HCHs, including α-HCH, β-HCH, γ-HCH, δ-HCH, and ε-
HCH; hexachlorobenzene (HCB); mirex; α-endosulfan; and
β-endosulfan were purchased as a mixture from Larodan Fine
Chemicals (Malmö, Sweden). The PCB congeners: CB-28,
CB-52, CB-101, CB-118, CB-138, CB-153, and CB-180, and
PBDE congeners: BDE-47, BDE-85, BDE-90, BDE-99,
BDE-100, BDE-153, BDE-154, and BDE-183, used as exter-
nal standards were purchased from Larodan Fine Chemicals
and LGC Promochem (Wesel, Germany), respectively. MeO-
PBDEs (including 6-MeO-BDE-47, 2′-MeO-BDE-68, 6-
MeO-BDE-85, 6-MeO-BDE-90, 6-MeO-BDE-99, 2-MeO-
BDE-123, and 6-MeO-BDE-137) were synthesized in-house
(Marsh et al. 2003;Marsh et al. 2005). Technical HBCDDwas
obtained from the Dead Sea Bromine Group (Israel). The full
name of DDTs, PCBs, PBDEs, and MeO-PBDEs and their
abbreviations are listed in Supplemental Material. Silica gel
(0.063–0.2 mm) from Merck (Darmstadt, Germany) was ac-
tivated at 300 °C in oven overnight before use.

Extraction and cleanup

The shellfish meat was homogenized as an individual pool
(n=30) for each species and sampling site. The samples (10 g)
were extracted as described elsewhere (Jensen et al. 2009),
except that n-hexane was exchanged for cyclohexane due to
its lower toxicity (for detailed description, see Supplemental
Material). The lipid weight was determined gravimetrically
for all the extracted samples after solvent removal. CB-200
(30 ng), CB-207 (1 ng), BDE-138 (1 ng), and 4-MeO-BDE-
121 (1 ng) were added to the samples and blanks as surrogate
standards. Lipids were removed by concentrated sulfuric acid
(1 mL/0.1 g lipid) treatment, a procedure that was repeated
once. After sulfuric acid treatment, the samples were further
cleaned up on two different types of chromatographic col-
umns. The first column was packed with activated silica
(0.9 g) impregnated with concentrated sulfuric acid (2:1 w/
w). The column was conditioned with cyclohexane (10 mL),
and the analytes were eluted with dichloromethane (15 mL).
The second column was packed with silica gel (0.5 g). It was

pre-eluted with dichloromethane (5 mL) and then the analytes
were eluted with dichloromethane (10 mL). The solvent vol-
umewas reduced by a gentle flow of nitrogen gas and changed
to n-hexane. Prior to instrumental analysis, CB-189 (2 ng) and
BDE-139 (1 ng) were added as volumetric standard. The final
volumes were 0.5 mL for DDT analysis and 0.1 mL for the
other compounds.

Instrumental analysis

The analysis of PCBs and pesticide mixture was performed on
aVarian 450 gas chromatogram equippedwith electron capture
detector (GC-ECD) maintained at 360 °C and a Varian CP-
8400 autosampler. The injector (1 μL) was operated in the
splitless mode, and the temperature for the injector was 260 °C.
The non-polar Varian CP-Sil 8 CB (25 m×150 μm×0.12 μm)
column (Middleburg, the Netherlands) was used. Helium was
used as a carrier gas and nitrogen as the makeup gas. The
column oven temperature was programmed from 80 °C for
1 min, 20 °C/min to 300 °C and held constant for 5 min.

The PBDEs, MeO-PBDEs, and HBCDDs were analyzed
by gas chromatography-mass spectrometry (GC-MS) in se-
lected ion monitoring mode (bromide ions m/z 79 and 81) and
were identified by retention time using authentic reference
standards. Automated 1 μL injections with a CTC GC Pal
autosampler were conducted on a Varian 450-GC connected
to a Varian 320-MS. A programmable temperature vaporizing
(PTV) injector was used with a DB-5 HT capillary column
(15 m×250 μm×0.1 μm) from J&W Scientific (Folsom,
USA). Helium was used as carrier gas at a set constant flow
of 1.2 mL/min. The ion source temperature was 200 °C and
the transfer line temperature to 290 °C. Methane (scientific
5.5, AGA Stockholm, Sweden) was used as reagent gas. The
oven was programmed as follows: 55 °C for 2 min, 15 °C/min
to 320 °C and held constant for 5 min. The PTV injector
temperature was 280 °C with a splitless mode. The PTV
injector was also pressure programmed with a pressure pulse
of 10 psi for 0.5 min upon injection.

Quality control

One procedure blank was run for each batch of six samples to
assess any potential contamination during laboratory work.
Except for BDE congeners, no other analyte was present in
blank samples. Three duplicates from each location and spe-
cies were analyzed to determine the analytical precision. The
range of recoveries (mean value±standard deviation) for sur-
rogate standards CB-207, BDE-138, and 4-MeO-BDE-121
were 79–115 % (103±8 %), 106–118 % (112±7 %), and
61–101 % (88±19 %), respectively. All external calibration
curves have a good correlation coefficient. Limit of detection
was defined as three times the signal-to-noise (S/N) in the
chromatogram and limit of quantification (LOQ) as ten times
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the S/N. If the blank samples were contaminated, the LOQ
was defined as three times the average amount found in the
procedure blanks. More information on LOQ is given in
Supplementary Material and in Table S5.

Results

Mean concentrations of the individual main chlorinated and
brominated organic analytes from the DDTs, HCHs, PCBs,
PBDEs, HBCDD, and MeO-PBDEs in shellfish are presented
in Table 1. Detailed concentration data of all the analytes are
given in the Tables S2–4 and S6 of the Supplementary
Material, including sum data of DDTs, HCHs, PCBs,
PBDEs, and MeO-PBDEs. The relative contribution of the
main three 4,4′-DDTs and the 2,4′-DDTs are given from each
sampling site in Fig. 2. Similarly, the HCH isomer relative
distribution in the sampled matrices is shown in Fig. 3, while
the congener concentration patterns of PCBs, PBDEs, and
MeO-PBDEs are presented in Figs. 4–6, respectively.

Discussion

It is notable that the three 4,4′-DDTs are present at high level
in shellfish from all sites in the present study, making up
approximately 80 % of the total concentrations of DDTs.
The data confirm recent or even ongoing releases of 4,4′-
DDT (cf. below). However, another interesting result is the
relatively high levels of HBCDD independent of sampling site

and species analyzed (Table 1). The concentrations of
HBCDD are coming up as the second most important pollut-
ant in any of the shellfish species, being higher than even the
sum concentrations of any of the other pollutants analyzed,
except the DDTs. This observation is supported by the levels
reported of HBCDD in oysters and blue mussels sampled
from coastal areas of Japan (Table 2) (Ueno et al. 2010).
Shellfish contaminant levels, as determined in the present
study are put in perspective to reports from other sites in
Table 2. Unfortunately, it is not possible to compare all re-
ported data due to different basis for presenting the levels in
the international literature, but for those studies permitting
recalculations to present either wet weight or lipid weight
based concentrations, data are presented in Table 2. The
results of the present study are put in perspective for each of
the contaminant congener group of pollutants or of individual
contaminants, which are discussed groupwise, below.

Organohalogen pesticides in shellfish

DDTs The patterns of the DDTs in the shellfish, in the present
study, are shown in Fig. 2 and Table S2. The mean concen-
trations of 4,4′-DDT in shellfish from the three sites were quite
similar to other studies in the waters close to China, Japan,
India, and Republic of Korea (Ramu et al. 2007b; Ramu et al.
2007a; Yang et al. 2006; Zhou et al. 2008), except for levels
reported in green mussels from Hong Kong (Ramu et al.
2007b), showing 10 to a 100 times higher ∑DDT concentra-
tions (Table 2). Contrast to the high 4,4′-DDE concentration in
mussel from Zhoushan, 4,4′-DDD levels were comparable to

Table 1 Concentrations (ng/g fat) of some prioritized polychlorinated
and brominated organic pollutants in Mytilus edulis (ME), Cyclina
sinensis (CS), Ruditapes philippinarum (RP), and Sinonovacula

constricta (SC) from Weihai (WH), Zhoushan (ZS), and Nantong (NT);
ZS1 and ZS2 are natural and cultivated mussel, respectively

Compound WH (ME) (n=3) ZS1 (ME) (n=3) ZS2 (ME) (n=3) NT (CS) (n=3) NT (RP) (n=3) NT (SC) (n=3)

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Lipid (%) 2.6 0.11 1.6 0.19 2.0 0.27 1.6 0.050 0.97 0.030 2.2 0.090

4,4′-DDT 1100 99 160 8.0 130 15 100 2.4 67 0.74 190 4.3

4,4′-DDE 490 25 200 9.8 160 13 160 6.1 180 3.7 440 5.3

4,4′-DDD 760 30 20 1.7 17 1.3 190 6.8 120 1.9 320 3.6

α-HCH 0.66 0.028 1.8 0.22 1.6 0.14 0.99 0.15 1.3 0.57 0.65 0.070

β-HCH 2.8 0.21 2.7 0.29 2.8 0.19 3.9 0.50 4.9 0.19 2.3 0.23

γ-HCH 0.38 0.017 1.1 0.053 1.0 0.022 0.57 0.073 0.64 0.18 0.26 0.062

β-endosulfan 1.8 0.22 0.78 0.14 0.70 0.056 1.0 0.15 1.9 0.16 0.35 0.058

HCB 1.1 0.45 2.4 0.085 1.7 0.12 1.5 0.48 3.4 0.045 3.6 0.31

CB-153 0.81 0.096 6.5 0.77 4.8 0.74 1.9 0.24 3.9 0.24 2.1 0.43

BDE-47 3.3 0.54 2.0 0.24 1.3 0.24 1.6 0.50 1.6 0.22 1.9 0.46

HBCDD 40 7.8 32 7.1 21 8.3 42 8.1 34 4.5 38 0.34

6-MeO-BDE-47 22 2.1 8.2 2.4 5.5 1.8 1.9 0.65 1.3 0.35 4.6 0.41

2′-MeO-BDE-68 14 1.6 4.2 1.3 2.4 1.0 0.96 0.32 1.3 0.34 2.1 0.17
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4,4′-DDE’s level in clam fromNantong. It might be due to the
species-specific lifestyle. As mentioned, mussels are stick in
the rock but clams live in the sediment where 4,4′-DDT is
prior to degrade to form 4,4′-DDD under anaerobic condition.
The levels of the three 4,4′-DDTs, as reported in shellfish from
other sites, primarily Europe, were similar or lower than those
from eastern Asia (Giandomenico et al. 2013; Pikkarainen
2007; Van Ael et al. 2012), c.f. Table 2.

The occurrence of 2,4′-DDT was in the expected range
(0.21–0.24) for technical DDT products but with one sam-
pling site,Weihai, showing a higher ratio (0.29) that is difficult
to explain unless there were current discharges of another, less
well known, DDT product. The ratio of 4,4′-DDT/(4,4′-
DDT+4,4′-DDE+4,4′-DDD) indicated that there were fresh
or at least recent input of DDT in Weihai and the Zhoushan
areas (ratios are 0.42–0.47), while less so in the Nantong area
(ratios here are 0.21–0.23).

The results on the DDTs from the Weihai and Zhoushan
areas indicate that DDT is still used in China. DDT was
banned as a pesticide in 1983 in China but it has been contin-
uously manufactured for some non-agricultural purposes, i.e.,

malaria control, export, painting of boat hulls (ban implement-
ed 2009), and synthesis of dicofol (UNEP 2007; Wong et al.
2005). It is reported that the majority of DDT produced has
been used for dicofol synthesis since 1988 (Qiu et al. 2005).
The ratio of 2,4′-DDT/4,4′-DDT was applied to explore the
source of DDT (Qiu et al. 2005). The low 2,4′-DDT/4,4′-DDT
ratio in this study implies the newly input DDTs could not
only be attribute to the dicofol usage.

HCHs The relative concentrations of five HCH isomers, de-
termined for all shellfish analyzed, showed a rather even
distribution between sampling sites, as visualized in Fig. 3
and with concentration data shown in Table S2. The high
abundance of β-HCH indicates previous use of technical
HCH, i.e., a mixture of the isomers α-HCH (60–70 %), β-
HCH (5–12 %), γ-HCH (10–12 %), δ-HCH (6–10 %), and ɛ-
HCH (3–4 %). However, β-HCHwas the most persistent, due
to its chemical stability, of the HCH isomers and accordingly
the isomer to be expected in the highest concentrations if
technical HCH was the source. The ratio of α-HCH/γ-HCH
detected in the present study ranged from 1.0 to 2.5, which was

0% 20% 40% 60% 80% 100%

NT (SC)

NT (RP)

NT (CS)

ZS2 (ME)

ZS1 (ME)

WH (ME)

4,4'-DDT

4,4'-DDE

4,4'-DDD

2,4'-DDT

2,4'-DDE

2,4'-DDD

Fig. 2 Patterns of DDTs in
Mytilus edulis (ME), Cyclina
sinensis (CS), Ruditapes
philippinarum (RP), and
Sinonovacula constricta (SC)
from Weihai (WH), Zhoushan
(ZS), and Nantong (NT). ZS1
natural mussel and ZS2 cultivated
mussel

0% 20% 40% 60% 80% 100%

NT (SC)

NT (RD)

NT (CS)

ZS2 (ME)

ZS1 (ME)

WH (ME)

α-HCH

β-HCH

γ-HCH

δ-HCH

ε-HCH

Fig. 3 Patterns of HCHs in
Mytilus edulis (ME), Cyclina
sinensis (CS), Ruditapes
philippinarum (RP), and
Sinonovacula constricta (SC)
from Weihai (WH), Zhoushan
(ZS), and Nantong (NT). ZS1
natural mussel and ZS2 cultivated
mussel
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lower than technical HCH which varies between 4 and 7
(Walker et al. 1999). This result indicated other sources, i.e.,
lindane (99 % γ-HCH) has been continuously used as an
insecticide after technical HCH was banned. Comparing ∑(α-,
β-, γ-HCH) levels in shellfish from around the world, it is
notable that the present concentrations were in the lower end
in relation to data from east Asian waters (Ramu et al. 2007b)
and also compared to blue mussels from Greenland (Glasius
et al. 2005) (Table 2). However, comparing ∑(α-, β-, γ-HCH)
levels presented herein with the European sampling sites (Kozul
et al. 2011; Van Ael et al. 2012) indicated similar or only slightly
higher levels (Table 2). It is reasonable to conclude that the high
proportion of β-HCH together with low ratio of α-HCH/γ-
HCH indicates that HCHs profile in shellfish was due to con-
tamination of technical HCH together with lindane.

Endosulfan The α- and β-endosulfan were determined in all
samples except for α-endosulfan in Weihai mussels
(Table S2). The concentration of endosulfan present in this

study varied from 0.57 to 2.3 ng/g fat, which is lower than
another study on mollusks in China (Liu et al. 2010). β-
Endosulfan dominated in the shellfish sampled independent
of sampling site, accounting for 100, 71, and 50% for Weihai,
Zhoushan, and Nantong area, respectively. Technical endosul-
fan consists of 70 % α-endosulfan and 30 % β-endosulfan. It
is worth to note that the β-endosulfan concentrations were
similar or higher than those of the HCH isomers and HCB,
assessed and reported herein (Table 1 and S2).

Mirex Mirex was only detected in shellfish from Nantong in a
concentration range of 0.6–2.5 ng/g fat (Table S2). This is
similar as the one determined for β-endosulfan (cf. above).
The occurrence of mirex in the shellfish from the Nantong
area is not surprising since most, if not all, of the mirex
manufacturing is located to the Jiangsu Province (Wang
et al. 2010a). Accordingly, mirex reported herein might be
from its production or application as a pesticide. China is the
country that has suffered from termite damage most severely

0

3

6

9

12

WH ZS1 ZS2 NT NT NT

(ME)  (ME)  (ME)  (CS)  (RP)  (SC)

CB-28

CB-52

CB-101

CB-118

CB-153

CB-138

CB-180

Fig. 4 Concentrations of PCBs
in Mytilus edulis (ME), Cyclina
sinensis (CS), Ruditapes
philippinarum (RP), and
Sinonovacula constricta (SC)
from Weihai (WH), Zhoushan
(ZS), and Nantong (NT). ZS1
natural mussel and ZS2 cultivated
mussel
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Fig. 5 Concentrations of PBDEs
in Mytilus edulis (ME), Cyclina
sinensis (CS), Ruditapes
philippinarum (RP), and
Sinonovacula constricta (SC)
from Weihai (WH), Zhoushan
(ZS), and Nantong (NT). ZS1
natural mussel and ZS2 cultivated
mussel
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in the world, especially in the south. However, on a regional
scale, the level of mirex determined in the present study was
low compared with another study (Jia et al. 2011). Jia et al.
measured mirex in oyster in north of China with a mean
concentration of 2 ng/g w.w. China has started to substitute
mirex for dechlorane plus (Shen et al. 2010).

Industrial organohalogens in shellfish

HCB HCB levels in shellfish as reported in the present study
(1.1–3.6 ng/g fat) are similar to most shellfish levels previ-
ously reported as summarized in Table 2 except for a couple of
studies (Ramu et al. 2007b; So et al. 2005). Particularly, the
latter was reporting on high HCB concentrations in green
mussels from Hong Kong (26–430 ng/g fat) (So et al. 2005).

The HCB may come from several sources, i.e., if used as a
pesticide, general combustion (Wang et al. 2010b), industrial
by-product, and its use as a starting material for production of
pentachlorophenol (PCP) and pentachlorophenol-Na (PCP-
Na) (Wong et al. 2005). Qiu and coworkers has reported
positive relation between concentration of pentachloroanisole,
a metabolite of PCP, and HCB in fish samples from Taihu lake
(Qiu et al. 2012). China has stopped producing and using
HCB since 2004 (UNEP 2007). Nevertheless, temporal trend
of HCB and PCP is needed for monitoring the development of
these OCPs in the Chinese environment.

PCBs PCB concentrations are presented in the diagram,
Fig. 4, indicating overall low concentrations in the shellfish.
It seems that there was a somewhat higher concentration of
CB-52 in the Nantong area shellfish, while CB-153 was more
evenly distributed between the sites and at a slightly lower
concentration (Fig. 4). Tabulated concentrations are presented
in Table S4. The PCB concentrations were in the lower end of
all global reports used for reference purposes herein (Table 2).
The data confirm limited uses of PCBs in China.

HBCDDs and PBDEs As shown in Table 1, relatively high
and evenly distributed HBCDD concentrations (21 to 42 ng/g
fat) were determined in the shellfish analyzed in the present
study. Still, these levels were lower than those reported for
oysters and blue mussels from coastal areas of Japan (Table 2)
(Ueno et al. 2010). In contrast, the presently analyzed shellfish
had 2–4 times higher HBCDD levels than blue mussel from
Sweden (NRM 2012) and reported in fish from Taihu Lake
(Qiu et al. 2012). Due to the analytical methodology (GC-
MS), it is unfortunately not possible to report the HBCDD
isomer pattern. The data points at regional contamination of
HBCDD but no details are yet known to us.

The PBDEs concentrations determined in shellfish in the
present study were rather low (Fig. 5, Table S4), with BDE-47
showing the highest levels among the PBDEs. The levels
reported in this study were similar to those reported in another
study in China (Table 2) (Ramu et al. 2007b). Other congeners
with concentrations in descending order were BDE-154,
BDE-99, BDE-153, BDE-100, and BDE-183. The pattern
observed was consistent with another study (Gao et al. 2009).

The reason for composition of PBDE congeners found in
this study is not known. It could be explained by commercial
PentaBDE product. However, it could also have been influ-
enced by transformation and debromination. For instance,
BDE-99 can be transformed to BDE-47 while BDE-154 is
transformed from BDE-183 in common carp (Stapleton et al.
2004). Other studies show that BDE-47 could be formed
through microbial reductive debromination (He et al. 2006)
or photochemical degradation (Fang et al. 2008). So far, there
is a lack of knowledge on PBDE metabolism and transforma-
tion in shellfish.

Natural compounds in shellfish

MeO-PBDEs The two naturally produced compounds, 6-
MeO-BDE-47 and 2′-MeO-BDE-68, were detected in 100 %
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of the shellfish samples, independent of sampling location
(Fig. 6, Table S6). The highest concentration of MeO-
PBDEs in shellfish was observed in blue mussels from
Weihai and Zhoushan, while lower in the other shellfish
species from Nantong. It is not possible to state if this is a
species difference or a difference in the environmental con-
centrations at the different sites. The concentrations of MeO-
PBDEs in this study were consistent with the other in bivalve
from Liaohe Bay in China (16 ng/g fat) (Zhang et al. 2010).
The level of MeO-PBDEs was comparable to those in mussel
from Canada (14 ng/g d.w.) (Kelly et al. 2008) and was lower
than those in the Baltic Sea (160–420 ng/g fat) (Lofstrand
et al. 2011).

Besides 6-MeO-BDE-47 and 2′-MeO-BDE-68, also sever-
al other ortho-MeO-substituted MeO-PBDEs were detected
and quantified (Table S6). MeO-PBDEs reported in marine
biota species are mostly ortho-substituted and are considered
as natural product originating from alga or its associated
microflora (Malmvarn et al. 2005). Qiu et al. ((2012) reported
that 6-MeO-BDE-47 in fish from Taihu Lake may come from
cyanobacteria. The MeO-PBDE level measured in this study
was similar to those reported in fish (Qiu et al. 2012).

Concluding remarks

The results from this study clearly show a severe pollution
situation regarding the DDTs in the shellfish from the Yellow
Sea and the East China Sea. The relatively high HBCDD
concentrations in shellfish from all three sampling locations
must be followed up by screening in other wildlife species and
search for sources of contamination. HBCDD is indeed pro-
posed as a new POP according to the Stockholm Convention,
indicating the importance of controlling also this BFR.
Further, it may be of interest to look closer into also the
POPs not measured herein.

It is a serious obstacle that the scientific literature is not
better coordinated in relation to reporting contaminant levels
(Table 2). In this table, it is necessary to compare data both on
wet and lipid weight basis due to the lack of proper reporting
of lipid weight. Data from several studies had to be
recalculated to enable comparison to wet weight concentra-
tions since the original data are reported on dry weight. As
authors of this article, we ask for actions in this context,
possibly via scientist community development of weight of
evidence for exposures to pollutants in wildlife.

The data presented herein include several shellfish species
but it seems reasonable to propose more work on blue mussels
since this is indeed a common species for environmental
contamination levels around the world. The use of blue mus-
sels will allow comparisons between truly wild mussels and

cultivated blue mussels. This may be a possibility for locating
point sources of POPs.
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