Skip to main content
. 2019 Aug 6;2:294. doi: 10.1038/s42003-019-0545-9

Table 1.

Summary statistics as percentages for sensitivity, specificity, precision, recall, ROC-AUC, and PR-AUC for the predicted annotation

Annotation level Performance metric 1st quartile Median Mean 3rd quartile
Class Sensitivity/recall 99.01 99.50 99.31 99.96
Specificity 99.95 99.98 99.96 100.00
Precision 77.73 88.33 87.56 100.00
ROC-AUC 99.94 99.98 99.97 100.00
PR-AUC 80.32 92.86 88.95 100.00
Group Sensitivity/recall 99.76 100.00 98.91 100.00
Specificity 99.93 100.00 99.92 100.00
Precision 74.74 100.00 85.65 100.00
ROC-AUC 99.98 100.00 99.92 100.00
PR-AUC 78.30 100.00 88.90 100.00
Mechanism Sensitivity/recall 99.72 100.00 97.50 100.00
Specificity 99.94 99.98 99.95 100.00
Precision 73.79 88.17 85.58 100.00
ROC-AUC 99.98 100.00 99.81 100.00
PR-AUC 76.39 94.57 87.21 100.00
Model Sensitivity/recall 99.72 100.00 97.50 100.00
Specificity 97.43 99.93 100.00 100.00
Precision 49.98 100.00 75.73 100.00
ROC-AUC 99.97 100.00 99.91 100.00
PR-AUC 52.78 100.00 79.80 100.00

All metrics excluding the AUC were calculated at the E-value threshold of 1e-25, which optimized the PR curve. We note that other thresholds might be useful depending on the false-positive tolerance of the use-case