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Identification of an oncogenic network with
prognostic and therapeutic value in prostate cancer
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Abstract

Identifying critical pathways governing disease progression is
essential for accurate prognosis and effective therapy. We devel-
oped a broadly applicable and novel systems-level gene discovery
strategy. This approach focused on constitutively active androgen
receptor (AR) splice variant-driven pathways as representative of
an intractable mechanism of prostate cancer (PC) therapeutic
resistance. We performed a meta-analysis of human prostate
samples using weighted gene co-expression network analysis
combined with experimental AR variant transcriptome analyses.
An AR variant-driven gene module that is upregulated during
human PC progression was identified. We filtered this module by
identifying genes that functionally interacted with AR variants
using a high-throughput synthetic genetic array screen in
Schizosaccharomyces pombe. This strategy identified seven AR vari-
ant-regulated genes that also enhance AR activity and drive cancer
progression. Expression of the seven genes predicted poor disease-
free survival in large independent PC patient cohorts. Pharmaco-
logic inhibition of interacting members of the gene set potently
and synergistically decreased PC cell proliferation. This unbiased
and novel gene discovery strategy identified a clinically relevant,
oncogenic, interacting gene hub with strong prognostic and thera-
peutic potential in PC.
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Introduction

Combining computational systems-level analyses of patient samples

with rigorous experimental high-throughput approaches is a power-

ful, unbiased strategy to identify novel biomarkers and therapeutic

targets in cancer. Such approaches generate gene co-expression

modules that permit researchers to uncover disease-relevant,

dynamic gene networks (e.g., Lamb et al, 2006; Zhu et al, 2016).

Identified gene clusters (co-expression modules) often represent

genes involved in common biological or pathologic functions, genes

that define cell-type differences, and/or genes governed by a

common regulatory mechanism (e.g., driven by a specific transcrip-

tion factor). Identifying the components of gene modules that

control key pathways of cancer progression and therapeutic resis-

tance permits pathway targeting, as opposed to single oncogene

targeting, which readily leads to therapeutic resistance (Kreeger &

Lauffenburger, 2009). We applied such an approach to PC, which is

the second-leading cause of cancer-related death in U.S. men (Siegel

et al, 2016).

Androgen deprivation therapy (ADT) is the standard of care for

non-organ confined advanced PC, leading to tumor regression.

However, PC inevitably recurs as castration-resistant prostate cancer

(CRPC; e.g., Knudsen & Penning, 2010; Karantanos et al, 2013), an

incurable form of the disease with limited therapeutic options

(Antonarakis et al, 2014). A proposed major driver of CRPC progres-

sion is constitutively active AR variants (AR-Vs) that lack the C-

terminal ligand-binding domain (LBD) of the full-length AR, but

retain the potent transactivating N-terminal domain (NTD) and the

DNA-binding domain (DBD). These AR-Vs are thought to constitu-

tively promote transcription of an oncogenic program resulting in

therapeutic resistance (Zhang et al, 2011; Li et al, 2013; Antonarakis

et al, 2017; Ho & Dehm, 2017). AR-V7 (also termed AR3 or AR1/2/

3/CE3) is the best-characterized AR splice variant in human

specimens (Hörnberg et al, 2011). AR-V7 homodimerizes and

heterodimerizes with full-length AR resulting in constitutive, unreg-

ulated AR activity (Watson et al, 2010; Chan et al, 2015; Xu et al,

2015). Additionally, the expression of AR-V7 is linked to poor prog-

nosis, epithelial–mesenchymal transition (EMT; Kong et al, 2015),
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and resistance to current treatments (Qu et al, 2015; Antonarakis

et al, 2017). Even though AR-V7 is considered a plausible target for

CRPC therapy, the design of specific high-affinity compounds is a

major challenge due in large part to the lack of the LBD (reviewed

in Imamura & Sadar, 2016).

Gene networks downstream of AR-V7 drive its oncogenic signal-

ing and disease progression (e.g., Hu et al, 2012; Cao et al, 2014;

Shafi et al, 2015; Xu et al, 2015). Identifying disease-relevant AR-

V7-driven genes is challenging, in part because of the extensive

overlap with the full-length AR transcriptome (e.g., Watson et al,

2010; Chan et al, 2012; Hu et al, 2012; reviewed in Lu et al, 2015).

Components of this network may not only underlie AR-V7 onco-

genicity but possess the dual feature of enhancing AR activity, since

positive feedback loops are common in endocrine cancers (including

PC). Such reciprocally acting proteins have the strongest potential to

be exploited therapeutically (e.g., Chia et al, 2011; Karacosta et al,

2012; Goodwin et al, 2015). Moreover, there is a need for prognostic

biomarkers of tumor aggressiveness that can stratify patients at the

time of PC diagnosis and thereby guide clinical management accord-

ingly by predicting the patient’s therapeutic response to treatment

(Bjartell et al, 2011; Prensner et al, 2012).

We utilized a large cohort of publicly available gene microarray

data to identify gene clusters associated with PC and CRPC and then

combined this information with rigorous experimental approaches in

different model systems to identify disease-relevant genes. With this

gene discovery strategy, which is broadly suitable, for example, for

any disease driven by a transcription factor, we defined a novel gene

set that served as a prognostic marker for PC and revealed a new

drug combination that potently and synergistically inhibited CRPC

growth.

Results

We performed weighted gene co-expression network analysis

(WGCNA) to identify, in an unbiased manner, gene modules associ-

ated with different types/stages of PC pathologies and phenotypes.

WGCNA is based on the concept that co-expressed genes across a

series of traits (in this instance, pathological features of human

prostate) share biological functions and/or are controlled by a

common mechanism, such as by a specific transcription factor(s)

(Kadarmideen & Watson-Haigh, 2012). Thus, genes co-expressed

across patient samples are clustered together in a module. For this

meta-analysis, we used eight publically available microarray data-

sets that utilized the same array platform (Appendix Fig S1A) and

encompassed six different prostate phenotypes/disease stages

(Appendix Fig S1B). The microarray datasets were combined and

used for network construction (Appendix Fig S1C). Gene modules

were first assembled with a minimum module size of 30 genes, and

highly similar modules were combined using a dissimilarity thresh-

old of 0.25 resulting in 20 gene modules that were then correlated to

different prostate phenotypes (Fig 1A). Three of the 20 modules (ar-

bitrarily termed: green, magenta, and yellow) contained genes

whose expression levels had significant positive associations with

PC and CRPC (Fig 1A and Appendix Fig S1D).

To determine whether any of the WGCNA modules were

enriched for genes regulated by AR-V7, we performed gene expres-

sion profiling in the human CRPC cell line 22Rv1. We chose 22Rv1

cells since, even though they express full-length AR, they contain

high levels of AR-V7 and depend on AR-V7 for growth and survival

(Dehm et al, 2008; Guo et al, 2009; Marcias et al, 2010). We

performed doxycycline-inducible knockdown of AR-V7 using a

specific tet-pLKO shAR-V7 construct (Appendix Fig S2A and Peacock

et al, 2012). We then mapped the resulting 3,645 AR-V7-regulated

genes to the WGCNA modules. Strikingly, nearly 75% of the green

module genes (equivalent to 60 genes) exhibited decreased expres-

sion following AR-V7 knockdown (i.e., were upregulated by AR-V7;

Fig 1B and Appendix Fig S2B). In contrast, there was no significant

enrichment of genes regulated under the control condition (shGFP)

with any of the WGCNA modules (Appendix Fig S2C). The green

module was highly enriched in genes associated with cell prolifera-

tion, particularly mitotic cell cycle and chromosome segregation

(Appendix Fig S2D). This module contained a number of genes

previously linked to prostate or other types of cancers including

RAD51, AURKA, CENPE, EZH2, TOP2A, BUB1, TPX2, CDK1, and

CCNB1. Because of the overlapping transcriptomes of full-length AR

and AR-V7, we examined whether full-length AR also regulated

genes in the green module. We utilized two full-length AR-regulated

gene signatures: One consisted of genes differentially expressed in

tumor versus normal samples and enriched for AR binding sites,

obtained from Pomerantz et al (2015), and a second transcription-

based full-length AR activity signature from Mendiratta et al (2009).

We then examined the distribution of these full-length AR-regulated

genes across the WGCNA modules (Appendix Fig S3A and B). We

found that no gene in the green module was regulated by full-length

AR using the full-length AR signature from Mendiratta et al, and

only 6% of genes in the green module were full-length AR targets

based on the Pomerantz et al dataset. These results suggest that the

green module is largely and selectively regulated by AR-V7, but not

full-length AR. Thus, we identified 60 genes (nearly 75% of the

green module) regulated by AR-V7, whose expression was associ-

ated with and upregulated in PC, CRPC, and metastasis in the

WGCNA meta-analysis of human samples.

This set of 60 clinically relevant genes, which are regulated by

AR-V7, can be further analyzed in a number of ways to understand

the mechanisms of AR variant action in PC. In this particular study,

we were interested in identifying those genes that also interact in a

biologically relevant way and might participate in a positive feed-

back loop to enhance AR signaling. Such genes are likely to encode

key prognostic markers as well as potential therapeutic targets

acting within the AR-V7 network.

To identify such genes, we generated an AR-V7 functional

genetic interactome using a high-throughput synthetic genetic array

(SGA) screening method in the yeast Schizosaccharomyces pombe.

This unbiased and powerful approach has successfully identified

other human disease-related protein interactomes [e.g., for X-linked

spinal muscular atrophy (SMA) (Wiley et al, 2014)]. Using the

methods described in detail in Wiley et al (2014), we generated an

inducible S. pombe strain expressing an HA-tagged AR-V7 fusion

protein integrated under the control of the nmt1 thiamine-

repressible promoter. While expression of AR-V7 generated a slight

growth defect, the strain achieved growth saturation and readily

allowed for the SGA screening (Appendix Fig S4). The AR-V7 strain

was then crossed with an S. pombe gene deletion library to create

3,664 unique gene deletion strains that inducibly express AR-V7.

Functional genetic interactions (“hits”) were inferred when the
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expression of AR-V7 altered the strain’s growth rate (“fitness”).

Gene hits therefore encode proteins that are functionally linked with

AR-V7, as their deletion affected yeast growth only when AR-V7

was expressed (induced conditions), but not in the non-induced

conditions. The human orthologs for gene hits were then analyzed

with a protein–protein interaction network using STRING (Fig 1C).

Gene ontology analysis of the AR-V7 interactome identified several

distinct biological processes, including cell cycle regulation

(Appendix Fig S5).

Integrating the data from the AR-V7 interactome with the AR-V7-

regulated green module could reveal strongly disease-relevant candi-

dates for AR-V7 feedback regulation. In this way, we identified

seven genes, present in the WGCNA green module (Fig 1A; and

thus, associated with and upregulated in PC progression), which

were upregulated by AR-V7 (Fig 1B) and feedback to functionally

interact with AR-V7 (Fig 1C). This seven-gene set (Fig 1D) was

composed of kinesin family member 20A (KIF20A), kinesin family

member 23 (KIF23), topoisomerase DNA II alpha (TOP2A), cyclin

B1 (CCNB1), cyclin B2 (CCNB2), BUB1 mitotic checkpoint serine/

threonine kinase (BUB1), and BUB1 mitotic checkpoint serine/thre-

onine kinase B (BUB1B). This seven-gene set comprises a highly

interconnected network (Fig 1E), and pathway analysis revealed a

strong role in cell cycle (Appendix Fig S6).

To validate these findings, we assessed the expression of the

seven genes in an independent collection of human CRPC speci-

mens. Because these seven genes were regulated by AR-V7 in PC

cells (Fig 1B), we examined whether they were co-expressed with

AR-V7 in an independent gene expression profiling array dataset of

human CRPC bone metastatic specimens. The human CRPC bone

metastases were grouped based on the relative levels of AR-Vs

expressed, mainly AR-V7 (Hörnberg et al, 2011; Data ref: Hörnberg

et al, 2011). The expression of six of the seven members of the gene

set were elevated in the human CRPC bone metastases with highest

AR-V7 expression compared to the specimens with the lowest rela-

tive levels of AR-V7 (Fig 2A). In contrast, the expression of the

members of the gene set was not associated with levels of full-length

AR (Appendix Fig S7A).

In another independent PC patient dataset, we found through

pairwise comparisons that the expression of the seven genes was

highly correlated with each other (Appendix Fig S7B). This

finding was consistent with the seven genes clustering together in

the same WGCNA gene module (green), since modules were

constructed based on correlation of gene expression. As further

indication of the specificity of these associations in human PC,

the expression levels of closely related genes, e.g., BUB3 and

KIF20B, were not correlated with any of the seven genes in PC

(Appendix Fig S7B).

Analysis of an independent RNA-seq patient dataset (TCGA)

revealed that the expression of the seven genes was associated with

well-established adverse prognostic indicators, including Gleason

score (Appendix Fig S8A), T clinical staging category (Appendix Fig

S8B), and MRI evidence of extraprostatic extension (Appendix Fig

S8C). The strong association between the expression levels of the

seven genes and the tumor Gleason score in the RNA-seq patient

data was in agreement with the WGCNA analysis, showing a signifi-

cant positive correlation of the expression levels of the genes in the

green module with Gleason score (Fig 1A).

In addition, patients whose tumors had high expression (z-score

threshold ≤ 1.96) of all members of the seven-gene set exhibited

significantly decreased disease-free survival (DFS) and lower overall

survival in two distinct datasets compared to those patients with

lower expression levels of the gene set (Fig 2B). Interestingly,

despite a well-established role for these genes in cell cycle/mitotic

regulation, the gene set had no association with survival metrics for

a number of other major types of cancers (Appendix Fig S9),

supporting a PC-specific role of this gene set.

We examined whether full-length AR also regulated the seven-

gene set. Androgen stimulation of the androgen-dependent cell

line LNCaP and the CRPC cell lines 22Rv1 and C4-2B did not

increase the expression levels of any of the seven genes

(Appendix Fig S10). In contrast, expression of the established AR-

regulated gene FKBP5 was substantially increased (Appendix Fig

S10). Moreover, pairwise comparisons showed that the expression

levels of the seven genes were not associated with the expression

levels of AR in the TCGA Prostate Adenocarcinoma provisional

patient dataset (Appendix Fig S11). These data demonstrate that

ligand-activated full-length AR does not regulate the expression of

the seven genes.

◀ Figure 1. Multifaceted system-level analyses identify seven prostate cancer hub genes.

A Module–trait relationships were established by WGCNA using eight independent microarray analyses comprising 375 human prostate samples. Gene modules (y-axis)
are denoted by an arbitrary color name. Bins show the Pearson correlation value between gene expression levels of each module within the noted phenotype/disease
stage (x-axis) and P-values. A value of 1 (red) quantifies the strongest positive correlation (genes are upregulated), �1 (blue) the strongest negative correlation (genes
are downregulated), and 0 (white) no correlation. Arrows indicate those modules whose genes were positively associated with PC.

B Microarray analysis was performed following doxycycline-regulated specific AR-V7 depletion (using a tet-pLKO backbone) in 22Rv1 PC cells compared to doxycycline-
treated shGFP controls. The genes that were significantly regulated by shAR-V7 (in either direction, P-value < 0.05) were distributed among the gene modules defined
by WGCNA in panel (A). Upregulated genes (red) are those in which expression increased following AR-V7 depletion, and conversely, downregulated genes (blue) are
those that decreased following AR-V7 depletion. Arrows indicate those modules whose genes were positively associated with PC.

C AR-V7 human functional interactome was generated using SGA screening in the yeast Schizosaccharomyces pombe, combined with STRING data to map protein–
protein interactions, followed by the identification of the human orthologs. The colors denote the different types of genetic interactions: Red are genes that when
deleted in yeast and crossed with AR-V7-expressing yeast suppressed growth, while green denotes genes that when deleted enhanced growth. White designates yeast
essential genes (i.e., genes that are critical for yeast survival and thus could not be present in the yeast deletion library), but were incorporated into the network
based on the criteria that they are known (based on literature) to physically interact with at least two of the red or green genes. Pink-colored genes are a
combination of essential and non-essential genes identifying the same human protein.

D Table summarizing the seven PC hub genes identified by the system-level analyses.
E Network interactions of the seven genes with the 50 most frequently altered neighbor genes were mapped using cbioportal.org. The types of gene-to-gene

interactions are as follows: controls state change (blue), controls expression (green), and in complex with (brown).

Source data are available online for this figure.
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A Hörnberg et al (2011) gene expression profiling array data were analyzed to determine the expression levels of the seven genes in human CRPC bone metastases,
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B The Kaplan–Meier curves for disease-free survival (DFS) and overall survival were built using the TCGA Prostate Adenocarcinoma dataset (465 samples; upper graphs).
Log rank tests were performed. The black curves denote cases with normal expression of the gene set, and red represents cases where the mRNA levels of the seven
genes were upregulated (z-score threshold ≤ 1.96). For DFS, P-value = 0.0009; for death, P-value = 0.0026. An independent dataset was analyzed (Prostate
Adenocarcinoma MSKCC, Cancer Cell 2010, 123 samples; lower graphs). The black curves denote cases with normal expression of the gene set, and red represents cases
where the mRNA levels of at least five genes of the gene set were upregulated (z-score threshold ≤ 1.96). For DFS, P-value = 0.0007; for death, P-value = 0.00546.

ª 2018 The Authors Molecular Systems Biology 14: e8202 | 2018 5 of 15

Fiorella Magani et al AR variant network in prostate cancer Molecular Systems Biology



Individual depletion of the expression of the seven genes, using

two distinct shRNA constructs for each gene, in the human CRPC

cell lines 22Rv1 (Fig 3A and B, Appendix Fig S12A) and C4-2B

(Appendix Fig S12B) decreased cell proliferation. Knockdown effi-

ciency for each mRNA ranged from 67 to 99% (Appendix Fig S13).

Since the members of the gene set were not only regulated by AR-

V7 (Fig 1B), but also exhibited functional interactions with AR-V7

(Fig 1C), we investigated whether these genes modified AR-V7 tran-

scriptional activity by reporter gene assays. Experiments were

performed in 22Rv1 in which AR activity in the absence of androgen

is driven by ligand-independent AR-Vs (Dehm et al, 2008; Guo et al,

2009). Depleting the expression of six of the seven genes decreased

ligand-independent AR transcriptional activity (Fig 3C). Similarly,

the expression of well-known AR-V7 target genes, FKBP5 (Fig 3D)

and UBE2C (Fig 3E), were significantly reduced upon knockdown of

six of the seven genes in the absence of androgens. Depleting

CCNB2 decreased CRPC proliferation but, in contrast to the effects

of depleting the other six genes, depletion of CCNB2 elevated AR

activity based on luciferase assays and regulation of FKPB5 (Fig 3C

and D). No significant effect on UBE2C mRNA levels was observed

following depletion of CCNB2 expression (Fig 3E). Thus, six

members of the seven-gene set, which is regulated by AR-V7 and

present in the AR-V7 interactome (Fig 1C), reciprocally enhanced

ligand-independent AR activity in PC cells expressing AR-V7. To

begin to understand the interrelationships between the seven genes

and AR-V7, we explored the effects of depleting one member of each
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Figure 3. Depletion of the expression of members of the seven-gene set reduces CRPC cell proliferation and AR ligand-independent transcriptional activity.

A Cell proliferation was examined in the CRPC cell line 22Rv1 following individual depletion of mRNAs for the seven genes or shGFP controls, using shRNA against
the coding region for each gene (shRNA #2). Cell number was measured using a non-perturbing nuclear restricted dye and quantified after 72 h using Incucyte
Zoom System. Data shown are mean � s.e.m. of eight to 12 replicates normalized to their shGFP control. Kruskal–Wallis test (P-value < 0.0001, two-tailed) and
Dunn’s multiple comparisons test were performed. *P-value < 0.05, **P-value < 0.001.

B Representative images of 22Rv1 stably depleted of BUB1B or control (shGFP) are shown.
C 22Rv1 stably depleted of each of the seven genes were transfected with a dual-plasmid luciferase reporter system which quantifies AR activity and basal

transcription. The assay was conducted in 2% CSS to measure AR ligand-independent transcriptional activity. Data represent two independent experiments
performed in triplicate, showing the mean � s.e.m., and normalized to their shGFP controls. Kruskal–Wallis test (P-value < 0.0001, two-tailed) and Dunn’s multiple
comparisons test were performed. *P-value < 0.05, **P-value < 0.001.

D, E The expression of FKBP5 and UBE2C determined by RT–qPCR analysis and normalized to GAPDH mRNA levels was examined in 22Rv1 cells stably expressing shRNA
for each of the seven genes. Cells were cultured in 2% CSS. Data represent two independent experiments performed in duplicate or triplicate, showing the
mean � s.e.m., and normalized to their shGFP controls. Kruskal–Wallis test (P-value < 0.0001, two-tailed) and Dunn’s multiple comparisons test were performed.
*P-value < 0.05, **P-value < 0.001.

Source data are available online for this figure.
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subgroup (kinesins, cyclins, and mitotic checkpoints) of the gene set

on AR-V7 levels. We found that individual depletion of KIF20A,

TOP2A, and BUB1B decreased AR-V7 mRNA levels, while depletion

of CCNB2 increased AR-V7 mRNA levels (Appendix Fig S14A). We

also examined whether any of these members regulated full-length

AR. We found that individual depletion of KIF20A and TOP2A

reduced, while depletion of CCNB2 increased full-length AR mRNA

levels (Appendix Fig S14B). Depletion of BUB1B had no effect on

full-length AR levels. Together, these findings are consistent with

the effects of depleting the expression of these genes on ligand-

independent AR transcriptional activity (Fig 3C–E).

The seven-gene set may contain attractive therapeutic targets

because these genes participate in interconnected cellular pathways

(Fig 1A and E) and act upstream (Figs 1C and 3C–E) and down-

stream of AR-V7 signaling (Fig 1B). To test whether inhibition of this

network decreased CRPC cell proliferation, we used doxorubicin

(DOX), which inhibits TOP2A (Tacar et al, 2013), and N9-isopropy-

lolomoucine (N-9), which targets CCNB1/CDK1 (Havlicek et al,

1997). Because of extensive pathway interactions (Appendix Fig

S15), these drugs may also inhibit the activity and/or levels of

CCNB2, BUB1, and BUB1B. The CRPC cell line 22Rv1 was treated

with the compounds at various concentrations individually or in

combination. The normalized isobologram and combination index

(CI) were built and determined using Compusyn software. Nanomo-

lar concentrations of the two drugs, DOX and N-9, exhibited syner-

gistic (CI < 1) antiproliferative effects over a range of combinations

(Fig 4A). We utilized the combination that had the lowest CI on a

panel of different prostate cell lines (CI = 0.45). While the single

agents, DOX or N-9, or the combination of the two compounds had

no significant effect on the proliferation of the non-tumorigenic pros-

tate epithelial cell line RWPE-1, or the AR-null human PC cell line

PC3, the combination of both compounds synergistically inhibited

the proliferation of the two CRPC cell lines 22Rv1 and C4-2B (Fig 4B

and C). The two compounds also inhibited proliferation of AR-

expressing androgen-dependent LNCaP cells; however, the effect

was less pronounced than that observed in CRPC cells (Fig 4B).

Together, the data indicate that CRPC cells exhibited a particular

dependency on these seven genes for growth and survival.

Discussion

Integrative approaches, such as those used here, transform one-

dimensional cancer signatures into multidimensional networks of

connecting modules (Rhodes & Chinnaiyan, 2005), which can

facilitate more optimal therapeutic strategies. We identified a

novel AR-V7-related gene set with prognostic and therapeutic

value for PC using an integrated and unbiased data mining and

experimental strategy (Fig 5), which could be readily applied to

other cancer types. As just one example, this approach could be

adopted for cancers that are also driven by transcription factors,

such as c-Myc, KIT, and ER. Our approach included meta-

analyses of gene expression profiles from human prostate tumors

to derive gene modules, whose expression coincides across

disease states. These modules were integrated with data obtained

from human PC cells that identified AR-V7-regulated genes and

with data from an AR-V7 functional network, constructed through

a powerful model genetic system. This multifaceted approach,

which does not use any filtering or a priori assumptions, resulted

in the identification of disease-relevant genes that were regulated

by AR-V7 and that reciprocally enhanced AR ligand-independent

activity. We performed extensive intervalidation with independent

patient datasets and extended findings using cell-based experi-

mentation.

We performed a meta-analysis of microarray data on clinical PC

samples, including 375 samples from eight different datasets (ob-

tained from the same type of array so gene expression measure-

ments could be directly compared) and encompassing six different

phenotypes/disease stages. The large number of samples provided

robustness to the module definition, as well as power in the ability

to identify relevant modules. The gene members of the green

module had expression levels significantly associated with and

upregulated upon cancer onset and progression to CRPC, as well as

Gleason score. This green module contained 60 genes (nearly 75%)

regulated by AR-V7. Notably, AR variants regulating all the 60 genes

was confirmed by RNA-seq data of He et al (2018). However, only a

few of the genes in the green module (6%) are full-length AR-

regulated genes.

Ligand-activated AR is well recognized as a regulator of the

cyclin D-RB axis in prostate cancer (reviewed in Balk & Knudsen,

2008). However, our findings suggest that AR variants, in particular

AR-V7, may be intricately related to G2-M phase cellular dynamics,

consistent with Hu et al (2012), who demonstrated AR-V7 regula-

tion of several genes involved in mitosis. An important implication

is that the seven genes represent a vulnerability, especially but not

exclusively, for AR-V7-driven CRPC and could provide possible

approaches for overcoming androgen deprivation therapy and

taxane resistance in CRPC patients.

▸Figure 4. Combined pharmacologic inhibition of TOP2A and CCNB1 synergistically inhibits CRPC cell proliferation.

A The CRPC cell line 22Rv1 was cultured in 2% CSS media and treated for 72 h with vehicle (DMSO), doxorubicin (DOX), N9-isopropylolomoucine (N-9), or the
combination of DOX and N-9 at different concentrations. Cell confluence was monitored using Incucyte Zoom System, and the experiments were done with eight
replicates each. The data were analyzed using Compusyn software, and a normalized isobologram was built. The table shows the combination index (CI) for the
different drug combinations. CI = 1 represents additivity, CI < 1 synergism, and CI > 1 antagonistic effects.

B The non-tumorigenic prostate epithelial cell line RWPE-1, the AR-null PC cell line PC-3, the androgen-dependent cell line LNCaP, and the CRPC cell lines C4-2B and
22Rv1 were treated for 72 h with vehicle (DMSO), DOX [100 ng/ml (184 nM)], N-9 [200 ng/ml (613 nM)], or the combination of DOX [100 ng/ml (184 nM)] and N-9
[200 ng/ml (613 nM)]. C4-2B and 22Rv1 cells were kept in 10% CSS media, and the other cell lines were kept in 10% FBS. Cell confluence was monitored using the
Incucyte Zoom System. Data represent two independent experiments, with four to six replicates each, showing the mean � s.e.m., and normalized to vehicle controls.
Kruskal–Wallis test, (P-value < 0.0001, two-tailed) and Dunn’s multiple comparisons test were performed. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001.

C The non-tumorigenic prostate cell line RWPE-1 and the CRPC cell line 22Rv1 were treated for 72 h with vehicle (DMSO) or the combination of DOX and N-9 at
100 ng/ml and N-9 200 ng/ml, respectively. Cell confluence was monitored using the Incucyte Zoom System and representative images are shown.

Source data are available online for this figure.
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There is a critical need to identify gene signatures that robustly

predict PC aggressiveness and that can inform active surveillance

disease management decisions (Cooperberg & Carroll, 2015). We

found that patients with tumors exhibiting higher expression levels

of the seven genes had an elevated risk of relapse after primary ther-

apy and a greater risk of death. Thus, this seven-gene set has the

potential for use in stratifying patients and guiding treatment

according to clinical risk. Despite having established roles in cell

cycle and cell division, which are hallmarks of all cancers, the

seven-gene set did not predict patient survival metrics in other types

of cancer from TCGA dataset cohorts. This finding supports a

PC-specific role of this gene set, especially for cells that depend on

Discovery pipeline

Validation and assessment

Gene signature

Application

Gene 
modules 

associated 
to disease 

progression

WGCNA 
microarray 

meta-analysis

Factor
transcriptome

AR-V7

Factor functional
interactome

SGA in yeast S. pombe

AR-V7

Gene
expression
correlation
in RNAseq

data

Higher levels 
of gene 

signature in 
bone 

metastasis 
with higher 

levels of factor

Association
with adverse
prognostic
indicators

Experimental gene 
depletion reduces 

growth and 
transcriptional 

activity of factor

Prognostic value
in patients

Drug synergism

Months

%
 D

is
ea

se
-

Fr
ee

 S
ur

vi
va

l

Figure 5. Schematic of pipeline developed, validated, and applied.

ª 2018 The Authors Molecular Systems Biology 14: e8202 | 2018 9 of 15

Fiorella Magani et al AR variant network in prostate cancer Molecular Systems Biology



AR-V7 signaling. In fact, six out of the seven genes encoded

proteins that enhanced AR ligand-independent activity in cell-

based assays. This finding may help to explain why the seven

genes are selectively associated with PC progression. Moreover,

another cell cycle progression (CCP) signature has shown prognos-

tic value in PC patients (Cuzick et al, 2011), supporting the impor-

tance of cell cycle genes in predicting PC patient outcome.

However, the 31-gene CCP signature contains only three of the

seven genes identified here, suggesting that the seven-gene set is

distinct. The seven-gene set was derived using a strong biological

rationale and a systems-biology approach and is a smaller signa-

ture, easier to apply and obtain significant predictive and survival

metrics. Lastly, our signature also provided the rationale for a

promising combination therapy to be explored for castration-resis-

tant prostate cancer.

Since full-length AR is more readily targeted therapeutically than

AR-V7, this work focused on AR-V7, which may promote PC thera-

peutic resistance and disease progression (reviewed in Luo et al,

2017). Most PC patient tissue and cell lines that express AR-V7 also

express full-length AR (Guo et al, 2009; Hörnberg et al, 2011), and

as AR-V7 can heterodimerize with full-length AR (Xu et al, 2015),

any actions of AR-V7 likely occur in the context of full-length AR.

The extent to which the full-length AR transcriptome overlaps with

AR-V7 (or heterodimers of full-length AR and AR variants) is not

fully understood (Watson et al, 2010; Hu et al, 2012; Cao et al,

2014; Xu et al, 2015). However, we found that ligand-activated full-

length AR did not regulate the expression of any of the seven genes.

Further, full-length AR mRNA levels did not correlate with the

expression of the gene set in PC patients.

The seven genes we identified could interact with and promote

AR-V7 transcriptional activity in various ways, and it is likely

that they also participate in full-length AR networks. In fact, two

members of the seven-gene set are known to regulate or enhance

full-length AR activity (Chen et al, 2006; Yu et al, 2014; Schaefer-

Klein et al, 2015). Li et al, 2015 showed that TOP2A inhibition

reduces full-length AR and AR-V7 transcriptional activity, through

decreased AR recruitment to target gene promoters and reduced

nuclear localization. In addition, Chen et al (2006) showed that

CCNB1/CDK1 phosphorylates the AR amino-terminus, stabilizes,

and increases the transcriptional activity of full-length AR. We

found that at least two members of the gene set (including

TOP2A) reduced full-length AR mRNA levels upon depletion.

Moreover, depletion of KIF20A as well as BUB1B decreased AR-

V7 mRNA levels. CCNB2 was the one of the seven genes that

upon knockdown increased ligand-independent AR activity and

increased AR-V7 and full-length AR mRNA levels. Because deple-

tion of the seven genes decreased proliferation but did not

uniformly decrease ligand-independent AR transcriptional activity

(as shown for CCNB2 depletion), the effects on AR activity are

not likely to be secondary to reduced cell proliferation. Since the

seven genes are interrelated and highly connected, it is possible

that depletion of CCNB2 increased the expression of select

members of the gene set in a compensatory way, which could

drive the increase in AR ligand-independent transcriptional activ-

ity as well as AR-V7 and full-length AR mRNA levels. Thus, the

seven identified genes, while not being regulated by full-length

AR, participate at least in some settings in enhancing full-length

AR. Indeed, as discussed below, LNCaP and C4-2B cells, which

are not thought to be driven by AR variants, were growth

inhibited by the combination of nanomolar doses of doxorubicin

and N-9. These findings support the importance of the seven-

gene signature in a broader PC context beyond AR-V7-driven

tumors.

Because the seven genes belong to highly interconnected path-

ways and networks that control each other’s expression and/or

activities, there is a strong likelihood that inhibition of any two of

these genes would provide significantly enhanced antitumor

effects. Indeed, we used two known chemotherapeutic agents as a

proof of principle: doxorubicin (targeting the activity of TOP2A)

and N9-isopropylolomoucine (N-9; targeting CCCNB1/CDK1 activ-

ity, and indirectly affecting three other genes). The drugs, used

within the nanomolar range, provided synergistic suppression of

CRPC growth in 22Rv1 cells, which express AR-V7 (Peacock et al,

2012) and C4-2B, which are also highly reliant on AR signaling

(Liu et al, 2014). In contrast, the two compounds had no effect on

non-tumorigenic or AR-null cells, and affected the androgen-

dependent LNCaP cell line to a much lesser extent. The effects of

the drug combination on LNCaP and C4-2B, which do not express

AR-V7, could likely be due to effects on full-length AR. Indeed,

DOX and N-9 target TOP2A and CCNB1, respectively. As discussed

above, we showed here that the depletion of TOP2A decreased

full-length AR mRNA levels, and Li et al (2015) and Chen et al

(2006) reported that TOP2A and CCNB1 enhance full-length AR

transcriptional activity. CRPC cells may possess a unique depen-

dency on these seven genes for growth and survival since these

genes are not only targets of AR-V7 but also enhance ligand-inde-

pendent AR activity.

In summary, we developed and used an integrative and unbiased

data mining and experimental strategy to define a new AR-V7-

related gene set with prognostic and therapeutic value for PC. These

findings support future in vivo and possibly clinical studies in which

combinations of these seven gene products are inhibited in PC.

Additionally, this seven-gene set should be explored in prospective

studies of PC to determine their prognostic capacity in different clin-

ical risk settings.

Materials and Methods

Microarray dataset preprocessing

Microarray datasets were downloaded from the Gene Expression

Omnibus (GEO, National Center for Biotechnology Information) or

ArrayExpress (European Bioinformatics Institute). Microarrays on

PC samples were selected if they used the Affymetrix Human

Genome U133 plus 2.0 array and had clinical metadata for each

sample (Varambally et al, 2005; Data ref: Varambally et al, 2005;

Traka et al, 2008; Data ref: Traka et al, 2008; Arredouani et al,

2009; Data ref: Arredouani et al, 2014; Satake et al, 2010; Data ref:

Satake et al, 2013; Jia et al, 2011; Data ref: Wang, 2009; Vaarala

et al, 2012 ; Data ref: Vaarala et al, 2012; Rands et al, 2013; Data

ref: Roth, 2008; Mortensen et al, 2015; Data ref: Mortensen &

Dyrskjøt, 2015) (Appendix Fig S1A and B). In total, 375 samples

met our inclusion criteria. These represent eight studies performed

at different institutes. The arrays were assigned to one of the follow-

ing groups: normal, benign hyperplasia, high-grade prostatic
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intraepithelial neoplasia (basement membrane intact; HGPIN), or

cancerous. The cancerous group contained nested subsets for CRPC

and metastatic samples.

Microarray data were read into R and preprocessed using the

“Affy” package. Preprocessing was performed as previously

described (Chandran et al, 2016). Briefly, the “expresso” function

was used to perform MAS5 preprocessing on each array. The corre-

lation of gene expression between samples was calculated, and

samples with mean correlations more than two to three standard

deviations below average were excluded. Filtered samples were

combined, annotated, and quantile normalized. Clinically relevant

metadata were constructed from sample annotations.

Construction of prostate cancer gene co-expression networks

The weighted gene co-expression network analysis (WGCNA)

package was used to construct consensus modules containing

highly connected nodes present across different PC datasets (Lang-

felder & Horvath, 2008). Modules were constructed with a mini-

mum module size of 30 genes, and highly similar modules were

combined using a dissimilarity threshold of 0.25. The Pearson

correlation was first calculated between gene pairs. A weighting

parameter, b, was applied to the correlation matrix, with b satisfy-

ing scale-free topology criteria (Chandran et al, 2016). The

weighted correlation matrix was used to calculate a topological

overlap matrix and node dissimilarity. Genes were hierarchically

clustered using the distance measure, and dynamic tree-cutting

algorithm was used to define modules (Zhang & Horvath, 2005).

Batch effect was minimized by using only U133plus2 arrays and

removing outlier samples. All genes probed on this platform were

used for the analysis. The resulting modules represent sets of

highly connected nodes across the PC datasets. The first principle

component of each module was correlated with the clinical data

to identify module–disease state relationships. Gene ontology anal-

ysis was performed using the “GOenrichmentAnalysis” function of

the “WGCNA” R package.

Cell culture and chemical reagents

The human PC cell lines LNCaP, 22Rv1, PC-3, and RWPE-1 were

obtained from American Type Culture Collection (Manassas, VA)

and cultured in RPMI-1640 (Cellgro by Mediatech, Inc.), supple-

mented with 100 IU/ml penicillin, 100 lg/ml streptomycin, 2 mM

L-glutamine (Life Technologies, Inc.), and 10% fetal bovine serum

(FBS; Atlanta Biologicals) or charcoal-stripped serum (CSS) to

deplete endogenous steroid hormones. The human PC cell line

C4-2B was a generous gift from Dr. Conor Lynch (Moffitt Cancer

Center, Tampa, FL), and cells were cultured in DMEM (Cellgro

by Mediatech, Inc.), under the same conditions as mentioned

above.

R1881 (methyltrienolone) was purchased from PerkinElmer Life

and Analytical Sciences (Boston, MA) and used at 0.1 or 1 nM. Cells

transduced with the different pLKO.1 plasmids were selected in

2.5 lg/ml of puromycin for 3 days and then maintained at 400 ng/

ml of puromycin. Doxycycline was used at 100 ng/ml. Doxorubicin

(DOX; from Sigma-Aldrich, D1515) was dissolved in distilled water

and used at 100 ng/ml. N9-Isopropylolomoucine (N-9) was

purchased from Santa Cruz (CAS 158982-15-1), dissolved in DMSO,

and used at 200 ng/ml. 22Rv1 and C4-2B cells were kept in their

corresponding media with 10% CSS (androgen-depleted). For the

experiments in which the effects of DOX and N-9 on cell prolifera-

tion were examined, those wells that at time zero had a cell conflu-

ence of the mean � 1.5 times the standard deviation were excluded

from analysis. The combination index (CI) was calculated using

the software Compusyn, by Ting Chao-Chou and Nick

Martin (http://www.combosyn.com/feature.html), based on Chou-

Talalay’s Combination Index Theorem (Chou & Talalay, 1984).

All cell lines were authenticated in February 2016 using STR

(Genetica) and tested for mycoplasma contamination every

6 months using the Mycoplasma PCR Detection Kit (Sigma, St.

Louis, MO; MP0035-1KT). All cell lines used were negative for

mycoplasma, bacteria, and fungi contamination.

Plasmids and gene depletion

The MMTV and DGRE/ARE luciferase plasmids were provided by

Dr. Mona Nemer (University of Ottawa, Canada). The pLKO.1

shGFP and the doxycycline-induced tet-pLKO shGFP were provided

by Dr. Priya Rai (University of Miami) and tet-pLKO shAR-V7

were from Dr. Yun Qiu (University of Maryland School of

Medicine, Maryland). The following constructs were purchased

from Sigma-Aldrich (first construct against 30UTR, second construct

against coding region): pLKO.1 shKIF20A (TRCN0000290278,

TRCN0000290348), pLKO.1 shKIF23 (TRCN0000296388, TRCN000

0296327), pLKO.1 shTOP2A (TRCN000049278, TRCN000049279),

pLKO.1 shCCNB1 (TRCN0000293917, TRCN000045291), pLKO.1

shCCNB2 (TRCN000045193, TRCN000045197), pLKO.1 shBUB1

(TRCN0000288618, TRCN0000288618), and pLKO.1 shBUB1B

(TRCN0000197142, TRCN0000194741).

Microarray

Three independent 22Rv1 cell isolates were derived following trans-

duction of tet-pLKO shGFP and tet-pLKO shAR-V7. Cells were

grown in androgen-depleted conditions (10% CSS), plus or minus

doxycycline for 1–3 days. Knockdown was evaluated via Western

blot using an AR-specific antibody [rabbit polyclonal AR (N-20),

Santa Cruz Biotechnology, Cat. sc-816] from a parallel protein

harvest. A short-term, doxycycline-inducible knockdown system

was utilized. After 48 h, RNA from the 12 samples was sent to the

University of Miami Genetics Core for RNA Integrity Number (RIN)

evaluation. gcRMA package was used for the analysis. Analysis was

performed by examining changes in mRNA levels upon doxycycline

treatment. Of the 25,293 transcripts examined, 4,273 genes exhib-

ited significant alteration in expression following AR-V7 depletion

(P-value < 0.05). Genes whose expression levels were significantly

regulated in the shGFP control upon doxycycline treatment (628;

compared to the non-induced control gene set) were removed

from the list of potential AR-V7-regulated genes. This analysis iden-

tified 3,645 genes solely regulated following AR-V7 depletion

(P-value < 0.05).

Yeast synthetic genetic array (SGA)

To create the query strain, AR-V7 was cloned into a pENTR/D-TOPO

vector (Life Technologies, Cat. K2400-20) from pcDNA3.1 AR-V7,
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following the manufacturer’s protocols. The following primers were

used: forward primer: 50-atggaagtgcagttagggct-30; reverse primer:

50-tcagggtctggtcattttgag-30, and the genetic insertion was confirmed

by sequencing (GENEWIZ). The AR-V7 gene was transferred into a

destination vector using LR Gateway reactions, according to the

manufacturer’s protocol, to create an N-terminal HA-tagged AR-V7

under the control of the nmt1 promoter (LR Clonase II from Life

Technologies, Cat. 11791020). This expression vector was then inte-

grated into an h�leu1-32 ura4-D18 Ade6-M210 S. pombe strain

(PN572) to create an AR-V7 query strain (h� integrated pjk148-

nmt13X-HA-ARV7-nmt1term leu1-32 ura4-D18 Ade6-M210). Strains

containing AR-V7 (query strain) were grown in PMG media (Sunrise

Scientific, Cat. 2060), and the expression of HA-tagged AR-V7 was

induced by removing thiamine from the media after washing cells

with sterile water. AR-V7 induction was confirmed by immunoblot-

ting using an AR-V7-specific antibody (mouse monoclonal Precision

antibody, Cat AG10008). Growth conditions and genetic manipula-

tions were previously described (Moreno et al, 1991). The query

strain was crossed to the S. pombe haploid deletion library (Bioneer,

version 4.0 equivalent), utilizing a modified SGA procedure (Dixon

et al, 2008). This procedure is described in detailed in Wiley et al

(2014). Briefly, each cross was grown in four replicates under AR-

V7-inducing (without thiamine) or AR-V7-non-inducing (with thia-

mine) conditions. Colony growth was monitored for 3 days utilizing

a flatbed scanner, and plates were analyzed for “hits” (i.e., a strain

with a deleted gene that when AR-V7 is expressed caused a signifi-

cant growth defect or growth enhancement in comparison with the

same deletion strain under non-induced conditions, P-value < 0.05).

Essential genes were identified as hits based on the criteria that they

interact with at least two primary hits in a S. pombe protein network

(STRING, high confidence of 0.7). The identified S. pombe genes

were converted into human orthologs using Homologene (http://

www.ncbi.nih.gov/homologene; build 67), INPARANOID (http://in

paranoid.sbc.su.se/cgi-bin/index.cgi), OrthoMCL (http://orthomcl.

org/orthomcl/; version 5), and Pombase (www.pombase.org; build

2014-03-17-v1). Network maps were then generated in STRING at

high confidence (0.7) using either experimental data (BIND, DIP,

GRID, HPRD, IntAct, MINT, and PID) or experimental data and data-

base data (Biocarta, BioCyc, GO, KEGG, and Reactome).

Gene co-expression, Gleason score, pathologic stage, and MRI
evidence of extraprostatic lesions analyses

The TCGA Prostate Adenocarcinoma provisional dataset (n = 499)

was used. Gene co-expression analyses were performed using cbio-

portal.org with a Fisher’s exact test, where a P-value < 0.05 denotes

a significant association between the genes (Cerami et al, 2012; Gao

et al, 2013). For the other analyses, the dataset with the clinical

information was downloaded from UCSC Xena: http://xena.ucsc.

edu and analyzed.

Kaplan–Meier curves for disease-free survival (DFS) and death

The TCGA Prostate Adenocarcinoma provisional (n = 465) and the

Prostate Adenocarcinoma MSKCC, Cancer Cell 2010 (n = 123) data-

sets were downloaded from FireBrowse (http://gdac.broadinstitute.

org) and analyzed using the R package “survival”. The z-score

threshold was ≤ 1.96.

Reporter gene assays and transfections

A dual-plasmid mouse mammary tumor virus (MMTV)-luciferase

system was used in which one plasmid encodes wild-type

MMTV promoter, while the control plasmid lacks androgen/

glucocorticoid response elements (ΔGRE/ARE). Non-AR-driven

transcriptional activity and transfection efficiency can be

accounted for by utilizing the ΔGRE plasmid as a baseline

control. Transfection of luciferase constructs was performed

using Lipofectamine (Invitrogen Life Technologies) and PLUS

reagent (Invitrogen Life Technologies), according to the manufac-

turer’s instructions. 22Rv1 were plated at a density of 3.0 × 105

cells in 35-mm dishes 24 h before transfection. Immediately

before transfection, media were replaced with unsupplemented

DMEM. After a 6-h incubation period, the media were removed

and cells were kept in RPMI 1640 supplemented with 2% CSS.

After 48 h, cells were harvested, lysed, and assessed for luci-

ferase activity blindly using the Promega luciferase assay kit

(Promega Corp.) and a luminometer.

Cell growth assays

Cells were plated in 96-well plates at 5,000 cells/well (for

RWPE-1) or 7,500 cells/well (for 22Rv1, C4-2B, PC3), in 6–12

replicates. 22Rv1 cell lines with stable gene depletions (see Plas-

mids and gene depletion section) were also transfected with 2%

v/v of non-perturbing nuclear restricted green fluorescent label

(IncuCyte NucLight Green BacMam 3.0, Essen Bioscience). After

2 h, cells were incubated in an Incucyte Zoom (Essen

Bioscience), acquiring phase (and green fluorescent images when

appropriate) at 10× every 2 h. The Incucyte Zoom software was

used to analyze and graph the results blindly. Each well

measurement was normalized to the number of cells at the

initial time and then normalized to the control (shGFP or vehicle

treatment accordingly).

RNA isolation and reverse transcriptase quantitative RT–qPCR

Total RNA was collected using TRIzol according to the manufac-

turer’s protocol (Life Technologies) and isolated using Direct-zol

RNA MiniPrep Plus (Zymo Research, Catalog number R2072). Total

RNA was reverse-transcribed using a cDNA Reverse Transcription

Kit (Applied Biosystems, Catalog number 4368814) as per the manu-

facturer’s protocol. TaqMan probes from Applied Biosystems for

FKBP5 (Hs01561006_m1), UBE2C (Hs00964100_g1), KIF20A

(Hs00993573_m1), KIF23 (Hs00370852_m1), TOP2A (Hs010321

37_m1), CCNB1 (Hs01030099_m1), CCNB2 (Hs01084593_g1), BUB1

(Hs01557695_m1), BUB1B (Hs01084828_m1), and GAPDH (Hs02

786624_g1) were used.

Statistical analysis

Data were graphed and analyzed using Prism 7 (GraphPad) and

Statistica 8.0 (Statsoft). Data were tested for normality (Shapiro–

Wilk test) and homogeneity of variances (Levene’s test). When

assumptions were met, data were tested for significance

(P < 0.05) using a two-tailed Student’s t-test (two groups) or

analysis of variance (ANOVA; three or more groups). Otherwise,
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Welch’s correction or non-parametric statistical analyses were

used: Mann–Whitney’s test (two groups) and Kruskal–Wallis

(three or more groups).

Data availability

The microarray data that support the findings of this study are avail-

able in the following databases:

• Microarray data: Gene Expression Omnibus GSE104572 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104572).

Expanded View for this article is available online.

Acknowledgements
We are grateful to Drs. Sawsan Khuri, Tan Ince, Enrique Mesri, Irina

Agoulnik, Sandra Lemmon, Priyamvada Rai, and Nagi Ayad for helpful

advice; to Mr. Dimitri Nader for assistance with experiments; to Ms.

Meenakkshy Manoharan for help with the manuscript preparation; and to

Ms. Ann M. Greene for editing the manuscript. This research was

conducted using the resources of the University of Miami Center for

Computational Science (CCS) and the Onco-genomics Shared Resource of

Sylvester Comprehensive Cancer Center. Research performed in this manu-

script was supported by NIH Grant CA132200 (KLB), NIH predoctoral

fellowship F30AG038275 (SOP), Women’s Cancer Association (KLB), and by

developmental and shared equipment funds from the Sylvester Compre-

hensive Cancer Center.

Author contributions
FM contributed to the design of experiments, data acquisition, data analysis,

and writing of the manuscript. ERB contributed to the design of experiments,

data acquisition, and data analysis. VAC, MJM, NZ, LH, and SOP contributed to

data acquisition. DJW contributed to data acquisition and data analysis. GD’U

contributed to data analysis and provided reagents and equipment. KLB

contributed to the design of experiments, data analysis, and writing of the

manuscript and provided reagents and equipment.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y,

Mohammad TA, Chen Y, Fedor HL, Lotan TL, Zheng Q, De Marzo AM,

Isaacs JT, Isaacs WB, Nadal R, Paller CJ, Denmeade SR, Carducci MA,

Eisenberger MA et al (2014) AR-V7 and resistance to enzalutamide and

abiraterone in prostate cancer. N Engl J Med 371: 1028 – 1038

Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Zhu Y, Silberstein JL, Taylor

MN, Maughan BL, Denmeade SR, Pienta KJ, Paller CJ, Carducci MA,

Eisenberger MA, Luo J (2017) Clinical significance of androgen receptor

splice variant-7 mRNA detection in circulating tumor cells of men with

metastatic castration-resistant prostate cancer treated with first-and

second-line abiraterone and enzalutamide. J Clin Oncol 35:

2149 – 2156

Arredouani MS, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera JM, Bubley GJ,

Li V, Rubin MA, Libermann TA, Sanda MG (2009) Identification of the

transcription factor single-minded homologue 2 as a potential biomarker

and immunotherapy target in prostate cancer. Clin Cancer Res 15:

5794 – 5802

Arredouani MS, Lu B, Sanda MG (2014) Gene Expression Omnibus GSE55945

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55945). [DATASET]

Balk SP, Knudsen KE (2008) AR, the cell cycle, and prostate cancer. Nucl

Recept Signal 6: e001

Bjartell A, Montironi R, Berney DM, Egevad L (2011) Tumour markers in

prostate cancer II: diagnostic and prognostic cellular biomarkers. Acta

Oncol 50(Suppl 1): 76 – 84

Cao B, Qi Y, Zhang G, Xu D, Zhan Y, Alvarez X, Guo Z, Fu X, Plymate SR,

Sartor O, Zhang H, Dong Y (2014) Androgen receptor splice variants

activating the full-length receptor in mediating resistance to androgen-

directed therapy. Oncotarget 5: 1635

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A,

Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C,

Schultz N (2012) The cBio cancer genomics portal: an open platform for

exploring multidimensional cancer genomics data. Cancer Discov 2:

401 – 404

Chan SC, Li Y, Dehm SM (2012) Androgen receptor splice variants activate

androgen receptor target genes and support aberrant prostate cancer cell

growth independent of canonical androgen receptor nuclear localization

signal. J Biol Chem 287: 19736 – 19749

Chan SC, Selth LA, Li Y, Nyquist MD, Miao L, Bradner JE, Raj GV, Tilley WD,

Dehm SM (2015) Targeting chromatin binding regulation of constitutively

active AR variants to overcome prostate cancer resistance to endocrine-

based therapies. Nucleic Acids Res 43: 5880 – 5897

Chandran V, Coppola G, Nawabi H, Omura T, Versano R, Huebner EA, Zhang

A, Costigan M, Yekkirala A, Barrett L, Blesch A, Michaelevski I, Davis-Turak

J, Gao F, Langfelder P, Horvath S, He Z, Benowitz L, Fainzilber M,

Tuszynski M et al (2016) A systems-level analysis of the peripheral nerve

intrinsic axonal growth program. Neuron 89: 956 – 970

Chen S, Xu Y, Yuan X, Bubley GJ, Balk SP (2006) Androgen receptor

phosphorylation and stabilization in prostate cancer by cyclin-dependent

kinase 1. Proc Natl Acad Sci USA 103: 15969 – 15974

Chia KM, Liu J, Francis GD, Naderi A (2011) A feedback loop between

androgen receptor and ERK signaling in estrogen receptor-negative breast

cancer. Neoplasia 13: 154 – 166

Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships:

the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme

Regul 22: 27 – 55

Cooperberg MR, Carroll PR (2015) Trends in management for patients with

localized prostate cancer, 1990–2013. JAMA 314: 80 – 82

Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE, Mesher D,

Speights VO, Stankiewicz E, Foster CS, Møller H, Scardino P, Warren JD,

Park J, Younus A, Flake DD II, Wagner S, Gutin A, Lanchbury JS, Stone S

(2011) Prognostic value of an RNA expression signature derived from cell

cycle proliferation genes in patients with prostate cancer: a retrospective

study. Lancet Oncol 12: 245 – 255

Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of

a novel androgen receptor exon generates a constitutively active

androgen receptor that mediates prostate cancer therapy resistance. Can

Res 68: 5469 – 5477

Dixon SJ, Fedyshyn Y, Koh JL, Prasad TS, Chahwan C, Chua G, Toufighi K,

Baryshnikova A, Hayles J, Hoe KL, Kim DU, Park HO, Myers CL, Pandey A,

Durocher D, Andrews BJ, Boone C (2008) Significant conservation of

synthetic lethal genetic interaction networks between distantly related

eukaryotes. Proc Natl Acad Sci USA 105: 16653 – 16658

ª 2018 The Authors Molecular Systems Biology 14: e8202 | 2018 13 of 15

Fiorella Magani et al AR variant network in prostate cancer Molecular Systems Biology

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104572
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104572
https://doi.org/10.15252/msb.20188202
info:x-wiley/geo/GSE55945
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55945


Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen

A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative

analysis of complex cancer genomics and clinical profiles using the

cBioPortal. Sci Signal 6: pl1

Goodwin JF, Kothari V, Drake JM, Zhao S, Dylgjeri E, Dean JL, Schiewer MJ,

McNair C, Jones JK, Aytes A, Magee MS, Snook AE, Zhu Z, Den RB, Birbe

RC, Gomella LG, Graham NA, Vashisht AA, Wohlschlegel JA, Graeber TG

et al (2015) DNA-PKcs-mediated transcriptional regulation drives prostate

cancer progression and metastasis. Cancer Cell 28: 97 – 113

Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, Chen H, Kong X, Melamed J,

Tepper CG, Kung HJ, Brodie AM, Edwards J, Qiu Y (2009) A novel androgen

receptor splice variant is up-regulated during prostate cancer progression

and promotes androgen depletion–resistant growth. Can Res 69: 2305 – 2313

Havlicek L, Hanu�s J, Veselý J, Leclerc S, Meijer L, Shaw G, Strnad M (1997) Cytokinin-

derived cyclin-dependent kinase inhibitors: synthesis and cdc2 inhibitory

activity of olomoucine and related compounds. J Med Chem 40: 408–412

He Y, Lu J, Ye Z, Hao S, Wang L, Kohli M, Tindall DJ, Li B, Zhu R, Wang L,

Huang H (2018) Androgen receptor splice variants bind to constitutively

open chromatin and promote abiraterone-resistant growth of prostate

cancer. Nucleic Acids Res 46: 1895 – 1911

Ho Y, Dehm SM (2017) Androgen receptor rearrangement and splicing

variants in resistance to endocrine therapies in prostate cancer.

Endocrinology 158: 1533 – 1542

Hörnberg E, Ylitalo EB, Crnalic S, Antti H, Stattin P, Widmark A, Bergh A,

Wikström P (2011) Gene Expression Omnibus GSE29650 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE29650). [DATASET]

Hörnberg E, Ylitalo EB, Crnalic S, Antti H, Stattin P, Widmark A, Bergh A,

Wikström P (2011) Expression of androgen receptor splice variants in

prostate cancer bone metastases is associated with castration-resistance

and short survival. PLoS One 6: e19059

Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M, Tannahill C,

Edwards J, Isaacs WB, Nelson PS, Bluemn E, Plymate SR, Luo J (2012)

Distinct transcriptional programs mediated by the ligand-dependent full-

length androgen receptor and its splice variants in castration-resistant

prostate cancer. Can Res 72: 3457 – 3462

Imamura K, Sadar MD (2016) Androgen receptor targeted therapies in

castration-resistant prostate cancer: bench to clinic. Int J Urol 23:

654 – 665

Jia Z, Wang Y, Sawyers A, Yao H, Rahmatpanah F, Xia XQ, Xu Q, Pio R, Turan

T, Koziol JA, Goodison S, Carpenter P, Wang-Rodriguez J, Simoneau A,

Meyskens F, Sutton M, Lernhardt W, Beach T, Monforte J, McClelland M,

et al (2011) Diagnosis of prostate cancer using differentially expressed

genes in stroma. Cancer Res 71: 2476 – 2487

Kadarmideen HN, Watson-Haigh NS (2012) Building gene co-expression

networks using transcriptomics data for systems biology investigations:

comparison of methods using microarray data. Bioinformation 8: 855

Karacosta LG, Foster BA, Azabdaftari G, Feliciano DM, Edelman AM (2012) A

regulatory feedback loop between Ca2 + /calmodulin-dependent protein

kinase kinase 2 (CaMKK2) and the androgen receptor in prostate cancer

progression. J Biol Chem 287: 24832 – 24843

Karantanos T, Corn PG, Thompson TC (2013) Prostate cancer progression after

androgen deprivation therapy: mechanisms of castrate resistance and

novel therapeutic approaches. Oncogene 32: 5501 – 5511

Knudsen KE, Penning TM (2010) Partners in crime: deregulation of AR activity

and androgen synthesis in prostate cancer. Trends Endocrinol Metab 21:

315 – 324

Kong D, Sethi S, Li Y, Chen W, Sakr WA, Heath E, Sarkar FH (2015) Androgen

receptor splice variants contribute to prostate cancer aggressiveness

through induction of EMT and expression of stem cell marker genes.

Prostate 75: 161 – 174

Kreeger PK, Lauffenburger DA (2009) Cancer systems biology: a network

modeling perspective. Carcinogenesis 31: 2 – 8

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet

JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong

SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR (2006)

The Connectivity Map: using gene-expression signatures to connect small

molecules, genes, and disease. Science 313: 1929 – 1935

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted

correlation network analysis. BMC Bioinformatics 9: 559

Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM (2013) Androgen

receptor splice variants mediate enzalutamide resistance in castration-

resistant prostate cancer cell lines. Can Res 73: 483 – 489

Li H, Xie N, Gleave ME, Dong X (2015) Catalytic inhibitors of DNA

topoisomerase II suppress the androgen receptor signaling and prostate

cancer progression. Oncotarget 6: 20474

Liu C, Lou W, Zhu Y, Nadiminty N, Schwartz CT, Evans CP, Gao AC (2014)

Niclosamide inhibits androgen receptor variants expression and

overcomes enzalutamide resistance in castration-resistant prostate cancer.

Clin Cancer Res 20: 3198 – 3210

Lu J, Van der Steen T, Tindall DJ (2015) Are androgen receptor variants a

substitute for the full-length receptor? Nat Rev Urol 12: 137 – 144

Luo J, Attard G, Balk SP, Bevan C, Burnstein K, Cato L, Cherkasov A, De Bono

JS, Dong Y, Gao AC, Gleave M, Heemers H, Kanayama M, Kittler R, Lang

JM, Lee RJ, Logothetis CJ, Matusik R, Plymate S, Sawyers CL et al (2017)

Role of androgen receptor variants in prostate cancer: report from the

2017 mission androgen receptor variants meeting. Eur Urol 73:

715 – 723

Marcias G, Erdmann E, Lapouge G, Siebert C, Barthélémy P, Duclos B,

Bergerat JP, Céraline J, Kurtz JE (2010) Identification of novel truncated

androgen receptor (AR) mutants including unreported pre-mRNA splicing

variants in the 22Rv1 hormone-refractory prostate cancer (PCa) cell line.

Hum Mutat 31: 74 – 80

Mendiratta P, Mostaghel E, Guinney J, Tewari AK, Porrello A, Barry WT,

Nelson PS, Febbo PG (2009) Genomic strategy for targeting therapy in

castration-resistant prostate cancer. J Clin Oncol 27: 2022 – 2029

Moreno S, Klar A, Nurse P (1991) [56] Molecular genetic analysis of fission

yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795 – 823

Mortensen MM, Dyrskjøt L (2015) Gene Expression Omnibus GSE46602

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46602). [DATASET]

Mortensen MM, Høyer S, Lynnerup AS, Ørntoft TF, Sørensen KD, Borre M,

Dyrskjøt L (2015) Expression profiling of prostate cancer tissue delineates

genes associated with recurrence after prostatectomy. Sci Rep 5: 16018

Peacock SO, Fahrenholtz CD, Burnstein KL (2012) Vav3 enhances androgen

receptor splice variant activity and is critical for castration-resistant

prostate cancer growth and survival. Mol Endocrinol 26: 1967 – 1979

Pomerantz MM, Li F, Takeda DY, Lenci R, Chonkar A, Chabot M, Cejas P,

Vazquez F, Cook J, Shivdasani RA, Bowden M, Lis R, Hahn WC, Kantoff PW,

Brown M, Loda M, Long HW, Freedman ML (2015) The androgen receptor

cistrome is extensively reprogrammed in human prostate tumorigenesis.

Nat Genet 47: 1346 – 1351

Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM (2012) Beyond PSA: the next

generation of prostate cancer biomarkers. Sci Transl Med 4: 127rv3

Qu Y, Dai B, Ye D, Kong Y, Chang K, Jia Z, Yang X, Zhang H, Zhu Y, Shi G

(2015) Constitutively active AR-V7 plays an essential role in the

development and progression of castration-resistant prostate cancer. Sci

Rep 5: 7654

14 of 15 Molecular Systems Biology 14: e8202 | 2018 ª 2018 The Authors

Molecular Systems Biology AR variant network in prostate cancer Fiorella Magani et al

info:x-wiley/geo/GSE29650
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29650
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29650
info:x-wiley/geo/GSE46602
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46602


Rands CM, Darling A, Fujita M, Kong L, Webster MT, Clabaut C, Emes RD,

Heger A, Meader S, Hawkins MB, Eisen MB, Teiling C, Affourtit J, Boese B,

Grant PR, Grant BR, Eisen JA, Abzhanov A, Ponting CP (2013) Insights into

the evolution of Darwins finches from comparative analysis of the

Geospiza magnirostris genome sequence. BMC Genomics 14: 95

Rhodes DR, Chinnaiyan AM (2005) Integrative analysis of the cancer

transcriptome. Nat Genet 37: S31 – S37

Roth RB (2008) ArrayExpress E-GEOD-7307 (https://www.ebi.ac.uk/arrayexpre

ss/experiments/E-GEOD-7307/?query=GSE7307). [DATASET]

Satake H, Tamura K, Furihata M, Anchi T, Sakoda H, Kawada C, Iiyama T,

Ashida S, Shuin T (2010) The ubiquitin-like molecule interferon-

stimulated gene 15 is overexpressed in human prostate cancer. Oncol

Rep 23: 11 – 16

Satake H, Tamura K, Shuin T (2013) Gene Expression Omnibus GSE45016

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45016). [DATASET]

Schaefer-Klein JL, Murphy SJ, Johnson SH, Vasmatzis G, Kovtun IV (2015)

Topoisomerase 2 alpha cooperates with androgen receptor to contribute

to prostate cancer progression. PLoS One 10: e0142327

Shafi AA, Putluri V, Arnold JM, Tsouko E, Maity S, Roberts JM, Coarfa C, Frigo

DE, Putluri N, Sreekumar A, Weigel NL (2015) Differential regulation of

metabolic pathways by androgen receptor (AR) and its constitutively

active splice variant, AR-V7, in prostate cancer cells. Oncotarget 6: 31997

Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin

66: 7 – 30

Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer

molecular action, toxicity and novel drug delivery systems. J Pharm

Pharmacol 65: 157 – 170

Traka M, Gasper AV, Melchini A, Bacon JR, Needs PW, Frost V, Chantry A,

Jones AM, Ortori CA, Barrett DA, Ball RY, Mills RD, Mithen RF (2008)

ArrayExpress E-MEXP-1243 (https://www.ebi.ac.uk/arrayexpress/experime

nts/E-MEXP-1243/). [DATASET]

Traka M, Gasper AV, Melchini A, Bacon JR, Needs PW, Frost V, Chantry A,

Jones AM, Ortori CA, Barrett DA, Ball RY, Mills RD, Mithen RF (2008)

Broccoli consumption interacts with GSTM1 to perturb oncogenic

signalling pathways in the prostate. PLoS One 3: e2568

Vaarala MH, Hirvikoski P, Kauppila S, Paavonen TK (2012) Identification of

androgen-regulated genes in human prostate. Mol Med Rep 6: 466 – 472

Vaarala MH, Hirvikoski P, Kauppila S, Vuoristo JT, Paavonen TK (2012) Gene

Expression Omnibus GSE32982 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE32982). [DATASET]

Varambally S, Yu J, Laxman B, Mehra R, Tomlins SA, Chinnaiyan AM (2005)

Gene Expression Omnibus GSE3325 (https://www.ncbi.nlm.nih.gov/geo/que

ry/acc.cgi?acc=GSE3325). [DATASET]

Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, Shah RB,

Chandran U, Monzon FA, Becich MJ, Wei JT, Pienta KJ, Ghosh D, Rubin MA,

Chinnaiyan AM (2005) Integrative genomic and proteomic analysis of

prostate cancer reveals signatures of metastatic progression. Cancer Cell 8:

393 – 406

Wang Y (2009) Gene Expression Omnibus GSE17951 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE17951). [DATASET]

Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A, Kim K,

Sawyers CL (2010) Constitutively active androgen receptor splice variants

expressed in castration-resistant prostate cancer require full-length

androgen receptor. Proc Natl Acad Sci USA 107: 16759 – 16765

Wiley DJ, Juan I, Le H, Cai X, Baumbach L, Beattie C, D’Urso G (2014) Yeast

Augmented Network Analysis (YANA): a new systems approach to identify

therapeutic targets for human genetic diseases. F1000Res 3: 121

Xu D, Zhan Y, Qi Y, Cao B, Bai S, Xu W, Gambhir SS, Lee P, Sartor O,

Flemington EK, Zhang H, Hu CD, Dong Y (2015) Androgen receptor splice

variants dimerize to transactivate target genes. Can Res 75: 3663 – 3671

Yu Y, Zhang Y, Guan W, Huang T, Kang J, Sheng X, Qi J (2014) Androgen

receptor promotes the oncogenic function of overexpressed Jagged1 in

prostate cancer by enhancing cyclin B1 expression via Akt

phosphorylation. Mol Cancer Res 12: 830 – 842

Zhang B, Horvath S (2005) A general framework for weighted gene co-

expression network analysis. Stat Appl Genet Mol Biol 4: 17

Zhang X, Morrissey C, Sun S, Ketchandji M, Nelson PS, True LD, Vakar-Lopez F,

Vessella RL, Plymate SR, Zhang X (2011) Androgen receptor variants occur

frequently in castration resistant prostate cancer metastases. PLoS One 6:

e27970

Zhu L, Ding Y, Chen CY, Wang L, Huo Z, Kim S, Sotiriou C, Oesterreich S,

Tseng GC (2016) MetaDCN: meta-analysis framework for differential co-

expression network detection with an application in breast cancer.

Bioinformatics 33: 1121 – 1129

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

ª 2018 The Authors Molecular Systems Biology 14: e8202 | 2018 15 of 15

Fiorella Magani et al AR variant network in prostate cancer Molecular Systems Biology

info:x-wiley/ae/E-GEOD-7307
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-7307/?query=GSE7307
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-7307/?query=GSE7307
info:x-wiley/geo/GSE45016
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45016
info:x-wiley/ae/E-MEXP-1243
https://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-1243/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-1243/
info:x-wiley/geo/GSE32982
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32982
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32982
info:x-wiley/geo/GSE3325
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3325
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3325
info:x-wiley/geo/GSE17951
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17951
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17951

