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Invasive placentation with extended pregnancy is a shared derived charac-
teristic unique to eutherian mammals that possess a highly effective
system of haemostasis, platelets. These are found in all mammals but no
other group of animals. We propose that platelets and megakaryocytes
(large polyploid nucleated bone marrow cells that produce platelets) evolved
from an ancestral 2 N thrombocyte by polyploidization and that the posses-
sion of platelets enabled the evolution of invasive placentation. This could
explain why invasive placentation is limited to mammals.

1. Introduction

Mammals have many unique traits, two of which are: the megakaryocyte/
platelet system (MK/P) and invasive (endothelio- and haemochorial) placenta-
tion. MK/P is not found in birds or reptiles [1]. Haemochorial placentation is
only found in eutherian mammals [2-5] but not in marsupials and monotremes
(figure 1). We propose that haemochorial placentation required MK/P for its
evolution, thus explaining this nested distribution.

Giving birth to live neonates (viviparity) rather than laying eggs is wide-
spread. It has evolved many times in fishes, frogs, salamanders, lizards,
snakes and mammals [6,7]. Among vertebrates, viviparous lineages are only
absent from the cyclostomes and the archosaurs including birds. Probably, vivi-
parity has evolved more than 100 times in lizards and snakes alone [8-10].
Viviparity and placentation are also found in some invertebrates [11].

Surprisingly, only eutherian mammals have evolved invasive, haemochorial
placentation even though many lineages have evolved various complex forms
of placentation [8,12,13]. Although viviparity is simple to evolve [14], the evol-
ution of haemochorial placentation is limited to animals with MK/P. We
suggest that MK/P was an ‘exaptation” sensu Gould & Vrba [15]: a trait that
has a biological role in an organism, not originating for that function but acquir-
ing its role by transfer of function. We argue that the preceding evolution of
platelets was the exaptation necessary for the origin of invasive placentation.

2. The evolution of mammalian reproduction

There are four types of reproduction in mammals: egg-laying in monotremes,
short embryo attachment in marsupials, deep placentation in ancestral placental
mammals and reversion to non-invasive placentation as in horses and bovines
[3—-5]. The most ancestral form of mammalian reproduction is found in mono-
tremes, egg-laying mammals (Platypus and the Echidna) [16,17] that already
have some degree of oviparous matrotrophy through the eggshell [18].
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Figure 1. Phylogenetic relationships of the major clades of mammals and the
taxonomic distribution of haemostatic and reproductive characteristics. Platelets
and megakaryocytes are found in all three clades of mammals but not in rep-
tiles. Therians, i.e. eutherians and marsupials, share viviparity. In reptiles, the
mode of reproduction is variable. Only eutherians have a haemochorial placenta.
This condition is ancestral in eutherians, but there are some derived groups that
have re-evolved non-invasive, epitheliochorial placentation: dots are shaded,
with darker shading at the bottom, indicating an ancestral condition.

Marsupial reproduction is characterized by a relatively
long period of egg retention with ‘hatching’ from the egg
within the uterus, then a brief period of attachment to the
uterine mucosa—a step towards placental mammals. In non-
macropod marsupials, embryo attachment is very brief,
producing immature neonates [19,20]. There is longer gestation
in macropods [21]. Molecular phylogeny studies of mammals
[3-5] suggest that the ancestral fetal-maternal interface in
eutherians was haemo- or at least endotheliochorial.

In marsupials, the very brief embryo attachment
involves uterine inflammation followed by parturition [22,23].
In eutherian mammals, embryo implantation also involves
inflammatory activation [24], followed by an anti-inflammatory
state. Hence, the key event in the evolution of placental
pregnancy was the ability to suppress the implantation-related
inflammation allowing deep implantation with destruction of
maternal blood vessels creating the haemochorial fetal—
maternal interface [22,25]. This progression towards deeply
invasive placentation in eutherians was only possible in
animals that could handle the challenging haemostatic
consequences of haemochorial implantation.

3. The evolution and function of megakaryocytes
and platelets

Platelets are small enucleate secretory cells, produced from
megakaryocytes [26]. They aggregate to occlude a site of
bleeding, to initiate thrombus formation and secrete growth
factors to repair blood vessels. Platelets have similar function
and structure in all mammals including monotremes [27].
For haemostasis, reptiles and birds rely on the aggregation
of circulating nucleated cells called thrombocytes [28],
which are less efficient than platelets [29,30]. Thrombocyte-
like cells occur in arthropods: coagulocytes in insects [31]
and haemocytes in the limulus crab [32].

The physical and biological conditions of the pulmonary [ 2 |

circulation support platelet production from megakaryocytes
that have travelled in the venous circulation from the bone
marrow [33-36]. Platelets are produced by physical fragmen-
tation of megakaryocyte cytoplasm in the pulmonary
circulation [37]. Megakaryocytes undergo true endomitosis:
increase in nuclear DNA content within an intact nuclear
membrane [38]. The unique step in the change from a 2 N
thrombocyte to a large polyploid megakaryocyte would
have been a late failure of cytokinesis giving incomplete mito-
sis aborted in anaphase, then repeated up to 128 N [38]. There
is selective gene expression in higher ploidy cells [39,40].

Fragmentation of the polyploid nucleated cell to platelets
would have given reproductive advantage owing to enhanced
haemostasis after attack or injury. MK/P was a quantitative
haemostatic advance as small size gave a large increase both
in cellular surface area and speed of granule secretion.
A further, qualitative, advantage over 2 N thrombocytes is
that in response to bleeding megakaryocytes can increase
their DNA content rapidly, up to 128 N, producing even
more active platelets with increased receptor density, more
organelles per unit cellular volume and increased capacity to
produce prothrombotic proteins and to reduce bleeding time
[41-49]. Platelet granules contain about a hundred cargo
proteins produced by the megakaryocyte. Platelet-secreted
proteins that are known to promote tumour growth (analogous
to fetal growth) are VEGF, PDGF, EGF and TGF B.

4. The role of platelets in eutherian reproduction

In eutherian pregnancy, fertilization is associated with mild
thrombocytopenia in mice [50] and women [51,52], owing
to the secretion of embryo-derived platelet-activating factor
(ePAF) [53], which also induces early pregnancy factor. Pre-
treatment of mice with PAF leaves them unresponsive to
ePAF and is associated with reduced implantation rate [54].
Platelets are a major storage compartment of serotonin
(BHT). Maternal 5HT is essential for early development of
the mouse embryo [55,56]. 5HT in early gestation is entirely
supplied by maternal platelets [57]. This is surprising, given
a pre-neuronal role of 5HT in embryo development in the
frog Xenopus [58] and sea urchins [59], which lack placentas.

After extravillous trophoblasts (EVTs) lose proliferative
activity, they migrate towards uterine spiral arteries [60].
EVTs express the chemokine receptor CCR1 [61]. Platelets
secrete MIPI-lae and MCP-3, which are CCR1 ligands [62].
Probably, these agents play a role in EVT migration and
infiltration of the maternal arteries. Also, platelet a granule-
secreted EGF, VEGF and PDGF enhance trophoblast invasion
[63,64] and encourage trophoblasts to infiltrate arteries [65].

Safe disconnection of the placenta from the uterus is essen-
tial for the survival of the mother. Contraction of both the
myometrium and the endometrium is important, as is cellular
haemostasis. Haemostatic balance tilts towards hypercoagul-
ability during human pregnancy [66]. Evidence that platelets
are important comes from human mothers with Bernard—
Soulier syndrome and Glanzmann’s thrombasthenia, conditions
manifesting a platelet dysfunction. Either primary or secondary
haemorrhage occurs in 73% of pregnancies in patients with
Bernard-Soulier syndrome [67], and in 50% of mothers
giving birth with Glanzmann’s thrombasthenia [68]. Knock-
out (KO) experiments in mice show that maternal platelet
defect is compatible with successful pregnancy [69].
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Figure 2. The need for haemostasis in a minimally invasive haemochorial animal D-. novemcintus, which belongs to the eutherian clade most distantly related to
humans. (a) The minimally invasive placenta of armadillo in third month gestation. The thin threads indicated by yellow arrows are the projections of the placenta
entering the endometrium to the left. Arrow heads indicate penetration. The invasion through haemochorial is minimally destructive. (b) Postpartum uterus of
armadillo, showing copious coagulated blood in the uterine cavity, indicating the need for effective haemostasis.

The role of platelets in postpartum haemostasis alone is suf-
ficient to support their role in the evolution of eutherian
pregnancy. Other roles are rather specific to a subset of species
and are thus likely derived, e.g. EVTs are a cell type limited to
hominids. Fetal dependency on maternal 5HT in early devel-
opment also has to be a derived condition, given that
amphibian and sea urchin embryos can supply their own
5HT. A process with potential generality is platelet activation
by ePAF and its role in early implantation. The role of
platelets in implantation, however, is likely part of the inflam-
matory nature of implantation [24], which probably evolved
from an inflammatory attachment reaction in the stem lineage
of therians, i.e. before the most recent common ancestor of
marsupials and eutherians [22,25].

5. An evolutionary scenario

The evolution of haemochorial, invasive placentation faced at
least two obstacles: inflammation caused by embryo attach-
ment to the uterine lining, and later, haemostasis. In
marsupials, with the noted exception of Macropods (see
above), fetal attachment to the uterine lining is followed
quickly by various signs of inflammation, including neutrophil
infiltration and parturition. By contrast, in eutherians, the
attachment/implantation of the fetus is followed by an anti-
inflammatory phase that allowed the extension of pregnancy
beyond the limits of the length of the oestrus cycle [22]. The
fact that inflammatory processes are involved in both marsupial
and eutherian mammals, though with different outcomes, is
correlated with the ‘generic’ aggressiveness of the therian
blastocysts. In eutherians, it leads to implantation. Even in mar-
supials without implantation, the fetus is quite aggressive in
attacking the luminal epithelium (LE) of the uterus; in the
grey short-tailed opossum, Monodelphis domestica, at the end of
gestation, cytoplasmic extensions of trophoblast cells can be
seen to penetrate between the epithelial cells and breach the
basal membrane of the LE [70,71] (GP Wagner 2015, personal
observation), also in the Philander opossum [72] and bandicoots
(Peramelidae) [73]. Differences in the invasiveness of the
trophoblast between marsupials and eutherians are not differ-
ences in the fetus but rather in the way the maternal

organism handles the situation. In marsupials, the partial inva-
sion leads to expulsion (parturition) and in eutherians, the
inflammatory reaction is attenuated and pregnancy extended.

The situation in reptiles is not as clear. In most cases of
placental viviparous lizards, the placenta does not erode the
LE but is in apposition with the LE and is held in place by
uterine muscle contraction [74]. The lack of invasiveness
could be explained by a lower aggressiveness of the fetus,
as demonstrated in the case of an ectopic pregnancy in the
southern grass skink (Pseudemoia entrecasteauxii [75]), which
is a placentotrophic lizard. Any form of invasiveness is extre-
mely rare in lizards, given the large number of viviparous
lizards. In one, the African skink Trachylepis ivensi (Scincidae),
a rare example of lizard ‘invasion” does not lead to the estab-
lishment of a haemochorial placenta [76]. It is unclear whether
this less invasive form may have been a way of lizards
evolving a sustainable fetal-maternal relationship.

As soon as the mother had evolved a way of suppressing
and managing the fetally induced inflammation, another pro-
blem arose: haemostasis. Haemochorial implantation leads to
the partial destruction of the maternal blood vessels in the
endometrium and thus raises the question of how the bleed-
ing is limited to the area of placentation. The second problem
arises at parturition, where the fetal-maternal interface is dis-
sociated, leaving, in many species, a broad exposed lesion in
the uterus. Fast and reliable haemostasis at the wound is
essential for the survival of the mother. Mammalian neonates
rely on lactation for survival and maternal demise thus also
leads to neonatal demise. We argue that the fact that mam-
mals have a much more effective system for haemostasis
than other vertebrates (the MK/P system) may have been
a key exaptation for the evolutionary establishment of
haemochorial placentation.

Eutherians vary greatly in how the haemochorial interface
is organized, which may lead to different needs for haemo-
stasis at parturition. One extreme example is that of the
nine-banded armadillo, Dasypus novemcintus, whose placenta
is technically haemochorial, in that the villi of the placenta are
in direct contact with maternal blood [77,78]. However, this is
achieved in a minimally invasive way. Single villi penetrate
the endometrium and grow towards preformed maternal
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blood spaces and only expand and ramify once they have
reached the varicosities (figure 2a). Hence, haemostasis
during implantation and gestation is a minimal concern for
armadillos, given that they have a well-contained space pre-
formed into which placental extensions reach. Nevertheless,
even the armadillo has to face the danger of a major haemor-
rhage at parturition (figure 2b). Another example is the
massive postpartum bleeding in the African elephant, an
animal with endotheliochorial placentation [79] and possibly
also the dugong, also an afrotherian mammal [80], and the
manatee [81]. Hence, we think the most important reason
why haemochorial placenta is limited to eutherian mammals
is that parturition of a haemochorial placenta leads to profuse
bleeding in the uterus that needs to be arrested.

6. Conclusion

Deeply invasive haemochorial placentation is limited to the
eutherian mammals. This is surprising given the large
number of non-mammalian animals that have evolved
viviparity and placentation. We argue that haemochorial
placentation is limited to a clade of mammals, because mam-
mals are the only vertebrate group that has evolved a highly
effective and unique system of haemostasis: platelets. The
effectiveness of haemostasis is essential at parturition where
even minimally invasive placentae can haemorrhage.

All neonatal mammals, regardless of how developed they
are at birth, rely on maternal lactation for their initial growth
and survival after birth, and thus, the survival of the mother
is critical. Consequently, the evolution of invasive placenta-
tion is most likely to succeed in a lineage that already has a
highly effective system of haemostasis before the origin of
deep placentation. From the standpoint of evolutionary
theory, platelets are an exaptation, sensu Gould & Vrba [15],
for the evolution of haemochorial placenta, i.e. a trait that
has an important role but that evolved for another purpose
prior to taking on this role. Platelets could be called a permiss-
ive exaptation as it may have permitted the evolution of a
novel trait, haemochorial placentation, rather than acquiring
a new function itself.

Platelet production from megakaryocytes is an important
area for research in thrombosis. The ideas presented here may
help stimulate new research into the powerful thrombotic
forces associated with the evolution of the placenta but that
also cause thrombosis of human arteries [41,82].
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