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Animals use cues to find their food, in microhabitats within their physiologi-

cal tolerances. Termites build and modify their microhabitat, to transform

hostile environments into benign ones, which raises questions about the rela-

tive importance of cues. Termites are desiccation intolerant and foraging

termites are attracted to water, so most research has considered moisture

to be a cue. However, termites can also transport water to food, and so

moisture may play other roles than previously considered. To examine the

role of moisture, we compared Coptotermes acinaciformis termite foraging

decisions in laboratory experiments when they were offered dry and moist

wood, with and without load. Without load, termites preferred moist

wood and ate it without any building, whereas they moistened dry wood

after wrapping it in a layer of clay. For the ‘With load’ units, termites substi-

tuted some of the wood for load-bearing clay walls, and kept the wood drier

than on the unloaded units. As drier wood has higher compressive strength

and higher rigidity, it allows more of the wood to be consumed. These

results suggest that moisture plays a more important role in termite ecology

than previously thought. Termites manipulate the moisture content accord-

ing to the situational context and use it for multiple purposes: increased

moisture levels soften the fibre, which facilitates foraging, yet keeping the

wood dry provides higher structural stability against buckling which is

especially important when foraging on wood under load.
1. Introduction
Termite nests are designed subterranean, epigeal or arboreal and of complex geo-

metry and material composition [1,2]: chopped-up, pre-digested plant matter

mixed with inorganic components into a clay–wood–faeces compound matrix

serves as food reserve—within the inner layers, especially the carton material

[3–6]. The colony within engineers favourable living conditions by controlling

the mound’s microclimate, its temperature, relative humidity (RH) and air-

flow—also a source of inspiration for carbon-neutral house designs [7–10].

Especially water in soils and within wood is attractive to termites [11].

Heavy rainfalls or flooding combined with elevated temperatures promote ter-

mite activity [7,12–17]. Yet, the role of moisture in clay and its relation to

foraging is poorly understood; it might be interwoven with mechanisms, also

responsible to trigger autonomous collective building behaviours including

complex depositing, excavation and defence strategies [10,18–20]. To study

this potential interrelation, we investigate the role of moist clay on building

activities and foraging decisions of C. acinaciformis using bioassays and mechan-

ical experiments. We characterize wood beams with regards to their moisture

absorption and study termite foraging activities providing either wet or dry
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wood or a choice of wood of different tree species. We then

run bioassays for wood ‘With load’ and ‘No load’, followed

by compression tests, to examine the influence of moisture

on foraging and load-bearing capacity.
ietypublishing.org/journal/rsbl
Biol.Lett.15:20190365
2. Material and methods
(a) Collection and maintenance of termites
Termites of the mound building, Northern form of C. acinacifor-
mis (Blattodea: Rhinotermitidae) were collected from three

mounts near the Darwin Laboratory of the Commonwealth

Scientific and Industrial Research Organisation (CSIRO) in Berri-

mah (Northern Territory, 12828’5200 S, 13181’4400 E). Healthy

workers and soldiers in their natural ratio (approx. 10 : 1) were

isolated from soil and separated from the royal pair, lower instars

and brood [21]. We placed 35 g of termites (approx. 8,140 indi-

viduals), two 8 � 12 cm slates of Eucalyptus (E.) regnans
(119.3+3.8 g) and water-soaked nest carton material into 2 l

jars. We gave the termites a 3-day settling-in period to promote

acclimatization to minimize transportation damage [21]. The

experiments were set up in walk-in environmental chambers

(288C at 80% RH) at CSIRO (Canberra).

(b) Preparation of wood samples
We cut two types of geometries using silver poplar (Populous
(Po.) alba), Monterey pine (Pinus (Pi.) radiata) and mountain

ash (E. regnans). The wood used consisted only of heartwood

sourced from building timber. The block geometry (for pilot

tests) was 30 mm long with a 20 � 20 mm2 cross-sectional area

(volume V ¼ 12 cm3, n ¼ 15 each wood type). From the timber

used for the blocks, we also produced n ¼ 67 beams of each

species of length of 20 mm and a 5 � 5 mm2 cross-sectional

area (V ¼ 0.5 cm3). We measured the average dry weight (scale:

AEA 250 g Adam Equipment Co. Ltd, Milton Keynes, four

digits accuracy; oven: XU490 France Etuves, 4 kW, 16 h at

1058C), the humidity absorption from air (environmental

chamber: Challenge 600, ACS, Massa Martana; 80+3% RH at

288C), and the moisture content after soaking (8 h at 218C). The

beams were clustered with respect to their densities and average

moisture absorption [22,23].1

(c) Wood reduction under the influence of moisture,
the application of clay or load

(i) Pilot
Initially, we studied the clay wrapping behaviour of termites. We

used oven-dried and cooled down wood blocks (n ¼ 15), and

placed them into the centre of termite jars. We also took soil

samples from the jar to measure their humidity absorption

through weighing. We checked on the blocks on a daily basis

for 60 days and weighed each block after removing any clay

attached.

(ii) Main experiment
Then, the pressure trial experiment described in [10] with ‘No

load’ (control) or ‘With load’ (treatment) units, was extended

in its complexity by using beams of different wood species in a

tripod configuration: Po. alba, Pi. radiata and E. regnans which

had different densities and moisture absorption coefficients and

compressive strengths [23]. Only using three ‘legs’ made of

different wood species enabled accurate determination of the

load and the foraging preferences. We finished the experiment

in two weeks, so that some beams would be still intact, cf.

[10]; the small size beams were quickly saturated with water

(electronic supplementary material, figure S1).
All beams were sandwiched between concrete pavers, which

were separated by water-filled trays and connected via tubing to

termite jars (electronic supplementary material, figure S2) [10].

Termites had access to ground carton material and riverbank

sand in PVC tubing. Only the beams on the ‘With load’ units

carried deadweight of approximately 6.85 kN (60 l water, 10 kg

pavers), with gravity acting collinearly to the grain; 21.5 mm

long metal spacers carried all load on the ‘No load’ units [10].

Termites substitute loaded wood with clay [10]. To test

whether termites not only build more clay on the ‘With load’

units for static stability but also moisten the beams less to

increase its structural stability [10,24], we recorded the beams’

moisture levels, their mass reduction and the amount of built

up clay [10]. Only upright-standing and contacted beams

(traces of clay) with no visible fungus were counted as valid

samples.

We determined the compressive strengths of 30 random,

oven-dried and moistened beams of each wood type using

quasi-static compression tests by recording the change in displa-

cement against the force applied [24,25]. Finally, we tested the

partially damaged beams taken from the bioassays for their com-

pressive strength. We fitted all beams with the grain collinearly

to the force into an adaptor mounted to a compression-testing

machine (120 K, JJ Lloyd Instruments, Ametek; 5 kN load cell:

Instron IN2519-5 kN, Norwood; laser extensometer, EIR, Model

LE-05; 100 Hz, 0.083 mm s21). In all compression tests, a clear

slip plane due to shear mode failure, determined the validity

of a test, electronic supplementary material, figure S3. Shear

mode failure is the prevalent failure mode in compression tests

in grain direction; in our experiments, this was also associated

with initial crushing followed by end rolling. If the sample

slipped or split during compression, it was assumed that

either the end planes were not perfectly parallel or that the

sample had a prior weakness at the splitting point caused by

an imperfect manufacturing process or grown-in weakness.
3. Results
(a) Pilot
We observed that termites always applied a thick layer of wet

clay to all free surfaces of the blocks during an exploration
stage (cf. [10]) only displaying nibbling or superficial ‘grazing’

(electronic supplementary material, figure S4). Within these

first 18+ 4 days, we measured increasing wood weights of

up to 46.1+ 18.2%, dominated by moisture absorption

(electronic supplementary material, figures S5 and S6).

(b) Main experiment
A significantly larger average amount of solidly built clay per

unit volume (Fisher’s t-test, n ¼ 13, d.f. ¼ 25, F ¼ 22.84, p ,

0.001; electronic supplementary material, figure S7) was

found in the ‘With load’ units (57.98+ 69.35 g) compared

to the ‘No load’ units (22.00+ 15.70 g) which had at most

brittle clay sheeting applied.

The average relative amount of uneaten wood on the ‘No

load’ units was 35+25% (Po. alba), 34+24% (Pi. radiata) and

31+ 21% (E. regnans); the ‘With load’ units had on average

64+ 19%, 51+ 33% and 22+25% left-over (figure 1a).

These percentages of uneaten wood are inversely pro-

portional to the average mass reduction, which was found

to be 0.12+ 0.05 g, 0.15+0.06 g and 0.2+0.06 g for the

‘No load’ units and 0.07+ 0.04 g, 0.12+0.08 g and 0.23+
0.07 g for the ‘With load’ units. We applied Fisher’s t-test to

separate groups of wood and showed that only the wood

reduction of the ‘With load’ and ‘No load’ units of Po. alba
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Figure 1. Termites eat on both sides but loaded wood is drier. (a) Mean uneaten wood for the ‘No load’ and the ‘With load’ units against normalized initial beam
weight. Large markers indicate the mean value, small markers the standard deviation; arrows show the difference between wood species. (b) Box plots of moisture
content for ‘No load’ and ‘With load’ units (n ¼ 13). (Online version in colour.)
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was significantly different (a ¼ 0.05, Po. alba: d.f. ¼ 25, F ¼
10.62, p ¼ 0.0033; Pi. radiata: d.f. ¼ 25, F ¼ 1.43, p ¼ 0.2442;

E. regnans: d.f. ¼ 25, F ¼ 1.07, p ¼ 0.3116).

The moisture content of the wood species was significantly

different between the ‘No Load’ units (Po. alba: 42.15+
12.57%, Pi. radiata: 42.00+7.48%, E. regnans: 40.00+12.07%)

and the ‘With load’ units (Po. alba: 25.92+8.41%, Pi. radiata:

27.38+6.21%, E. regnans: 31.61+16.51%) as confirmed by

Fisher’s t-test (a ¼ 0.05, d.f.¼ 179, F ¼ 62.52, p ¼ 2.67 �
10213). The moisture differences between the different wood

species were also significant (a ¼ 0.05, Po. alba: d.f.¼ 25, F ¼
14.97, p ¼ 0.007; Pi. radiata: d.f.¼ 25, F ¼ 29.36, p ¼ 1.45 �
1025; E. regnans: d.f.¼ 25, F ¼ 6.91, p ¼ 0.0147).

We then studied the beams for their compressive strength

(figure 2). Across all wood species, the moistened beams had

about half the compressive strength of the dry samples. The

yield point of E. regnans was the highest, whereas Po. alba
took the least load [26]. Applying linear regression provided

a corridor of near parallel lines. The compression tests for

beams of the pressure trial bioassay used median moisture

levels (figure 1b). We had in total (nWith load, nNo load) ¼

(4,4), (4,2) and (3,3) samples for Po. alba, Pi. radiata and

E. regnans, respectively (figure 2). Their average yield points

and distances for the ‘No load’ and the ‘With load’ units lie

between the undamaged dry (red line) and moist (blue

line) beams in figure 2. The average maximum load was

about 0.08+0.06 kN (approx. 13.3+ 10 MPa, approx. 76%

cross-section) for the ‘No load’ and 0.21+0.10 kN (approx.

16.8+ 8.0 MPa, approx. 51% cross-section) for the ‘With

load’ units.

4. Discussion
We studied how the application of moisture correlates with

feeding and building. Termites are endangered by threats,
e.g. by swift spreading of diseases or sporulating fungal

pathogens [27,28]. Termite defences make use of antibacterial

and spore germination inhibiting faecal pellets [29,30]. Their

composition consists of moist clay sands, faeces and saliva;

pellets of that kind are also used to cement-in and seal off

dead nest-mates or as building material thereby impeding

the spread of epizootics [31,32]. The application of a clay–

faeces composite to a foreign body triggers building

and—similar to fighting pathogens—also acts as a passive
defence mechanism against intruders and provides shelter

against desiccation.

Once the moist clay is applied its role becomes ambiva-

lent. Cellulose is difficult to digest [3,33] yet termites use

their mouthparts and a symbiotic relationship with their

gut microorganisms to break up the wood fibres and

to extract the energy contained which requires moisture

[3,34–37]. Moisture levels are likely to be altered to increase

the ease of feeding. While subterranean termites require

moisture from the soil with some species being able to trans-

port water in their labial glands to the foraging site, drywood

termites take the moisture for the digestive processes directly

from the wood and the air [11,16,17,38].

The application of a clay–faeces compound layer acts like

a softener and facilitates foraging using the mandibles; it may

be used to control humidity to lower required cutting forces

and to reduce the wear-rates of the mandibles. We observed

that once the moisture levels of around 50% are reached,

termites start foraging more extensively (electronic sup-

plementary material, figures S3 and S5). Similarly, the

highest foraging activity in C. formosanus has been found

for moisture contents of 25–50% [16,17] and 79–103% (as

compared to 6–12%) [38]. If the wood is too moist, termites

start eating less as observed for 50% in Reticulitermes flavipes
[39] or for C. formosanus for vacuum impregnated wood

with moisture contents of 140–182% [38]. Termites consumed
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less of Po. alba compared to Pi. radiata, and even less com-

pared with E. regnans, which was clearly the preferred

wood type. While being denser, hence more energetic and

also tested to be more compression-stable, E. regnans is

known to be less prone to fungal attack than Po. alba, all of

which contributing to the foraging preference of termites.

Comparing the wood reduction of the ‘No load’ units

with the ‘With load’ units indicates that termites manipulated

the wood with moisture levels up to 50% during an initial

exploration stage; and that the ‘With load’ units are less

moist, therefore able to carry more load (figure 1; electronic

supplementary material, figure S5). While the paver under-

neath the water drum bottom covers 5.5% of the absorbing

surface area of the ‘With load’ units, water saturation of

these units due to humidity in the air was achieved in 24 h.

We, therefore, consider it unlikely that this limitation of

absorbing surface area for the ‘With load’ units plays a

significant role.

We found on average 41% and 29% moisture levels for the

‘No load’ and ‘With load’ units respectively. The ‘With load’

units took on average per beam about 0.21+ 0.10 kN com-

pressive strength; hence, in terms of load, for the whole set-

up this adds up to about 0.63 kN which is only slightly

below the 0.713 kN static load of the ‘With load’ units. The

exact point of time when the wood carried most of the load

compared with the clay walls is difficult to determine due

to natural variation of the dynamic process [10]. From the

data available, however, we estimate the clay walls must

have already carried on average at least 0.08 kN or about

11% of the static load.
The application of the clay–faeces compound within a

dynamic foraging process [10] acts as pathogen control

(clay wrapping) and termites moistened all three wood

types similarly. Moisture levels, apart from being essential

against dehydration of the termite colony, are likely to be

altered to increase the ease of feeding. The moisture content

was also consistently lower in the ‘With load’ units, which

showed a moisture-dependent higher static stability (dry–

buckling resistance) of the beams. Whether termites are

able to sense stress in timber needs to be tested in future

experiments.

In addition, termites employ vibration signals as their domi-

nant means of communication [40]. Having control over the

wood’s moisture content especially using higher moisture

levels may be preferred as they might dampen out chewing

and walking noises thus increasing the chances of staying

hidden from predators [41]; drier conditions might be advan-

tageous for long-range communication [42] by controlling

simultaneously shape (porosity, tunnels) and composition

(clays, wood), which needs to be explored in future research.
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Endnote
1Average moisture and density: 11.86+0.26%; 390+26.95 kg m23

(Po. alba), 12.89+0.11%; 485.29+67.43 kg m23 (Pi. radiata) and
12.43+0.07%; 585.70+89.32 kg m23 (E. regnans).
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