Skip to main content
. 2019 Jul 10;16(156):20190293. doi: 10.1098/rsif.2019.0293

Algorithm 2.

ABC SMC for parameter inference and model selection.

  • (1)

    Given Np plant structures and Nt(i) longitudinal observations for plant i, characterize the summary statistics dij={B,L,l^} from every plant i and observation j in the dataset.

  • (2)

    Initialize tolerance vector E containing T elements. Set population indicator t=0.

  • (3)

    Set particle indicator i=1.

  • (4)

    Sample model indicator m from prior π(m).

  • (5)

    If t=0, sample θ from π(θ(m)). If t>0, sample θ from the previous population {θ(m)t1} with weights w(m)t1, and set θKt(θ|θ).

  • (6)

    If π(θ)=0, go to 4.

  • (7)

    Simulate Np instances of root growth using θ, recording the state of structure i at each of the Nt(i) time points corresponding to an experimental observation.

  • (8)

    Compute ρ using equation (2.2) above.

  • (9)

    If ρE[t], go to 4.

  • (10)
    Set mt(i)=m and add θ to the population {θ(m)t}. If t=0, set weights wt(i)=0, otherwise
    wt(i)=π(θ)j=1Nwt1(j)Kt(θt1(j),θ).

    If i<N, set i=i+1, go to 4.

  • (11)

    For every m, normalize the weights. If t<T, set t=t+1, go to 3.