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Abstract

Background: Four computed tomography (CT) imaging-based clusters have been identified in a study of the
Severe Asthma Research Program (SARP) cohort and have been significantly correlated with clinical and
demographic metrics (J Allergy Clin Immunol 2017; 140:690–700.e8). We used a computational fluid dynamics
(CFD) model to investigate air flow and aerosol deposition within imaging archetypes representative of the four
clusters.
Methods: CFD simulations for air flow and 1–8 lm particle transport were performed using CT-based airway
models from two healthy subjects and eight asthma subjects. The subject selection criterion was based on the
discriminant imaging-based flow-related variables of J(Total) (average local volume expansion in the total
lung) and Dh*(sLLL) (normalized airway hydraulic diameter in the left lower lobe), where reduced J(Total) and
Dh*(sLLL) indicate reduced regional ventilation and airway constriction, respectively. The analysis focused on
the comparisons between all clusters with respect to healthy subjects, between cluster 2 and cluster 4 (nonsevere
and severe asthma clusters with airway constriction) and between cluster 3 and cluster 4 (two severe asthma
clusters characterized by normal and constricted airways, respectively).
Results: Nonsevere asthma cluster 2 and severe asthma cluster 4 subjects characterized by airway constriction
had an increase in the deposition fraction (DF) in the left lower lobe. Constricted flows impinged on distal
bifurcations resulting in large depositions. Although both cluster 3 (without constriction) and cluster 4 (with
constriction) were severe asthma, they exhibited different particle deposition patterns with increasing particle
size. The statistical analysis showed that Dh*(sLLL) plays a more important role in particle deposition than
J(Total), and regional flow fraction is correlated with DF among lobes for smaller particles.
Conclusions: We demonstrated particle deposition characteristics associated with cluster-specific imaging-
based metrics such as airway constriction, which could pertain to the design of future drug delivery im-
provements.
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Introduction

Aerosolized bronchodilator and corticosteroid

inhalations are common treatments for asthma. Drug
administration is most commonly performed through me-
tered dose inhaler (MDI) or dry powder inhaler. Current
delivery methods are limited by low deposition in the pe-
ripheral lung regions due to lung structure variability, device
misuse, aerosol size limitations, and inconsistent inspiration
patterns.(1)

Lung morphology and physiology characteristics vary
considerably between patients and influence air and drug
delivery, resulting in deposition variability.(2,3) Subject’s
age, weight, asthmatic severity, and other factors altogether
dictate lung makeup and function.(4) Studying with a large
sample size to achieve statistically relevant results for the
global population is not practical due to complexity and cost
of the study. Characterization of intersubject variability is
critical for improved lung and drug studies.(5–8) The need
for classifying subjects accurately into clusters characterized
by distinct structural and functional features is a poten-
tially important advancement for pulmonary drug delivery
studies.(5,9,10)

Cluster analysis has shown a promise in evaluating the
heterogeneity of asthma symptoms and characteristics.
Subjects have been grouped based on common clinically
measured phenotypes, patient history, and quality of life
metrics.(10–13) Phenotypes included characteristics such as
spirometry-derived variables and inflammatory blood and
sputum cell counts. A recent study in an asthmatic popula-
tion involved multiscale imaging-based cluster analysis
(MICA) using structural and functional variables to estab-
lish clusters which correlated well with clinical pheno-
types.(5) The MICA subdivided nonsevere and severe
asthmatic subjects into four distinct clusters using local and
global quantitative computed tomography (CT) variables.

Due to challenges associated with evaluating intercluster
variability, in silico modeling has become a preferred
method for this lung research. Numerical models used for
inhaled particle delivery studies involve computational fluid
dynamics (CFD) simulations, combined with experimental
methods for validation.(14,15) When combined with imaging-
based geometries, realistic geometries and flow ventilations
can be recreated.(8,16–19) Computer models could predict
detailed information and can evaluate deposition patterns at
lung, lobar, or airway branch levels.(6,14,20)

The purpose of this study was to use the airway structural
and parenchyma functional measurements of representative
cluster patients to characterize four distinct in silico arche-
types by exploring the CFD-derived estimates of particle
deposition patterns in asthma subpopulations. The ultimate
goal is to improve drug administration to asthmatics through
cluster membership.

Materials and Methods

Subject selection for CFD

Lung CT images at total lung capacity (TLC) and func-
tional residual capacity (FRC) were acquired from the
University of Pittsburgh and University of Wisconsin, with
approval from respective institutional review boards, as part
of the Severe Asthma Research Program (SARP). Acquisi-

tion methods and imaging protocols could be found in the
reference.(21)

Choi et al.(5) identified 10 most discriminant variables
from 57 imaging-based structural and functional variables
for clustering. The top four variables ranked by Wilk’s k
value (Table 1) were the average Jacobian determinant in
the whole lung [J(Total)], the air trapping score in the whole
lung [AirT%(Total)], the normalized airway hydraulic di-
ameter in the left lower lobe (LLL) subset [Dh*(sLLL)], and
the average normalized airway wall thickness in the right
upper lobe (RUL) subset [WT*(sRUL)]. Specifically, J is
defined as the local lung volume ratio, vTLC/vFRC, where
vTLC and vFRC denote a local lung volume at TLC and its
corresponding volume at FRC, respectively, at the voxel
level. Dh* is the hydraulic diameter normalized by the
predicted diameter of the trachea.(21)

Among the four variables, air trapping (AirT%) and wall
thickness (WT*) were less likely to have a direct impact on
air flow and particle behavior. Therefore, J(Total) (a func-
tional variable affecting flow distribution) and Dh*(sLLL)
(a structural variable measuring airway constriction) were
regarded as the most discriminant variables in characterizing
air flow and particle deposition among clusters. Overall,
cluster 1 had increased J(Total), whereas cluster 2 and
cluster 4 had decreased J(Total) and Dh*(sLLL) as noted by
arrows [ (increase) and Y (decrease) in Table 1. The dif-
ferences were statistically significant ( p < 0.001).(5)

We selected a total of 10 subjects to examine the effects
of the above two variables on air flow and particle deposi-
tion, using three-dimensional (3D) CFD simulations. The
first set of six subjects comprised one healthy female (HF),
one healthy male (HM), and one subject from each of the
four asthma clusters, denoted by HF, HM, C1, C2, C3, and
C4, respectively, in Table 2. The selection criterion was
subjects with increased J in cluster 1 and decreased J and
Dh* in cluster 2 and cluster 4 in comparison with healthy
subjects (see J(Total) and Dh*(sLLL) with arrows [ and Y
in Tables 1 and 2).

To assess the effect of intracluster variability (namely, in-
tersubject variability within clusters) on intercluster variabil-
ity, we selected two additional subjects from each of cluster 3
and cluster 4. The reason for focusing on the two clusters is of
clinical relevance and implication due to their treatment with
inhaled corticosteroids (ICSs).(5) Namely, both were severe
asthmatics, but only cluster 4 was characterized by airway
constriction [Dh*(sLLL)Y] in association with persistently
altered lung function [J(Total)Y], which might lead to dif-
ferent inhaled drug aerosol deposition than cluster 3.

The selection criterion for these additional subjects was
based on the minimal deviation from the cluster-mean
Dh*(sLLL) because airway narrowing in the sLLL was a
key feature in differentiating the two clusters. The two ad-
ditional cluster 3 (or 4) subjects were denoted by C3a and
C3b (or C4a and C4b) in Table 2.

We then performed biserial correlation analysis to eval-
uate the association of the continuous variables of
Dh*(sLLL) and J(Total) with the dichotomous variables of
cluster number 3 and 4 between the three cluster 3 subjects
(C3, C3a, and C3b) and the three cluster 4 subjects (C4,
C4a, and C4b). The biserial correlation coefficients of
Dh*(sLLL) and J(Total) with the two groups were -0.804
and -0.885, respectively, indicating that the two variables
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are highly differentiable between the two groups. The neg-
ative correlation means that the selected cluster 4 subjects
had statistically smaller Dh*(sLLL) and J(Total) than the
selected cluster 3 subjects.

Airway geometries

We constructed 3D airway geometries using CT images
obtained at TLC for each subject using a commercial
software (Apollo, VIDA Diagnostics, Coralville, IA) and in-
house geometrical modeling methods.(18,22) The SARP im-
aging protocol did not include the imaging of the upper
airways; thus, we used a laryngeal model(22) that creates a
glottal constriction in the trachea to produce inspiratory
turbulent laryngeal jet (see also Air Flow Simulation section
and Particle Simulation section). Thus, the 3D airway ge-
ometry consisted of the glottal constriction, trachea, and
intrathoracic central airways. Figure 1 shows an example of
the CT-based airway skeleton and 3D geometry.

Based on the CT-resolved central airways, a one-
dimensional (1D) airway tree extending to terminal bron-
chioles was generated using the volume filling tech-
nique.(23,24) The diameters of the branches beyond CT
resolution were determined by the lobar average of parent-to-
child diameter ratio, and a random heterogeneity was applied
to model asthmatic constriction based on the lobar Dh*.(25)

Air flow simulation

Subject-specific flow rates were prescribed at the su-
praglottal inlet. The inhalation flow rate was determined by
Equations (1) and (2), mimicking slow and deep breathing
activated by an MDI at the start of inhalation.(6) Inhaled air
volume was set to inspiratory capacity (IC), calculated from
TLC and FRC images. For all cases, the time to peak in-
spiration (TPI) was set to 1.25 seconds. The maximum
volumetric flow rate (QPI) at peak inspiration (PI) was cal-
culated in Equation (1) with IC, TPI , and an inhalation pe-
riod of T = 5.0 seconds for all cases.(6)

QPI ¼
2p IC

pTPI þ 4 T � TPIð Þ : (1)

Q tð Þ¼ QPI

TPI

t; 0 � t � TPI : (2)

Flow conditions at PI together with the tracheal Reynolds
numbers (Retrachea) based on QPI and the tracheal diameter
are reported in Table 2.

Because the values of Retrachea for all cases were greater
than the critical Re of about 2000 for turbulent pipe flow, we
used a synthetic eddy method (SEM) at the supraglottal

Table 1. The Top Four Imaging-Based Variables Ranked by Wilk’s k Value

Wilk’s k
value

Cluster 1
(n = 80)

Cluster 2
(n = 59)

Cluster 3
(n = 68)

Cluster 4
(n = 41) p

Healthy
(n = 61)

J(Total) 0.317 2.48 ([) 1.69 (Y) 1.91 1.47 (Y) <0.001 2.05
AirT%(Total) 0.177 5.8 8.6 8.9 29.7 <0.001 7.8
Dh*(sLLL) 0.123 0.338 0.269 (Y) 0.344 0.301 (Y) <0.001 0.338
WT*(sRUL) 0.098 0.609 0.587 0.646 0.607 <0.001 0.612

Arrows [ and Y in parentheses denote increase and decrease, respectively, of cluster-mean J(Total) and Dh*(sLLL) in comparison with
healthy subjects with a significance level of p < 0.001.

AirT%, air trapping percentage; Dh*, normalized hydraulic diameter; J, Jacobian determinant; sLLL, left lower lobe subset; sRUL, right
upper lobe subset; WT*, normalized wall thickness.

Table 2. Overview of Demographics, Imaging-Based Features, and Computational Fluid Dynamics Flow

Inlet Conditions at Peak Inspiration of the Selected Subjects

HF HM C1 C2 C3 C3a C3b C4 C4a C4b

Demography
Sex Female Male Female Male Female Female Female Male Male Male
Age (years) 29 28 20 52 49 38 23 51 58 51
Weight (kg) 61.5 99 58.6 111.8 85.1 106.8 72.3 103 116.3 88.5
Asthma severity N/A N/A Nonsevere Nonsevere Severe Severe Severe Severe Severe Severe

Key imaging-based features of the selected subjects
J(Total) 2.0 2.4 3.3 ([) 1.8 (Y) 1.9 2.2 2.2 1.4 (Y) 1.7 (Y) 1.7 (Y)
Dh* (sLLL) 0.35 0.38 0.37 0.24 (Y) 0.43 0.34 0.35 0.23 (Y) 0.30 (Y) 0.30 (Y)

CFD flow inlet conditions at PI
IC (L) 2.5 3.4 3.0 2.5 2.7 2.4 3.2 1.8 2.9 2.5
QPI (L/min) 50.2 66.7 60.2 50.5 53.3 48.5 63.4 35.8 57.1 50.5
Dh* (trachea) 1.17 0.99 0.88 0.94 1.23 1.07 1.11 0.97 0.85 1
Retrachea 4364 5364 6647 3905 3894 4047 5323 2742 4881 3715

Sex was considered when selecting subjects to eliminate sex bias. Arrows [ and Y in parentheses denote increase and decrease,
respectively, of cluster-mean J(Total) and Dh*(sLLL) in comparison with healthy subjects with a significance level of p < 0.001.

CFD, computational fluid dynamics; Dh*, normalized hydraulic diameter; HF, healthy female; IC, inspiratory capacity; J, Jacobian
determinant; PI, peak inspiration; QPI, maximum volumetric flow rate at peak inspiration; Re, Reynolds number.
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entrance in the larynx(26) to generate turbulent flow inlet
conditions. To construct physiologically consistent flow rate
distributions, we first estimated local static air-volume
change based on image registration between CT images at
TLC and FRC.(27,28) We then used it as an initial condition
for a 1D flow model that solves 1D continuity and energy
equations in a successive branching structure to account for
pressure drop due to unsteadiness, kinetic energy, and vis-
cous dissipation.(29) A static compliance model was used to
estimate pressure at acinar region with the assumption of
uniform pressure at pleural region.(25,30)

The predicted flow rate distributions were then imposed at
terminal bronchioles for 3D CFD simulations and were used
to calculate mass flow fractions among the five lobes (QF).
Because turbulent flow might affect interlobe particle dis-
tribution,(26) we used an in-house large eddy simulation
(LES) technique(8,31–35) to resolve energy-containing tur-
bulent eddy structures. Thus, the effect of turbulent disper-
sion on particle transport was accounted for in the
calculation of particle trajectories. The biserial correlation
analysis of IC, QPI, Dh*(trachea), and Retrachea between the
selected cluster 3 and cluster 4 subjects yielded the re-
spective correlation coefficients of -0.419, -0.428, -0.829,

and -0.386. The small coefficient for Retrachea suggested
that turbulent flow may contribute insignificantly to particle
deposition patterns between the two clusters.

Mesh sizes were determined such that the average dis-
tance from the boundary wall covered by the first element
was less than 9 wall units (y+ < 9) at PI.(8) The number of
tetrahedral elements ranged from about 8 to 14 million,
depending on subject-specific flow conditions.

Particle simulation

Lagrangian particle tracking simulations followed parti-
cles on an individual basis through the flow field. This
method has been previously verified with in vivo data.(17,26)

With this method the particle deposition efficiencies pre-
dicted using the flow field simulated by the laryngeal model
agreed well with those predicted by the airway model with
the upper airways.(22) Brownian motion was not considered,
and simulations were performed with mass median aero-
dynamic diameters (MMAD) of 1, 2, 4, and 8 lm, which
span the range of aerosolized drug delivery.(20)

At the start of the inspiration simulation, 200,000 spher-
ical particles were released uniformly at the laryngeal inlet.

FIG. 1. CT-based 3D–1D geometry of HM subject with the five lobes and major
branches labeled. The colored lines distinguish the five lobes and represent the 1D
skeleton that maps out the airway branching patterns and provides branching angles,
lengths, and average diameters for 3D geometry construction. The region highlighted
by a red circle references the lung location of Figure 4. 1D, one-dimensional; 3D,
three-dimensional; CT, computed tomography; HM, healthy male; LMB, left main
bronchus; LLL, left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RMB,
right main bronchus; RML, right middle lobe; RUL, right upper lobe.
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Particle deposition was quantified with deposition fraction
(DF) and deposition density (DD) for CT resolved bran-
ches. DF is the deposited particles in a region normalized
to the total particles in the simulation (Np). DD denotes the

number of deposited particles per unit surface area SAð Þ of
a region. In Equations (3) and (4), Np, ent: and Np, exit rep-
resent number of particles entering and exiting a region,
respectively, and their difference is the number of depos-
ited particles in a region.

DF¼ Np,ent:�Np,exit

Np

: (3)

DD¼ Np,ent:�Np,exit

SA
: (4)

Note that deposition efficiency (not discussed here) is
defined as (Np,ent:�Np,exit)=Np,ent:.

Statistical analysis of deposition results

For statistical analysis, we used two-way analysis of
variance (two-way ANOVA) with Tukey’s post hoc test
(R software version 3.1.1) for comparisons of DF on gen-
erational, lobar, and whole lung levels. Airways were
grouped by lobe and by generation numbers 0–2, 3–4, 5–6,
and 7–8, and depositions in each lobe and deposition in each
branch of the appropriate generation range were used to
evaluate significance, respectively. All p-values are two si-
ded, with Bonferroni-corrected pairwise comparisons be-
tween individual groups. A p < 0.05 was considered to
indicate statistical significance in all tests.

Biserial correlation analysis was performed to calculate
the correlations between imaging-based variables and clus-
ter numbers (namely, between continuous and dichotomous
variables for cluster 3 and cluster 4 only), and unpaired
Wilcoxon test was performed to compare continuous vari-
ables between the three cluster 3 and three cluster 4 subjects.

Results

This section compares cluster differences in terms of
particle DFs and DDs with respect to characteristic alter-
ations of each cluster. Cluster 1 subjects are nonsevere in
majority and have functional and structural characteristics
relatively similar to healthy subjects.(5) Two-way ANOVA
with post hoc tests of lobar and generational DFs found no
significant differences between HM and HF and between C1
and C2 ( p > 0.05). Due to dissimilarities to the other asth-
matic clusters, the following deposition results focus on the
subjects in clusters 2, 3, and 4.

Particle DF

Lobar DFs for the first set of six subjects were plotted in
Figure 2 to assess intercluster variability. DFs in the five
lobes between clusters were found to be significantly dif-
ferent ( p < 0.05) by two-way ANOVA and post hoc test. For
large particle diameters (4 and 8 lm), C2 and C4 had greater
DF values compared to other subjects, and the DF differ-
ences between subjects with normal versus constricted air-
ways (Dh*) increased with particle diameter. Specifically,
with increasing particle size, DF increased more rapidly in
the LLL than other lobes for C2 and C4, while DF only
slightly increased for C3.

FIG. 2. Regional DF for (a) 1, (b) 2, (c) 4, and (d) 8lm di-
ameter particles. Plots are separated by lobe and cluster. DF for
all five lobes between clusters was significantly different ( p <
0.05). DF, deposition fraction; HF, healthy female; HM, healthy
male; LLL, left lower lobe; LUL, left upper lobe; RLL, right
lower lobe; RML, right middle lobe; RUL, right upper lobe.
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To assess the effect of intracluster variability on inter-
cluster variability, Figure 3 compared DFs in the LLL of the
three cluster 3 and the three cluster 4 subjects. The cluster 4
subjects with airway constriction had consistently higher DFs
than the cluster 3 subjects in the LLL (Fig. 3a) and all the
lobes (Fig. 3b), and the differences increased with particle
size. Wilcoxon test using DFs for all of 1, 2, 4, and 8 lm
particles (or 2, 4, and 8 lm particles by excluding 1 lm
particles) showed moderate difference with p = 0.052 (or sig-
nificant difference with p < 0.05) between the cluster 3 and
cluster 4 subjects. In addition, Table 3 shows the biserial
correlation coefficients of DF with cluster number for these
cluster 3 and cluster 4 subjects, indicating association of DF
with cluster number especially in the LLL for larger particles.

Local features

To evaluate the effect of airway constriction, average DD
on the airway wall was presented in Figure 4 for the 4 lm
diameter particles. C4 exhibited deposition hotspots (the red
area in Fig. 4a) corresponding to the local branch constric-
tion. Deposition was the largest at the first bifurcation distal
to the left lower bronchus (LLB) constriction focused on the
carina. Figure 4b–d presents the same location for HM, C2,

and C3 subjects, respectively. The DD hotspots were absent
due to a lack of constriction at the LLB.

However, C2 had hotspots present at the bifurcations in
the segmental and subsegmental region of LB10 corre-
sponding to generations 4 and 5. Deposition in the child
branches from the first bifurcation distal to the LLB ac-
counted for 34.1% at 2 lm and 45.2% at 4 lm of total de-
position in the LLL for C4. The same branches in C2
accounted for 9.7% and 5.9% of total deposition in the LLL
at 2 and 4 lm, respectively. Figure 4a and b inserts show iso-
surfaces of air speed at 2.5 and 5.0 m/s for the LLB location
for C4 and HM subjects. The constriction induced a velocity
increase at the center of the stream shown by the iso-surfaces,
equating to higher inertia for particles to impinge on distal
bifurcations. This was not present in the HM subject.

Discussion

We utilized imaging-based cluster membership in con-
junction with subject-specific CFD lung models to assess the
effects of cluster-specific imaging-based variables on air flow
and particle deposition. The cluster-discriminant variables that
may affect air flow and particle deposition were a structural
variable Dh* of the average normalized airway diameter in the
LLL and a functional variable J of the lung deformation be-
tween TLC and FRC in the whole lung. The two variables
were used to select 10 subjects for CFD and particle simula-
tions (Table 2). We compared particle transport results be-
tween clusters through analysis of DF and DD and found that
airway constriction has more discriminating effects on depo-
sition statistics for larger particles (>2 lm).

While it is known that airway constriction in asthmatic
lungs could lead to increased particle deposition,(36) the
current study further supported the notion that cluster-
specific airway structures could lead to different particle
deposition patterns in severe asthmatics.

Intercluster and intracluster variability

To better understand intercluster and intracluster vari-
ability, the clustering procedure is briefly summarized as

FIG. 3. Mean deposition fractions of 1, 2, 4, and 8 lm particles in (a) LLL and (b) all the lobes for the
three C3 (blank) and C4 (filled) subjects, respectively. Error bars indicate standard deviations.

Table 3. Biserial Correlation Coefficients

of Lobar Deposition Fractions Between the Three

Cluster 3 and Three Cluster 4 Subjects

with Various Particle Sizes

Lobe 1 lm 2 lm 4 lm 8 lm

LUL 0.370 0.312 0.630 0.289
LLL 0.459 0.595 0.715 0.826
RUL -0.041 0.018 0.298 0.407
RML 0.272 0.435 0.683 0.687
RLL 0.330 0.527 0.682 0.726
Whole lung 0.350 0.421 0.647 0.678

LLL, left lower lobe; LUL, left upper lobe; RLL, right lower
lobe; RML, right middle lobe; RUL, right upper lobe.
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follows [Choi et al.(5) for details]. First, we conducted a
principal component (PC) analysis for dimension reduction
to identify major PCs that explain the majority of the vari-
ation in the standard scaled 57 imaging variables. The first
PC (PC 1) was correlated with the parenchymal functions of
J(Total) and ADI(Total) (anisotropic deformation index(5)),
and the second PC (PC 2) was correlated with the segmental
structures of WT*(sLLL) and Dh*(sLLL). We used the K-
means method along with eight major PCs for clustering,
resulting in stable cluster membership with large intercluster
and small intracluster variations measured by three quanti-
ties of connectivity, Silhouette width, and Dunn index.(5)

We further used a nonparametric bootstrap analysis,
based on resampling from the raw imaging data, to assess
cluster stability measured by the mean of Jaccard similarity
coefficients. Figure 5 showed the projection of the four
color-coded cluster subjects and their respective cluster

means on two-dimensional PC 1 and PC 2 coordinates,
demonstrating clear intercluster separation.

The most discriminant imaging-based variables listed in
Table 1 were identified by a stepwise forward variable se-
lection method, and the variations of these variables be-
tween clusters were assessed by Kruskal–Wallis statistical
tests. The results indicated that these variables are signifi-
cantly different among clusters (see the p-value in Table 1).

The intracluster variability of J(Total) and Dh*(sLLL)
(Table 1 for the cluster means) was measured by the stan-
dard deviations of 0.33, 0.26, 0.22, and 0.17 for J(Total) and
0.038, 0.044, 0.044, and 0.046 for Dh*(sLLL) for clusters 1,
2, 3, and 4, respectively, as reported in Table II of Choi
et al.(5) The locations of the 10 selected subjects were also
marked in Figure 5, with each being distant from other
cluster subjects. They exhibited statistically distinct cluster-
specific features as illustrated by arrows [ (increase) and Y

FIG. 4. Average DD plots of LLB for (a) C4, (b) HM, (c) C2, and (d) C3. DD presented as number of particles (N) per
mm2. Plots associated with 4 lm diameter particle simulations. HM and C4 subset figures show iso-surfaces of air speed at
2.5 m/s (green) and 5 m/s (brown) with final deposition locations at LLB and child branches. See Figure 1a for reference of
the LLB location in the lung of these figures. DD, deposition density.
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(decrease) in Tables 1 and 2. Given the constraint of LES
computational cost, this clustering-based sample extraction
approach allows for reducing the number of CFD subjects
while guaranteeing the selected subjects manifesting cluster-
specific features.

While more CFD subjects are desirable for more reliable
statistical analysis, this work confirmed that cluster-specific
features affected particle deposition. Particularly, we fo-
cused on cluster 3 and cluster 4 subjects because they had
the same asthma severity, but they were characterized by
distinct airway structures. We performed biserial correlation
analysis on the imaging-based and CFD-based variables of
the selected three cluster 3 and three cluster 4 subjects.

The results showed the strong correlations of r = -0.80,
-0.88, and 0.83 for Dh*(sLLL), J(Total), and DF in the LLL
for 8 lm particles, respectively, between cluster 3 and
cluster 4 subjects. A positive (or negative) correlation co-
efficient indicated an increase (or a decrease) of a variable in
cluster 4. Thus, Dh*(sLLL) and J(Total) were inversely
correlated with DF in the LLL. In contrast, the weak cor-
relation of r = -0.428 and -0.386 for the peak inspiratory
flow rate QPI and the Retrachea suggested that these flow-
related variables were not significantly different between the
two clusters although lung deformation measured by J(To-
tal) was significantly different between them. Thus, an in-
crease of DF in cluster 4 could be attributable to airway
narrowing, particularly in the LLL.

Implications for drug delivery

One of the defining characteristics of severe asthma
cluster 3 was central airway wall thickening without con-
striction. Thus, ICS particulates would be delivered prefer-
entially to the lung periphery. If the goal is to treat central
inflammation, an alternative formulation, with an increased
particulate size, would likely provide improved central de-
position in cluster 3 subjects. It is of note that 76% of pa-
tients grouped in cluster 3 used a high dosage of ICS and
that cluster 3 was also associated with blood lymphopenia.(5)

Low DF in cluster 3 suggests that increasing ICS dosage
with a small MMAD may not be effective for reducing in-
flammation at the segmental airways. This information may
guide strategies using cluster-specific drug size to improve
deposition targeting.

In addition, in cluster 2 and cluster 4 subjects, the ob-
servation that localized airway narrowing caused increased
particle deposition in central airways provides insights for
evaluating bronchodilator efficacy. Considering that asthma
pathology is thought of as primarily a peripheral airway
disease, local constrictions in central airways of subjects
classified in cluster 2 and cluster 4 may prevent drug de-
livery to the peripheral airways and limit drug performance.

Comparison with existing literatures

Greenblatt et al.(37) conducted a positron emission to-
mography and CT imaging study of 12 bronchoconstricted
asthmatic subjects (3 males and 9 females) and reported the
correlation between the distribution of specific ventilation
and the distribution of specific deposition (r = 0.62). These
subjects were relatively young (about 20 years old) and had
mild asthma with reversible obstruction by bronchodilator.

They used an aerosol of 13NH3-labeled isotonic saline
delivered by a nebulizer, resulting in aerosol diameter
ranging between 1.5 and 15 lm with a volume median di-
ameter (VMD) of 4.9 lm. Methacholine bronchoconstriction
challenge was performed before inhaling particles, mim-
icking an asthma attack. Thus, their study design is quite
different from the current study in that the SARP subjects
inhaled bronchodilator to improve breathing condition be-
fore imaging to acquire CT scans of good quality.

Fleming et al.(38) conducted a single-photon emission CT
(SPECT) and CT imaging study of six male patients with
moderate persistent asthma. They used Tc-99m-labeled al-
bumin particles with VMD of 5.0 and 3.1 lm, respectively,
for the large and small aerosol. They reported that regional
aerosol deposition in the central conducting airways was
greater in asthmatic subjects than control subjects.

There exist differences between the above two experi-
mental studies and the current numerical study in terms of
study design and imaging protocol. Nonetheless, for the
sake of comparison we used the approach by Greenblatt
et al.(37) to calculate the coefficient of variation among lobes
(COVLobes) between QF and DF and then performed Pear-
son’s correlation analysis for the 10 selected subjects.

The results showed strong correlation between lobar QF
and DF for 1 lm (r = 0.90, p = 3.5 · 10–4) and 2 lm (r = 0.70,
p = 0.024) particles. For 4 and 8 lm particles, however, no
significant correlation was found ( p > 0.05). Thus, our re-
sults agreed with Greenblatt et al.(37) and Fleming et al.(38)

that QF, being equivalent to specific ventilation,(37) pri-
marily governs regional particle transport and deposition for
small particles; however, with increasing particle size local
airway structure plays a more important role due to inertial
effect, yielding greater central deposition (as seen in
Figs. 2–4).

Limitations

Due to limited high-performance computing resources,
we first selected one subject from each of the healthy male,
healthy female, cluster 1, cluster 2, cluster 3, and cluster 4

FIG. 5. Projection of the four color-coded cluster subjects
and their respective cluster means (‘‘x’’) on PC 1 and PC 2
coordinates. PC, principal component.
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cohorts, having a total of six subjects. To further investigate
the effect of intracluster variability (namely, intersubject vari-
ability within clusters), we selected two additional subjects
from each of cluster 3 and cluster 4 due to their potential clinical
relevance that both were severe asthmatics but exhibited sta-
tistically different structural and functional features. More
subjects are needed to get more reliable statistical analysis.

For imaging-based clustering,(5) we retrospectively ana-
lyzed image data from the SARP, where the study protocol
did not include imaging of the mouth and throat. However,
it is known that the geometry of upper airways, including
the mouth, the oropharynx, and the larynx, is important in
generating turbulent laryngeal jet on inspiration.(26,31)

Miyawaki et al.(22) proposed a laryngeal model to generate a
turbulent laryngeal jet in the trachea in case of lacking the
upper airways. To reproduce homogeneous turbulent flow at
the inlet proximal to the glottis, they used the SEM with the
length scale and turbulent intensity determined by the
Retrachea. Their study showed that the deposition efficiencies
predicted by the laryngeal model without the upper airways
were in good agreement with those by the airway model,
including the upper airways.

Nevertheless, the contribution of intersubject variability
in the upper airways cannot be assessed due to lack of image
data. It is worth noting that Fleming et al.(38) reported that
the percentages of deposition in extrathoracic and thoracic
airways were not significantly affected by disease. Fur-
thermore, Miyawaki et al.(26) validated CFD-predicted par-
ticle deposition efficiency in the oral cavity with
experimental data, showing that the efficiency depended on
local Stokes number and Reynolds number. Thus, given the
image data of oral cavity in the future, the total DF for the
complete airway model could be assessed by the product of
the oral deposition efficiency and the DF from the current
study.

Another factor which might potentially affect DF is the
particle release time. In this study, we used slow and deep
breathing to model MDI activation6 and released the parti-
cles at the start of inhalation. Most of the particles were
deposited in less than 1 second. To assess the effect of the
release time, we released the 1, 2, 4, and 8 lm particles at
0.3 seconds for the C4 subject and compared DFs with those
released at the initial time. The results showed a slight in-
crease of 3.5%–5.0%, which may be attributable to an in-
crease in turbulent intensity experienced by the particles
when released at a later time.

Our assessment is consistent with Longest et al.6 that the
changes in DFs were small, being less than 0.2% when
comparing the initial release and continuous release during
the first 0.2 and 0.5 seconds for the MDI. The %difference
between their analysis and ours may be attributable to several
factors. For example, since their airway model comprised a
mouth–throat region with a DF of about 0.4, DFs in their
segmental airways would be smaller compared with ours.

Summary

In conclusion, this study aimed to explore the notion
of using imaging-based features to guide pharmaceutical
drug treatment parameters, rather than broader metrics such
as asthma severity. We demonstrated the effects of cluster-
specific imaging-based features on particle deposition. A

key message of the study is that airway narrowing, which
characterizes only one of the two severe asthmatic clusters,
induces greater particle deposition in the proximal airways
and hence reduces the particle delivery into the small pe-
ripheral airways, which may be the primary target sites. The
above effect was augmented for the large particles. The
ability to differentiate severe asthmatics into subgroups by
imaging-based features may help devise strategies for im-
proved inhalational drug delivery.
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