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Abstract

Background and aim of the study: Ischemic mitral regurgitation (IMR), the incidence of
which is increasing, results from annular and subvalvular remodeling after myocardial infarction
(M1). Although a sheep model of IMR has been used extensively over the past two decades, the
ventricular, coronary and leaflet anatomy in sheep is significantly different from that in humans. In
contrast, pigs are more similar to humans with regard to these parameters, and therefore may serve
as a better animal to test emerging new technologies designed to treat IMR.

Methods: Twenty-nine pigs (body weight 30-35 kg) underwent left thoracotomy and ligation of
the mid main circumflex and distal right posterior descending coronary arteries to create a
posterolateral MI. Of these pigs, 18 were used for acute data acquisition, while 11 surviving
animals in the chronic group were assessed at eight weeks after MI. Real-time three-dimensional
echocardiography was performed at baseline, and at 30 min and eight weeks after MI, to assess
geometric changes in the mitral annulus, mitral leaflets and left ventricle.

Results: Compared to baseline, the MR grade was increased significantly at eight weeks (0.7

+ 0.5 versus 2.0 + 1.2), together with a significant decrease in left ventricular ejection fraction
(40.3 + 6.6% versus 25.8 £ 7.7%). Significant increases were also noted at eight weeks in the
commissural width (30.1 + 3.2 mm versus 35.1 + 2.9 mm) and septolateral diameter (25.0 + 2.0
mm versus 33.8 £ 5.9 mm), with a resultant increase in mitral annular area (596 + 85 versus 931

+ 181 mm3) and a decrease in the annular height to commissural width ratio (15.7 + 2.6% versus
13.7 £ 1.9%). The mitral valve tenting volume was also increased significantly (1577 £ 645 versus
2440 + 755 mm3). The distance between the papillary muscle tips at baseline and at eight weeks
was increased significantly (23.9 £ 2.5 versus 30.9 + 5.2 mm), as was the distance between the
posterior papillary muscle tip and the posterior commissure (20.9 + 2.7 versus 24.1 + 2.8 mm).

Conclusion: The surgical model described here reliably replicates the changes seen in humans
with IMR. Hence, this model can be used for further studies of the pathophysiology of IMR, and
of any novel interventions in this challenging clinical area.
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University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd., Bldg. 421, 11th floor, Room 114,
Philadelphia, PA 19104-5156, USA, robert.gorman@uphs.upenn.edu.
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Ischemic mitral regurgitation (IMR) results from postinfarction remodeling of the left
ventricle, whereby valve incompetence results from a combination of annular and
subvalvular distortions that produce annular dilatation and leaflet tethering (1). The
development of a technique for inducing chronic IMR in sheep was reported 20 years ago
(2,3), since which time the present authors and others have used this model extensively to
elucidate the pathophysiologic mechanism of IMR. The model has also been used effectively
to develop new therapeutic approaches and diagnostic techniques (4-7).

While the ovine model has been extremely useful, it has certain limitations, notably that the
sheep coronary anatomy is exclusively left-dominant, which occurs in less than 15% of
patients. Pigs are more similar to humans in that they almost always have a right-dominant
coronary arterial anatomy. The shape of the sheep left ventricle is also more oblong than in
humans, with a pronounced bend near to the apex. Pigs have a three-dimensional (3D)
ellipsoidal left ventricular shape that is very similar to that in humans. Finally, sheep leaflets
are extremely fragile (especially the posterior leaflet), with the ratio of leaflet tissue area to
annular size being much less than that of humans. Pigs and humans have mitral leaflets of
similar size, thickness and strength.

Hence, the use of a preclinical model of IMR that has a more human 3D left ventricular
shape, and the leaflet properties will likely facilitate the preclinical testing of immerging
catheter-based technologies for mitral valve repair, and especially replacement (8). Because
of these limitations of the ovine model, the present authors sought to develop a reproducible
model of chronic IMR in the pig, and these investigations formed the basis of the present
study.

Materials and methods

Animals

A group of 29 Yorkshire swine (body weight 30-35 kg) were used in the present study, and
maintained under experimental protocols approved by the University of Pennsylvania’s
Institutional Animal Care and Use Committee, in compliance with National Institutes of
Health Publication No. 85-23 (revised 1996).

Surgical protocol

Each animal was sedated with intramuscular ketamine (25-30 mg/kg), intravenous
glycopyrrolate (0.02 mg/kg) and intramuscular buprenorphine (0.005 mg/kg), and then
intubated and mechanically ventilated (Hallowell EMC Model AWS; Pittsfield,
Massachusetts, USA) using isoflurane (1.5-2.0%) and room air with oxygen at 0.6 I/min.

The arterial blood pressure was monitored through a 7 Fr sheath inserted into the carotid
artery, and an intravenous line was placed in the internal jugular vein via a medial neck
incision. The arterial blood pressure and electrocardiogram were monitored throughout the
operation. Maximum and minimum dP/dt were measured with a high-fidelity pressure
transducer in the left ventricle (SPC-350; Millar Instruments, Inc., Houston, Texas, USA).
The central venous pressure (CVP), pulmonary artery pressure (PAP), pulmonary capillary
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wedge pressure (PCWP) and cardiac output (CO) were measured using a SwanGanz
catheter.

A small left thoracotomy was performed via the fifth intercostal space. Following opening of
the pericardium, baseline 3D echocardiographic data were acquired to assess the left
ventricular and mitral valve 3D anatomy. A posterolateral myocardial infarction (MI) was
created by ligating the main circumflex coronary artery just distal of the first obtuse
marginal artery, and the right posterior descending artery at a level of 1.5 cm distal from the
atrioventricular groove (Fig. 1A). Echocardiographic data were recorded again at 30 min
after MI. In order to limit ventricular arrhythmias, amiodarone (100 mg) was administered
via a central vein over a 5-min period prior to thoracotomy, followed by continuous infusion
at a rate of 2.0-3.0 mg/kg/h for 1 h. Additionally, lidocaine (9-18 mg) was administered by
bolus just prior to ligation of the coronary arteries. In case of ventricular fibrillation or
tachycardia, the heart was defibrillated (50 J/s) and additional lidocaine administered.
Neosynephrine was given in small boluses to maintain a mean arterial pressure of 75-80
mmHg before and immediately after coronary occlusion. Using this pharmacologic
approach, ventricular fibrillation occurred in less 10% of animals, and cardioversion was
always successful.

Following the 30-min post-MI echocardiographic study, the pigs were allocated to two
groups, namely acute and chronic. In the acute group, 14 pigs were euthanized at 3 h after
coronary occlusion to allow assessment of the infarct size and location, using an Evans blue
dye staining technique (9). In the chronic group, 15 pigs were allowed to recover and
returned to the operating room eight weeks after the MI, where they were anesthetized and
monitored as described above. Three-dimensional (3D) echocardiographic images and
hemodynamic data were recorded both at rest and during increasing hemodynamic stress
induced by the administration of dobutamine at 5 or 10 pg/kg/min. After image acquisition
and hemodynamic data collection, the animals were euthanized. Four animals in the chronic
group died before the eight-week study; hence, 11 pigs were investigated at eight weeks post
MI.

Echocardiographic protocol and analysis

Epicardial real-time 3D echocardiography was performed using an iE33 instrument (Philips
Medical Systems, Bothell, Washington, USA), equipped with a 2- to 7-MHz probe
(XMATRIX array probe X7-2; Philips). Each full-volume dataset was then exported to an
Echo-View 5.4 (TomTec Imaging Systems, Munich, Germany) workstation for image
analysis. Images were analyzed to assess mitral annular and leaflet 3D geometry as well as
left ventricular volumes.

The left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume
(LVESV) and left ventricular ejection fraction (LVEF) were calculated by tracing
endocardial surface lines manually in both end-diastolic and end-systolic frames of one
cardiac cycle.

The mitral valve analysis was performed at midsystole, as described previously (10-12).
Briefly, the plane of the mitral valve orifice was rotated into a short-axis view, and the
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geometric center then translated to the intersection of the two corresponding long-axis
planes, which corresponded to the intercommissural and septolateral axes of the mitral valve
orifice. A rotational template consisting of 18 long-axis cross-sectional planes separated by
10° increments was superimposed on the 3D echocardiogram. The two annular points
intersecting each of the 18 long-axis rotational planes were then identified by means of
orthogonal visualization of each plane; the two annular points were marked interactively
(total of 36 annular points). Measurement planes were marked at fixed, 1-mm intervals along
the entire length of the intercommissural axis. In each two-dimensional plane, data points
delineating the anterior and posterior leaflets were traced across the atrial surfaces, resulting
in a 500-point to 1000-point dataset for each valve. For the coaptation tracing, meticulous
care was taken to clearly identify the tip of both anterior and posterior leaflets immediately
before coaptation (using previous frames), so that the highest (most atrial) and lowest (most
ventricular) margins of the coaptation zone could be defined. These atrial and ventricular
edges of the coaptation zone were then marked interactively. Anterior and posterior
commissures were defined as annular points at the junction between the anterior and
posterior leaflets (middle of commissural region) and interactively identified. The X, Y, and
Z coordinates of each data point, assigned to the annulus, anterior leaflet, posterior leaflet or
the coaptation surface, respectively, were then exported to Matlab (Mathworks, Inc., Natick,
MA, USA), which allowed rendering of mitral annular and leaflet anatomy. The tips of the
anterior and posterior papillary muscles were also identified. The center of gravity of the
resultant 36-point annular data set was translated to the origin. The least squares plane of the
3D dataset was then calculated and the annular model rotated such that this mitral valve
annular plane was aligned with the x-y plane. Mitral annular area (MAA) was defined as the
area enclosed by the 2D projection of a given annular data set onto its corresponding least
squares plane.

Annular height (AH) was defined as the distance between the middle point of the anterior
annulus and a plane that included both anterior and posterior commissures. The
intercommissural width (CW) was defined as the distance between the anterior and the
posterior commissure. The septolateral diameter was defined as the distance between the
middle point of the anterior annulus and the middle point of the posterior annulus. The
annular height to commissural height ratio (AH/CW x 100%) was used to quantify global
annular non-planarity, as previously reported (13). The mitral annular area was defined as
the area enclosed by the two-dimensional projection of an annulus onto its corresponding
least-squares plane (14). The tenting area of the mitral valve was defined as the area
enclosed by the mitral leaflets and a septolateral line connecting the middle points of the
anterior and posterior annuli. The mitral valve tenting index was defined as mitral valve
tenting volume/mitral annular area.

The degree of MR was assessed semi-quantitatively with color Doppler by measuring the
percentage area of the regurgitation jet in the left atrial area: grade 1 = <20%; grade 2 = 20—
40%; grade 3 = 40-60%; and grade 4 = >60% (15).
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Analysis of infarction area

The heart was excised after euthanization of the animal; the right ventricle and atria were
removed and the left ventricular septum was cut longitudinally from the aortic root toward
the apex. The left ventricular endocardial photographic image was recorded using a digital
camera for the measurement of infarction size, using planimetry software (Image Pro Plus;
Media Cybernetics, Inc., USA). In the acute group, the infarct area was visualized using
Evans blue, as described previously (Fig. 1B) (9). The infarction area and the entire left
ventricular endocardial area were traced manually, and the infarction size was expressed as a
percentage of the left ventricular area. The degree to which the infarct involved the mitral
annulus was expressed as a percentage of the posterior annulus and the entire mitral annulus
that was infarcted. Sections of the myocardium from the infarction were fixed in 5%
buffered formalin, paraffin-embedded, sectioned (3—4 um), and stained with either
hematoxylin and eosin or Masson’s trichrome stains.

Statistical analysis

Results

All data were expressed as mean = SD. Comparisons between values at baseline, and at 30
min and eight weeks after infarction (at rest, dobutamine 5 pg/kg/min and dobutamine 10
pg/kg/min) were performed using a one-way repeated ANOVA, followed by the Bonferroni
test. All statistical analyses were performed using SPSS Il for Windows (SPSS Inc.,
Chicago, lllinois, USA).

Hemodynamic data

Infarct area

At 30 minutes after the M, the systolic blood pressure and CO were significantly decreased
relative to baseline, but there was a significant increase in PCWP. At eight weeks after the
infarct, the minimum dP/dt, PAP, PCWP and CVP were each significantly increased relative
to baseline. During dobutamine stress testing, the maximum dP/dt was increased
significantly in dose-dependent manner, accompanied by increases in systolic blood pressure
and CO (Table I).

An image of the endocardial surface of the left ventricle in a chronic animal at eight weeks
after Ml is shown in Figure 2A. Considering all animals (both acute and chronic groups), the
infarct area was 25.4 + 5.5% of the left ventricle (acute group 27.9 + 5.9%; chronic group
24.0 + 4.9%; p = 0.3). The infarct always included the entire posterior papillary muscle and
extended to the posterior mitral annulus, and involved 65 + 20% of the posterior mitral
annulus and 41 + 12% of the entire mitral annular circumference. Pathologic staining
demonstrated transmural infarction in all animals (Fig. 2B).

Mitral regurgitation

There was no MR at baseline or at 30 min after infarction, but by eight weeks the MR grade
had increased to 2.0 + 1.2 (Table Il; Fig. 3). The mean MR grade was increased to 2.6 + 1.2
and 2.6 + 1.3 after 5 and 10 pg/kg/min dobutamine, respectively.
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Left ventricular volume data

The LVEDV was increased significantly at eight weeks after Ml relative to baseline (from
51.9 + 8.7 ml to 102.0 + 24.1 ml), as was the LVESV (from 31.2 £ 6.8 ml to 75.8 + 20.3
ml); however, the LVEF was significantly decreased (from 40.3 + 6.6% to 25.8 = 7.7%).
Although the administration of dobutamine led to a significant decrease in left ventricular
volume, it had no effect on the LVEF.

Three-dimensional mitral valve morphologic data

At eight weeks after MI, the 3D mitral valve analysis demonstrated significant annular and
subvalvular remodeling that resulted in pronounced leaflet tethering. The mitral annular area
was increased from 596 + 85 mm? at baseline to 931 + 181 mm? during the same time. The
distance between the papillary muscle tips increased from 23.9 mm at baseline to 30.9 mm
at eight weeks after MlI, but both the leaflet tethering volume and tenting index were
increased significantly (from 1577 + 645 ml to 2440 £+ 755 ml, and from 2.6 £ 0.8 mmto 3.4
mm, respectively) as a result of annular and subvalvular remodeling. Details of these data
are presented in Table I1, while the average valve morphology as remodeling progressed
and IMR developed is depicted in Figure 4.

Discussion

The aim of the present study was to develop a reproducible model of moderate chronic IMR
in pigs by ligating the circumflex coronary artery below the takeoff of the first large
circumflex marginal branch, and the posterior descending artery 1.5 cm from the
atrioventricular groove. The infarct involved the posterolateral left ventricular wall, the
posterior papillary muscle and the posterolateral portion of the mitral annulus, and resulted
in moderate IMR by eight weeks after M.

The size and location of the infarct described was similar to that previously reported in a
sheep model, as was the degree of left ventricular remodeling, the annular dilatation, and
subvalvular remodeling (2,3). The use of state-of-the art 3D echocardiography and custom
image analysis software allowed the effective quantification of valvular and subvalvular
remodeling, obviating the need for the sonomicrometry array localization that was used
when developing the sheep model (5,16).

Trans-catheter embolization techniques have been described that produce IMR in pigs;
however, although these approaches do not require thoracotomy they tend to cause infarcts
of widely varying size. A surgical approach through a small thoracotomy would allow for a
precise identification of the coronary anatomy and a visual assessment of infarct size, which
yields a highly reproducible infarct and, therefore, a consistent remodeling stimulus. In this
and previous studies in sheep, an infarct size of between 20-25% of the left ventricular mass
has been necessary to yield (reproducibly) a moderate IMR within an eight-week period
(2,3).

The use of pigs offers certain benefits over sheep for IMR studies. First, the coronary
anatomy of the pig is more similar to that of the human heart. In sheep, the right coronary
artery is always poorly developed and never supplies the left ventricle, whereas in pigs - as
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in humans - it is very commonly a dominant artery with a substantial contribution to the
blood supply of the posterolateral left ventricular wall. Second, the shape of the sheep left
ventricle is more oblong than in humans, with a pronounced bend near the apex. In fact, pigs
have a 3D ellipsoidal left ventricular shape that is very similar to that in humans. Third, the
mitral valve leaflets of pigs are more robust and human-like than those of the ovine heart.
Fourth, reagents for molecular-biological and genetic analysis are more widely available for
pigs than for sheep. It is believed that the human-like characteristics of pig mitral leaflet
tissue and left ventricular shape will become important as new catheter-based mitral valve
repair and replacement devices are developed, and the need for a clinically relevant large
animal model of IMR becomes increasingly important (8).
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Figure 1:
A) Schematic epicardial view of the left and right ventricle after sectioning through the

ventricular septum. A posterolateral myocardial infarction (flesh-colored area) was created
by ligating both the main circumflex coronary artery (Cx) just distal of the first obtuse
marginal artery (OM) (marked X) and the right posterior descending artery (right PD) at the
level of 1.5 cm distal from the atrioventricular groove (marked X). Dx: Diagonal
branch;LAD: Left anterior descending artery. B) Photographic endocardial view of the left
and right ventricle after sectioning through the ventricular septum (left ventricle outlined in
red) in an acute group animal after creating a myocardial infarction. Infarct area (outlined in
yellow) is clearly delineated by the injection of Evans blue dye.
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Figure 2:
A) Gross anatomic view of the endocardial side of the opened left ventricle, demonstrating

the location of the myocardial infarction, which involves the entire posterior papillary
muscle and extends up to the mitral annulus. Infarct size was determined by the ratio of the
infarct area (INF; blue line) and the area of the entire left ventricle (red line). B) Masson’s
trichrome staining demonstrating the transmural nature of the infarct. APM: Anterior
papillary muscle; PPM: Posterior papillary muscle.
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Figure 3:
A) Echocardiography at eight weeks after infarction, demonstrating dilatation of the lateral

wall of the left ventricle and tethering of the posterior mitral leaflet. B) Representative
Doppler color flow image demonstrating moderate MR jet directed toward posterior wall of
the left atrium (LA). LV: Left ventricle; AML: Anterior mitral leaflet; PML: Posterior mitral
leaflet
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Figure 4:

Average three-dimensional plots of mitral valve annual (+++) and leaflet coaptation (blue
line) that resulted from the mitral valve segmentation algorithm described in the text. A)
Valve viewed from above. B) Septolateral view (looking over the saddle horn towards the
posterior annulus). C) Intercommissural view. Plots were created at the time of baseline, at
30 min after infarction, and at eight weeks after infarction. Note the progressive annular
dilatation, annular flattening and posterior displacement of the coaptation line over time.
AC: Anterolateral commissure; PC: Posterolateral commissure; S: Septum (middle of
anterior area); L: Lateral (middle of posterior area); LV: Left ventricle.
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