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ABSTRACT
Background: Interferon treatment, as an important approach of anti-tumor immunotherapy, has been
implemented in multiple clinical trials of glioma. However, only a small number of gliomas benefit from
it. Therefore, it is necessary to investigate the clinical role of interferons and to establish robust
biomarkers to facilitate its application.
Materials and methods: This study reviewed 1,241 glioblastoma (GBM) and 1,068 lower grade glioma
(LGG) patients from six glioma cohorts. The transcription matrix and clinical information were analyzed
using R software, GraphPad Prism 7 and Medcalc, etc. Immunohistochemical (IHC) staining were
performed for validation in protein level.
Results: Interferon signaling was significantly enhanced in GBM. An interferon signature was developed
based on five interferon genes with prognostic significance, which could reflect various interferon
statuses. Survival analysis showed the signature could serve as an unfavorable prognostic factor
independently. We also established a nomogram model integrating the risk signature into traditional
prognostic factors, which increased the validity of survival prediction. Moreover, high-risk group con-
ferred resistance to chemotherapy and high IFNB1 expression levels. Functional analysis showed that the
high-risk group was associated with overloaded immune response. Microenvironment analysis and IHC
staining found that high-risk group occupied a disorganized microenvironment which was characterized
by an enrichment of M0 macrophages and neutrophils, but less infiltration of activated nature killing
(NK) cells and M1 type macrophages.
Conclusion: This interferon signature was an independent indicator for unfavorable prognosis and showed
great potential for screening out patients who will benefit from chemotherapy and interferon treatment.
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Introduction

Glioblastoma (GBM) is the most common and lethal type of
tumor of the central nervous system.1 Even after standard inter-
vention, GBM patients still suffer a median survival time of only
14 months. Traditionally, GBM is characterized by uncontrolled
proliferation, an invasive nature, and activated angiogenesis.
Recent studies highlighted immune disorder as a key driver
facilitating GBM malignancy.2 Our team found that overloaded
immune response and disorganized immunemicroenvironment
contribute to GBM’s poor outcome and treatment resistance.3–6

Interferons are termed as one of the most important families
regulating the immune response, which are involved in activat-
ing antigen presenting cells and enhancing cytolytic function of
effector cells. To date, interferon treatment has been implemen-
ted widely in clinical trials of glioma; however, only a subset of
patients have benefited from it.7–9 This situationmay result from
the controversy in interferons clinical value for glioma. Some

evidence suggests that interferons play an antitumor role in
glioma by facilitating immunological surveillance, enhancing
temozolomide sensitivity and prohibiting angiogenesis.10–12

However, other studies indicated that autocrine activation of
the interferon signaling pathways promotes immune escape
and leads to a multigenic resistance to immune checkpoint
blockades in GBM.13,14 Thus, it is urgent to explore the clinical
role of interferons in glioma and establish a reliable biomarker to
facilitate its application.

Increasing evidence has suggested that interferon-related
genes could serve as biomarkers to predict patients’ prognosis
and response to interferon treatment.15–20 The availability of
large-scale gene expression datasets brings the opportunity to
develop and validate robust gene signatures. In this study, we
profiled the status of interferon signaling in gliomas. An inter-
feron signature was developed to stratify GBMs into high or low-
risk groups with poor prognosis. Patients in the high-risk group
are more likely to be resistant to chemotherapy and to
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interferon-beta treatment. Therefore, this project clarified the
clinical role of interferons in GBM and established a signature,
which may provide novel references for the usage of interferons
in the clinical situation.

Results

Profiling of interferon signaling identified an interferon
signature for GBM

To evaluate the differences in interferon signaling between LGG
and GBM, we performed gene set variation analysis (GSVA)
based on a series of interferon-related biological processes. The
results showed their enrichment were significantly elevated in
GBM, indicating GBMwas characterized with an enhanced inter-
feron phenotype (Supplementary Fig. S1A). To explore the clinical
role of interferon status in GBM, an interferon gene set containing
132 genes was summarized in Supplementary Table S1.21–24

Univariate cox regression analysis was performed to investigate
the prognostic role of these genes. Suppressor of cytokine signal-
ing 3 (SOCS3), interferon-stimulated exonuclease gene 20
(ISG20), interferon-induced protein with tetratricopeptide repeats
5 (IFIT5), NLR family CARD domain containing 5 (NLRC5) and
interferon regulatory factor 9 (IRF9) were identified as associated
with overall survival of GBM patients (Supplementary Table S1).
Among these five genes, SOCS3 and ISG20 were defined as risky
genes with a hazard ratio (HR) > 1, whereas, IFIT5, NLRC5, and
IRF9 were defined as protective genes with and HR < 1. Then, we
established a risk model based on these five genes’ expression
levels and their regression coefficients of univariate cox regression
analysis as follows: Risk score = (0.1730 × SOCS3 expression) +
(0.2370 × ISG20 expression) + (−0.4303 × IFIT5 expression) +
(−0.2914 × NLRC5 expression) + (−0.2829 × IRF9 expression).
The risk signature was used to classify patients into low or high-
risk groups based on its median value.

To test the association between this signature and interferon
status, principal components analysis (PCA) based on interferon-
related genes were performed. The results showed a different
distribution pattern between high and low-risk groups, which
indicated that these two groups may have distinct interferon
statuses (Supplementary Fig. S1B). We further conducted gene
set enrichment analysis (GSEA) based on interferon-related terms
and showed that these terms were highly enriched in the high-risk
group (Supplementary Fig. S1C, D). These findings suggested that
this signature correlated with interferon phenotypes and that the
high-risk group possessed an activated interferon signaling status.

As interferon signaling was more highly enriched in GBM
than LGG, we compared our interferon signature among
World Health Organization (WHO) grades of the Chinese
Glioma Genome Atlas (CGGA) microarray cohort. As
expected, the risk score was significantly elevated along with
glioma progression (Figure 1B). Then, we ranked GBM patients
according to their risk score to visualize its association with
clinical parameters. We found that higher risk indicated older
patients, wild-type isocitrate dehydrogenase 1 (IDH1) and
mesenchymal subtype (Figure 1A, C). The above results were
confirmed in other validated cohorts (Supplementary Fig. S2),
and the finding that risk score correlated with glioma’s grade
was assured in protein levels by using IHC staining

(Supplementary Fig. S3A). These 50 patients’ clinical informa-
tion and IHC score of five prognostical genes were summarized
in Supplementary Table S2. These findings suggested that the
interferon-related prognostic risk was associated with several
unfavorable clinical features.

The interferon signature is a robust prognostic indicator

To estimate the prognostic value of this interferon signature, we
utilized the risk formula in discovery and validation cohorts, and
stratified patients based on their median value. In discovery
cohorts, we found the patients in the high-risk group had
a shorter overall survival than those in the low-risk group (med-
ian OS = 363 vs 551 days; P < 0.0001; Figure 2A). Furthermore,
survival analyses in validation cohorts indicated that the survival
time was significantly reduced in the high-risk group compared
to that of the low-risk group (Figure 2B–F). In addition, we
evaluated the correlation between the risk score and GBM
patients’ survival according to our hospital’s data, and the result
confirmed that high-risk score was significantly associated with
worse overall survival in GBM patients (Supplementary Fig.
S3B). The interferon signature was applied in LGG to explore
its applicability. We found that high-risk patients also suffered
reduced survival compared with low-risk LGG patients
(Supplementary Fig. S3C–F), indicating this interferon signature
was suitable for both LGG and GBM.

Next, we performed stratified survival analyses to test the
prognostic significance of interferon signature as a categorical
variable. GBM patients were stratified according to several
clinicopathologic features, including age, karnofsky perfor-
mance score (KPS), methylguanine methyltransferase
(MGMT) promoter methylation and IDH1 mutation. In the
discovery cohort, high-risk GBMs suffered worse prognosis
than their low-risk counterpart (Figure 2G-N). In validation
cohorts, survival analyses showed that the high-risk group
survived significantly or statistical marginally shorter than the
low-risk group (Supplementary Table S3). Additionally, to
assess whether the interferon signature was independently cor-
related with survival time as a continuous variable, univariate
and further multivariate cox analyses were performed. We
found that the interferon signature was an independent prog-
nostic indicator when adjusted for age, KPS, radiotherapy, and
chemotherapy (Table 1). At the same time, the risk signature
remained prognostic independently in most of the validation
cohorts (Supplementary Table S4). These findings suggested
that the interferon signature was a robust prognostic factor.

The interferon signature precisely predicts survival time

To estimate the validity of interferon signature in predicting
survival time, we depicted receiver operating characteristic
(ROC) curves based on 2- and 3-year survival and then calculated
the area under curve (AUC). The results showed that the signature
was more accurate in predicting 2-year survival (AUC = 0.781)
and 3-year survival (AUC = 0.771) than traditional clinical para-
meters in discovery cohort (Supplementary Fig. S4A–B). The
interferon-related signature also exhibited a well predictability
for survival in internal and external validated cohorts
(Supplementary Table S5).
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Subsequently, we developed a nomogram in discovery cohort
to achieve better translational and predictive potential
(Supplementary Fig. S4C). The C-index of the nomogram was
0.704, which was significantly higher than its constituting factors
(Supplementary Fig. S4D). The calibration plot exhibited high
agreement between predicted and actual probability of 1, 2 and 3
years survival (Supplementary Fig. S4E). In validation cohorts, the
nomogram showed highly predictive validity (Supplementary
Table S6). These results suggested that the interferon-related sig-
nature is instructive for predicting GBM survival time.

High risk indicates chemotherapy resistance

To explore the association between interferon relevant risk and
treatment response, we conducted survival analysis under var-
ious treatment conditions in CGGA microarray cohort. In low-
risk groups, patients with radio-chemotherapy survived signifi-
cantly longer than those patients who received radiation alone
(Figure 3A). However, the combined treatment’s superiority was
impaired in the high-risk group (Figure 3B). MGMT promoter
methylation is well established for implying better prognosis and
chemotherapy sensitivity in GBM.25 We further conducted

survival analysis based on interferon signature, MGMT promo-
ter status and treatment conditions. For all GBMpatients or who
received chemotherapy, MGMT promoter methylated patients
with lower interferon-related risk had a survival advantage over
the unmethylated patients. Moreover, the prognosis of MGMT
promoter-methylated patients with a high-risk score was similar
to that of unmethylated patients (Figure 3C, D). This situation
prompted a further evaluation to clarify the value of this signa-
ture in predicting treatment response. We found that among
MGMTpromoter methylatedGBMpatients, those who with low
interferon-related risk could benefit from additional chemother-
apy (Figure 3E, F). Similar results were obtained in the TCGA
sequencing cohort for validation (Supplementary Fig. S5). These
results indicated that high-risk patients were resistant to che-
motherapy even with a methylated MGMT promoter.

The high-risk group exhibits enhanced immune response
and aggressive phenotypes

To investigate differential biological features between the low
and high-risk groups of CGGA microarray cohort, we
screened out differentially expressed genes with a criterion

Figure 1. The distribution pattern of the interferon signature in the CGGA microarray cohort. A, The expression pattern of the signature’s five genes with
other clinical characteristics. B, The risk score was elevated significantly in higher grade gliomas. C, The higher risk patients were specifically enriched in the IDH1 wild
type and mesenchymal subtype in GBM. (* means P < 0.05, ** means P < 0.01, *** means P < 0.001, **** means P < .0001).
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of log fold change (FC) > 1.5 and adjusted P value < 0.05. The
results of gene ontology (GO) and Kyoto encyclopedia of
genes and genomes (KEGG) analysis showed that the most
relevant biological processes in the high-risk group were

immune response processes, vasculature development and
several classical oncogenic pathways (Figure 4A). To further
confirm the relationship between these GO terms with the
risk signature, we conducted GSVA based on more than 5000
terms and selected the results with adjusted P value < 0.0001
(Supplementary Table S7). We found that immune relevant
processes were generally enriched in the high-risk group as
expected, such as the chemotaxis of several kinds of immune
cells and the responses they mediated. The high-risk group
also showed a robust correlation with angiogenesis and other
oncogenic pathways (Figure 4B).

We conducted GSEA of two main immune relevant terms,
“Immune Response” and “Immune Process”, with the results
showing that there was a positive enrichment of these two
terms in the high-risk group (Figure 4C). Furthermore, we
conducted PCA based on immune-related genes (gene sets
obtained from “Immune Response” and “Immune Process” go
terms). The results exhibited that the low risk and high-risk
groups were generally distributed in different directions,
which may suggest that these groups exhibited different

Figure 2. Prognostic value of the interferon signature in GBM. A, The high-risk group exhibited an unfavorable prognosis in GBM of CGGA microarray cohort. In
the other five validation cohorts, there was also a significantly shorter survival times in the high-risk group compared with those patients in the low-risk group (B–F).
High-risk group patients occupied a significantly reduced overall survival compared with low-risk group patients when stratified by age (G and H), KPS (I and J), IDH1
mutation status (K and L) and MGMT promoter status (M and N) in CGGA microarray cohort.

Table 1. Cox regression analysis of CGGA microarray cohort, GBM.

Univariate Regression Multivariate Regression

Variable HR P value HR P value

Age 1.0169 0.049 1.001 0.9599
(old VS young)
Gender 1.173 0.43
(Male VS Female)
KPS 0.9726 0.00017 0.97 0.00025
(≤70 VS >70）
IDH1 0.634 0.099
（Mutant VS Wildtype)
Chemotherapy 0.471 0.00021 0.528 0.00693
(Treated VS Untreated)
Radiotherapy 0.382 0.00019 0.42 0.00244
(Treated VS Untreated)
Risk Signature 1.945 1.2E-05 1.886 0.00031
(High Risk VS Low Risk)
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immune statuses (Figure 4D). In addition, the same analyses
were conducted in internal and external validation cohorts,
and the similar results were observed (Supplementary Fig. S6
and Fig. S7). These results indicated that the high-risk group
was biologically characterized by an enhanced immune
response.

As increasing evidence suggested that tumor neo-antigen
load and mutation load exert critical role in driving
immune response and infiltration,26,27 the Cancer Genome
Atlas (TCGA) patients with available mutation and neo-
antigen information were reviewed. There were no signifi-
cantly differences in total mutations and neo-antigens
between high and low-risk groups (Supplementary Fig. S8
A–B). Cancer-testis (CT) antigens were termed as another
potential source of tumor antigens, which were aberrantly
expressed in tumors and elicited an antigen-specific
response. We summarized a set of CT genes according to
Rooney’s study and compared their expression pattern
between high and low-risk groups, but there were no dif-
ferences as most of CT genes were down-regulated in GBM
patients (Supplementary Fig. S8C). These results indicated

that various antigen statuses had only a moderate influence
on interferon-related prognostic risk.

The high-risk group conferred a disorganized immune
microenvironment

To clarify the relationship between interferon signature and
microenvironment composition, we calculated the cellular pro-
portion using ESTIMATE, Microenvironment Cell Populations-
counter (MCP-counter) and CIBERSORT algorithms in CGGA
microarray cohort. The results suggested that a significant nega-
tive correlation existed between the tumor purity and the risk
score (Figure 5A). Enrichments of immune and stromal cells
were observed in high-risk patients (Figure 5B, C). The results
showed that several types of immune cells had distinct infiltra-
tion statuses between various risk groups, high-risk group
accompanied with an enrichment of M0 macrophages and neu-
trophils, but less infiltration of activated NK cells and M1 type
macrophages (Figure 5D, E). Correlation analyses confirmed
that interferon signature positively correlated with M0

Figure 3. The risk signature mediated chemotherapy resistance in GBM of CGGA microarray cohort. A, For low-risk group, the patients with radio-
chemotherapy survived significantly longer than those patients who received radiation alone. B, High-risk group patients did not benefit well from adjuvant
chemotherapy. For all GBM patients who received chemotherapy, only the MGMT promoter methylated patients with a low-risk score had a survival advantage over
the unmethylated ones; survival time of MGMT promoter-methylated patients with a high-risk score was similar to that of unmethylated patients (C and D). In GBMs
with methylated MGMT promoters, only patients with a low-risk score benefited from chemotherapy (E and F). （* means P < 0.05, ** means P < 0.01, *** means P <
0.001, **** means P < 0.0001）.
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macrophages and neutrophils and negatively correlated withM1
macrophages and activated NK cells (Figure 5F–I). The same
analyses were conducted in internal and external validation
cohort, and the similar results were observed (Supplementary
Fig. S9). Moreover, we selected antibody IBA1 to detect macro-
phage, anti-neutrophil elastase to statin neutrophil, anti-CD86 to
evaluate M1 polarized macrophage and anti-CD69 to reflect the
amount of activated NK cell based on 30 GBM samples.5,28,29

The results showed that high-risk GBM patients exhibited sig-
nificantly stronger staining of macrophage and neutrophil mar-
kers, but less M1 polarized macrophage and activated NK cell,
which was consistent with CIBERSORT results (Figure 5J AND
Supplementary Fig. S9E). And the detail German immunohisto-
chemical score (GIS) information of immune-related markers in
30 GBM samples had summarized in Supplementary Table S8.

As the classical co-inhibitory immune checkpoints exert
critical immune suppression in GBM, we investigated the
correlation between our signature and several immune check-
points. The results showed a robust positive correlation
between them(Supplementary Fig. S10A). There were also
positive correlations between the risk score and immune risk
factors which were identified in our previous study,6 while the
risk score exhibited a robust negative correlation with those
protective factors (Supplementary Fig. S10B). We further col-
lected a series of immune inhibitory genes in GBM from our
previous study and from the research of Doucette T et al.6,30

and found most of these genes were enriched in the high-risk
group (Supplementary Fig. S10C). In conclusion, there is
a more complicated and unfavorable immune environment
in high-risk group, which indicates a more difficult challenge
in the clinical intervention of this subgroup patients.

Figure 4. The low and high-risk groups of CGGA microarray cohort exhibited different immune status and biological process. A, GO analysis based on up-
regulated genes correlated with the high risk group. B, GSVA results showed that immune relevant processes and some oncogenic pathways were most significantly
enriched in the high risk group. GSEA results showed that there was a positive enrichment of two immune related terms in the high risk group (C and D). PCA results
exhibited that the low risk and high risk groups were generally distributed in different directions based on immune related genes (E).
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IFNB1 has distinct therapeutic implications between
high and low-risk group

Identification of patients who will benefit from interferon
treatment is urgently needed to facilitate its clinical applica-
tion. To mimic the response to interferon treatment, we
explored the prognostic role of important interferons
(IFNA2, IFNB1, and IFNG) in the high and low-risk groups
of CGGA microarray cohort (Figure 6). Patients stratified by
IFNG or IFNA2 had similar prognosis between the low and
high-risk groups (Figure 6A–D). Notably, with regards to
IFNB1, its overexpression indicated a survival benefit in the
low-risk group (Figure 6E). However, in the high-risk group,
patients with high levels of IFNB1 suffered a significantly
reduced survival than their low expression counterparts
(Figure 6F). A similar tendency could be confirmed in valida-
tion cohorts (Supplementary Fig. S11). Therefore, the inter-
feron signature could predict response to interferon therapy
and low-risk patients may obtain therapeutic effect from
interferon-beta treatment.

Discussion

Interferons exert a critical role in immune system processes
and the antitumor immune response. Although interferon
treatment is promising in some tumors, it is still difficult to
produce a durable response and improve clinical outcome in
gliomas.11,12,31–35 Therefore, it is important to elucidate the

clinical value of interferons in glioma. Abundant evidence
suggested that interferon-related genes could serve as biomar-
kers to estimate the clinical outcome and treatment response.
In this study, we profiled interferon status and identified an
interferon signature with prognostic and predictive value for
glioma management.

Increasing evidence has demonstrated that the central ner-
vous system is not immune-privileged.2,36 Our previous stu-
dies proposed that the overloaded immune response serves as
a key driver in promoting glioma malignancy. Here, we found
interferon status was more enhanced in GBM than LGG,
which suggested that interferons may contribute to glioma
progression. Despite many efforts, which sought to apply
interferons in glioma management, there still exists contro-
versy in its prognostic implications. Here, we profiled the
prognostic value of 132 interferon-related genes in GBM
and identified five (SOCS3, ISG20, IFIT5, NLRC5, and IRF9)
that had prognostic significance. These five genes were tightly
involved with interferon signaling, for example, SOCS3 was
termed as a key negative regulator of type I interferon signal-
ing, which could target IRF7 degradation to suppress TLR7
mediated type I IFN production.37,38 Same as SOCS3, NLRC5
also could negatively regulate the NFKB and type I IFN sig-
naling pathway, even suppress the type I IFN secretion in
plasmacytoid dendritic cells.39,40 ISG20 and IFIT5 were
termed as the classical interferon-induced genes, ISG20 exerts
antiviral activity through upregulation of type I interferon
response proteins,41 IFIT5 also could positively regulate

Figure 5. The relationship between the interferon signature with the glioma microenvironment. A, There was a significantly negative correlation between the
tumor purity and the risk score. The high-risk group occupied a higher immune score and stromal score (B and C). MCP analysis showed there was an extreme
enrichment of immune and stromal cell in the high-risk group (D). CIBERSORT results showed that the high-risk group was associated with more macrophages and
neutrophils; while activated NK cells and M1 type macrophages were enriched in low-risk group (E). Positive correlations exist between risk score and M0
macrophages as well as neutrophils (F and G), while the risk score showed a negative correlation with M1 macrophages and activated NK cells (H and I). J, IHC
staining confirmed the CIBERSORT analysis results. （A-I were performed in CGGA microarray cohort; J was conducted in the First Hospital of China Medical University;
* means P < 0.05, ** means P < 0.01, *** means P < 0.001, **** means P < 0.0001）.
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NFKB signaling, which tightly involved with type I interferon
response.42 As for IRF9, termed as an integral transcription
factor in mediating the type I interferon response, which
could interacted with STAT2 and synergistically upregulated
the transcriptional level of IFN and ISG genes.43,44 With the
respect of their potential role in tumor malignancy, there were
many experimental and clinical evidences supporting our
observations that SOCS3 and ISG20 were risky genes, while
IRF9 and NLRC5 were protective genes. For instance, Feng
Y reported that promoter hypermethylation of SOCS3 was
a favorable prognosticator for GBM patients.45 ISG20 was
reported as a pro-angiogenic factor in liver cancer.46 On the
other hand, IRF9 was termed as a key factor for eliciting the
anti-proliferative activity of interferon alpha.18,47 Additionally,
NLRC5 is a critical player in maintaining immune

surveillance.16,48 For now, the biological function of IFIT5
remains elusive, recently one study found it was associated
with epithelial to mesenchymal transition in renal cancer, but
its potential role in immune regulation should be fully
explored in tumors, especially in glioma.49 Then we per-
formed protein–protein interactions based on STRING
database,50 the results showed that IFIT5 may interact with
some genes which exerts pivotal role in the IFN mediated
signaling. Moreover, we conducted pearson co-expression
analysis of IFIT5 in CGGA microarray cohort and selected
the genes with Pearson constant R > 0.6 and adjusted P value
<.05, these genes had summarized in Supplementary Table S9.
The genes coexpressed with IFIT5 were conducted Go and
KEGG analysis by Metascape website, the results revealed that
most enriched terms were positive regulation of GTPase

Figure 6. Survival analyses stratified by interferon showed heterogeneity between low and high-risk group of CGGA microarray cohort. There were no
significant survival differences in the low or high risk groups when stratified by IFNG (A and B) or IFNA2(C and D). E, In the low-risk group, the high IFNB1 group
showed a benefit survival compared with low IFNB1 expression patients. F, In the high-risk group, there was a shorter survival of high IFNB1 expressing patients.
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activity, regulation of apoptotic process and immune cells
chemotaxis like macrophage and neutrophil, etc. (Figure
S12B).The robust statistical nature of risk signature method
has been fully validated in recent studies.6,51 Based on these
five genes mentioned above, we established an interferon
signature in GBM for the first time. This signature was stable
for stratifying patient with various prognosis in six large
sample-sized cohorts. Survival analyses suggested this signa-
ture was an independent prognostic indicator as both contin-
uous and categorical variables.

Few studies have explored the biological implications of
interferon-related prognostic status. Results based on PCA,
GSEA and GSVA suggested that immune relevant processes
were highly activated in the high-risk group. Meanwhile, the
high-risk score was significantly associated with IDH1 wild
type and mesenchymal subtype, which are recognized as
immune activated.30,52,53 These findings reinforced that high-
risk patients were characterized by an enhanced immune
response. As we known, in many types of cancer, enhanced
immune response is always accompanied with favorable prog-
nosis, but glioma exhibited a different situation. Many
researches had indicated that glioma prefer to termed as
a “cold tumor” with low content of CD8 + T cells and M1
polarized macrophages, which exert critical roles in the regulat-
ing of immune cytolysis ability.2,54,55 We also found that the
number of CD8 + T cells was inversely correlated with tumor
grade and survival.4 Moreover, our team’s previous study found
that overloaded immune response and disorganized immune
microenvironment contribute to GBM’s poor outcome because
of the large infiltration of macrophages and neutrophils as well
as the immune response their mediated.5,6 It is worth noting that
anti-tumor immune response sometimes accompanied with
high-intensity inflammation response, which may contribute to
a severe brain edema and affect the prognosis of glioma patients
because of the increased intracranial pressure.56,57 In this study,
we found high-risk tissues were enriched with macrophages and
neutrophils. Abundant evidence have proposed the role of
macrophages and neutrophils in facilitating immune escape.2,58

Additionally, a series of immune inhibitory factors were
enriched in the high-risk group. Therefore, the enhanced
immune response of high-risk patients was mainly immunosup-
pressive. On the other hand, even the proportion of NK resting
cells were increased in the high risk group, while activated NK
cell were more abundant in low-risk patients. Similarly, the low-
risk group was characterized by infiltration of M1 macrophages,
which is a pro-inflammation of polarization.59,60 Therefore, the
favorable prognosis of low-risk patients may result from an
inflammatory microenvironment status. Additionally, we
found that a series of immune inhibitory factors were in the
high-risk group. These findings indicated that the interferon
signature mainly affects the immune response as well as the
immune environment of GBM, and there is a more difficult
challenge in the clinical intervention of high-risk group patients.

How to identify patients who will benefit most from adju-
vant treatment remains a challenge in improving GBM man-
agement. Our results suggest that interferon risk signature
distinguishes survival only for patients with chemotherapy.
Moreover, high-risk GBMs did not benefit from chemother-
apy regardless of their MGMT promoter methylation status,

which was consistent with previous concept that abnormal
interferon status may contribute to chemotherapy resistance.
Considering interferon-related genes could reflect the effec-
tiveness of interferon treatment, we also explored the potency
of utilizing our signature to predict response to interferon
treatment. To mimic the response to interferon-related anti-
tumor therapy, we conducted survival analysis stratified by
expression levels of IFNs. Our results indicated that IFNB1
had distinct clinical implications between high and low-risk
groups, that high-risk patients may also be resistant to inter-
feron-beta treatment. Therefore, the interferon signature may
provide references for guiding treatment. Meanwhile, suitable
therapeutic strategies should be developed to improve clinical
outcome of high-risk patients, who are resistant to both che-
motherapy and interferon therapy.

Immune checkpoints target therapy is considered as one of
the most promising strategies for tumors. Its effectiveness
relies on the status of tumor antigen. Here, we found types
of antigen load had moderate correlation with interferon-
related risk. However, expression of inhibitory immune
checkpoints was highly correlated with our risk signature.
High-risk patients also expressed higher levels of inhibitory
checkpoints. Considering tumor interferon signaling
mediated resistance to immune checkpoint blockade,61,62 we
suggested that high-risk GBMs may benefit from interferon
interference combined with checkpoint blockades. Moreover,
the five genes constituting the interferon signature could be
deemed as suitable targets by weakening risky factors SOCS3
and ISG20 or enhancing the expression and activity of pro-
tective factors IRF9, NLRC5, and IFIT5.

In summary, we explored the interferon status and identi-
fied genes with significantly prognostic value. The first inter-
feron signature in glioma was developed with various clinical
implications. These findings are reliable as the large sample-
sized cohorts for discovery and validation, and the robust
nature of the risk score method. Our signature could be
a clinically useful tool incorporated into an RNA profiling
program to facilitate prognostication and treatment guidance.
However, this study was also limited due to the fact it was
a retrospective study, and lack of the information involved
with interferon treatment, which should be further validated
by prospective studies. Meanwhile, the molecular mechanism
of these five genes involved in interferon response and prog-
nosis determination should be fully investigated in order to
support its application.

Materials and methods

Patients of databases

This study included 1,241 GBM and 1,068 lower grade glioma
(LGG) patients. Patients were summarized from six cohorts:
the Chinese Glioma Genome Atlas (CGGA) microarray
cohort; CGGA RNA sequencing (RNA-seq) cohort; the
Cancer Genome Atlas (TCGA) RNA-seq cohort; TCGA
Agilent 4502A microarray cohort; GSE16011 microarray
cohort; and REMBRANDT microarray cohort. The in house
CGGA microarray cohort was used for discovery cohort, and
CGGA RNA-seq cohort were used for internal validation.
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Moreover, the other four cohorts were defined as external
validation sets, the normalized expression matrix and clinical
information were obtained from GlioVis (http://gliovis.
bioinfo.cnio.es/).63 The clinicopathologic information of indi-
vidual cohort was summarized in Supplementary Table S10,
respectively.

The patient information from the CGGA microarray and
RNA-seq cohorts was obtained from the CGGA database
(http://www.cgga.org.cn). Tumor tissue samples were col-
lected at the time of surgery after informed consent.
Neuropathologists established the diagnosis and ensured the
quality of tissues for further testing. For CGGA microarray
cohort, raw data were extracted with the R package “affy” for
average normalization followed by quantile normalization. As
for genes with several probe sets, the maximum of all probes
had been chosen. For CGGA RNA seq cohort, the normalized
count reads from the pre-processed data were log2 trans-
formed after adding a 0.5 pseudocount (to avoid infinite
value upon log transformation).5,6 Overall survival (OS) was
calculated from the date of diagnosis until death or the end of
follow-up. The point of death is defined by death certification
from local hospitals or police stations.

Bioinformatic analysis

The differentially expressed genes between the high and low-
risk groups were identified by limma R package, with
a criterion of absolute value of fold change more than 1.5
and an adjusted p value less than 0.05. To explore the func-
tional implications associated with our interferon signature,
gene ontology (GO) and Kyoto encyclopedia of genes and
genomes (KEGG) pathway analyses were carried out using
the ClueGo and Metascape websites.64,65 Gene set enrichment
analysis (GSEA) and gene set variation analysis (GSVA) were
performed to explore the enrichment of specific gene sets.66,67

The principal components analysis (PCA) and heatmap were
performed with R packages to depict the expression patterns
across patients. Function gene sets were obtained from
(http://amigo.geneontology.org/amigo/landing). Stromal and
immune scores were calculated by ESTIMATE R package
and the purity of glioma was estimated based on the formula
in the study of Yoshihara and colleagues.68 Microenvironment
Cell Populations-counter (MCP-counter) was used to estimate
eight classical immune cells and two kinds of stromal cells.69

The relative proportions of immune cells were calculated
based on CIBERSORT algorithm,70 samples with
a CIBERSORT output of P < .05 were adopted for analysis.
The mutation and neo-antigen information were obtained
from the research of Michael S Rooney.54

Immunohistochemical (IHC) staining

The glioma paraffin-embedded tissues were collected from the
First Hospital of China Medical University (Grade II n = 10;
Grade III n = 10; GBM n = 30). Twenty-eight cases of these
GBM patients have available survival information (one case lost
to follow-up, another one case survival length less than 30 days).
The detailed protocol of IHC was described as our previous
study.4,5 The five genes involved with the risk signature were

stained with relevant antibodys (SOCS3, proteintech,
14025–1-AP; ISG20, proteintech, 22097–1-AP; IFIT5, proteintech,
13378–1-AP; NLRC5, Abcam, ab117624; IRF9, proteintch,
14167–1-AP). Immune cell markers were stained across these 30
GBM samples using followed antibodys(IBA1, Abcam, ab178846;
Neutrophil elastase, Abcam, ab68672; CD86, Affinity, DF6332;
CD69, proteintech, 10803–1-AP). A semiquantitative scoring sys-
tem was applied following the German immunohistochemical
score (GIS).71 These 50 patients’ clinical information and IHC
score of five interferon signature’s genes were summarized in
Supplementary Table S2, and the detail GIS information of
immune-related markers in 30 GBM samples had summarized
in Supplementary Table S8. This study was approved by the Ethics
Committee of the First Hospital of China Medical University.
Informed consent was obtained from each patient.

Statistical analysis

Univariate cox regression analysis was used to identify
prognostic genes. A risk signature was developed according
to a linear combination of their expression levels weighted
with regression coefficients from univariate cox regression
analysis.72 Patients were divided into high risk and low-risk
group based on their median risk score. The prognostic
difference was evaluated by Kaplan-Meier survival analysis
and log-rank test. Univariate and further multivariate cox
regression analyses were carried out to identify independent
prognostic factors. A nomogram model consists of indepen-
dent prognostic factors was established for a better predic-
tion of prognosis. The prediction accuracy of the risk
signature and other clinical features were determined by
receiver operating characteristic (ROC) curves and
C-index.73 Student’s t-test was used to assess differences in
distribution. Pearson correlation was used to calculate cor-
relations. All statistical analyses were performed using SPSS
(SPSS 20.0 Inc, Chicago, IL), GraphPad Prism 7(GraphPad
Software Inc, LaJolla, CA), R software (R.3.5.1) and Medcalc
(15.6.1). A two-sided p value less than 0.05 was regarded as
statistically significant.

Acknowledgments

The authors would like to acknowledge all the members in
Dr. Wu AH’s laboratory for help with this study. We thank
Dr. Zhiguo Lin for developing of methodology. We also
thank Dr. Xiaoyan Xu and Chen Chen for performing the
data analysis.

Funding

This work was supported by the National Natural Science Foundation of
China under grant [No.81172409] & [No.81472360] & [No.81402045] &
[No. 81502176] and the Science and Technology Department of Liaoning
Province under grant [No. 2011225034].

Conflicts of interest

The authors have no conflicts of interest to declare.

e1621677-10 C. ZHU ET AL.

http://gliovis.bioinfo.cnio.es/
http://gliovis.bioinfo.cnio.es/
http://www.cgga.org.cn
http://amigo.geneontology.org/amigo/landing


Disclosure

No potential conflicts of interest were disclosed.

References

1. Morgan LL. The epidemiology of glioma in adults: a “state of the
science” review. Neuro-Oncology. 2015;17:623–624. doi:10.1093/
neuonc/nou358.

2. Quail DF, Joyce JA. The microenvironmental landscape of brain
tumors. Cancer Cell. 2017;31:326–341. doi:10.1016/j.
ccell.2017.02.009.

3. Han S, Wang C, Qin X, Xia J, Wu A. LPS alters the
immuno-phenotype of glioma and glioma stem-like cells and
induces in vivo antitumor immunity via TLR4. J Exp Clin
Cancer Res. 2017;36:83. doi:10.1186/s13046-017-0552-y.

4. Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y, Jiang T, Wu A.
Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors
of clinical outcome in glioma. Br J Cancer. 2014;110:2560–2568.
doi:10.1038/bjc.2014.162.

5. Zhang CB, Cheng W, Ren X, Wang Z, Liu X, Li G, Han S, Jiang T,
Wu A. Tumor purity as an underlying key factor in Glioma. Clin
Cancer Res. 2017;23:6279–6291. doi:10.1158/1078-0432.CCR-16-
2598.

6. Cheng W, Ren X, Zhang C, Cai J, Liu Y, Han S, Wu A.
Bioinformatic profiling identifies an immune-related risk signa-
ture for glioblastoma. Neurology. 2016;86:2226–2234. doi:10.1212/
WNL.0000000000002770.

7. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type
I interferons in anticancer immunity. Nat Rev Immunol.
2015;15:405–414. doi:10.1038/nri3845.

8. Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interfer-
ons: implications for cancer therapy. Nat Rev Cancer.
2016;16:131–144. doi:10.1038/nrc.2016.14.

9. Payne MJ, Argyropoulou K, Fau - Lorigan P, Lorigan P, Fau -
McAleer JJ, McAleer J, Fau - Farrugia D, Farrugia D, Fau -
Davidson N, Davidson N, et al. Phase II pilot study of intravenous
high-dose interferon with or without maintenance treatment in
melanoma at high risk of recurrence. J Clin Oncol.
2014;32:185–190. doi:10.1200/JCO.2013.49.8717.

10. De Palma M, Mazzieri R, Fau - Politi LS, Politi L, Fau - Pucci F,
Pucci F, Fau - Zonari E, Zonari E, Fau - Sitia G, Sitia G, et al.
Tumor-targeted interferon-alpha delivery by Tie2-expressing
monocytes inhibits tumor growth and metastasis. Cancer Cell.
2008;14:299–311. doi:10.1016/j.ccr.2008.09.004.

11. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le
Bon A, Melero I. Direct effects of type I interferons on cells of the
immune system. Clin Cancer Res. 2011;17:2619–2627.
doi:10.1158/1078-0432.CCR-10-1114.

12. Natsume A, Ishii D, Wakabayashi T, Tsuno T, Hatano H,
Mizuno M, Yoshida J. IFN-beta down-regulates the expression
of DNA repair gene MGMT and sensitizes resistant glioma cells to
temozolomide. Cancer Res. 2005;65:7573–7579. doi:10.1158/0008-
5472.CAN-05-0036.

13. Qian J, Wang C, Wang B, Yang J, Wang Y, Luo F, Xu J, Zhao C,
Liu R, Chu Y. The IFN-gamma/PD-L1 axis between T cells and
tumor microenvironment: hints for glioma anti-PD-1/PD-L1
therapy. J Neuroinflammation. 2018;15(1):290. doi:10.1186/
s12974-018-1330-2.

14. Silginer M, Nagy S, Happold C, Schneider H, Weller M, Roth P.
Autocrine activation of the IFN signaling pathway may promote
immune escape in glioblastoma. Neuro-Oncology.
2017;19:1338–1349. doi:10.1093/neuonc/nox051.

15. Lesinski GB, Zimmerer JM, Kreiner M, Trefry J, Bill MA,
Young GS. Modulation of SOCS protein expression influences
the interferon responsiveness of human melanoma cells. BMC
Cancer. 2010;10:142. doi:10.1186/1471-2407-10-663.

16. Ludigs K, Jandus C, Utzschneider DT, Staehli F, Bessoles S,
Dang AT, Rota G, Castro W, Zehn D, Vivier E, et al. NLRC5
shields T lymphocytes from NK-cell-mediated elimination under

inflammatory conditions. Nat Commun. 2016;7:10554.
doi:10.1038/ncomms10554.

17. Reu FJ, Bae SI, Cherkassky L, Leaman DW, Lindner D, Beaulieu N.
Overcoming resistance to interferon-induced apoptosis of renal car-
cinoma and melanoma cells by DNA demethylation. J Clin Oncol.
2006;24:3771–3779. doi:10.1200/JCO.2005.03.4074.

18. Tsuno T, Mejido J, Zhao T, Schmeisser H, Morrow A, Zoon KC.
IRF9 is a key factor for eliciting the antiproliferative activity of
IFN-alpha. J Immunother. 2009;803–816.

19. Zitzmann K, Brand S, De Toni EN, Baehs S, Goke B,
Meinecke J, Spottl G, Meyer HH, Auernhammer CJ. SOCS1
silencing enhances antitumor activity of type I IFNs by regulat-
ing apoptosis in neuroendocrine tumor cells. Cancer Res.
2007;67:5025–5032. doi:10.1158/0008-5472.CAN-06-2575.

20. Yang Y, Zhou Y, Hou J, Bai C, Li Z, Fan J, Ng IOL, Zhou W,
Sun H, Dong Q, et al. Hepatic IFIT3 predicts interferon-alpha
therapeutic response in patients of hepatocellular carcinoma.
Hepatology. 2017;66:152–166. doi:10.1002/hep.29156.

21. Cheon H, Borden EC, Stark GR. Interferons and their stimulated
genes in the tumor microenvironment. Semin Oncol.
2014;41:156–173. doi:10.1053/j.seminoncol.2014.02.002.

22. DalpkeA,HeegK, BartzH, Baetz A. Regulation of innate immunity by
suppressor of cytokine signaling (SOCS) proteins. Immunobiology.
2008;213:225–235. doi:10.1016/j.imbio.2007.10.008.

23. Lupfer C, Kanneganti TD. The expanding role of NLRs in anti-
viral immunity. Immunol Rev. 2013;255:13–24. doi:10.1111/
imr.12089.

24. Ozato K, Tailor P, Kubota T. The interferon regulatory factor
family in host defense: mechanism of action. J Biol Chem.
2007;282:20065–20069. doi:10.1074/jbc.R700003200.

25. Melguizo C, Prados J, Gonzalez B, Ortiz R, Concha A, Alvarez PJ,
Badet L, Hauet T. MGMT promoter methylation status and
MGMT and CD133 immunohistochemical expression as prognos-
tic markers in glioblastoma patients treated with temozolomide
plus radiotherapy. J Transl Med. 2012;10:250. doi:10.1186/1479-
5876-10-233.

26. Brown SD, Warren RL, Gibb EA, Martin SD, Spinelli JJ,
Nelson BH, Holt RA. Neo-antigens predicted by tumor genome
meta-analysis correlate with increased patient survival. Genome
Res. 2014;24:743–750. doi:10.1101/gr.165985.113.

27. Rutledge WC, Kong J, Gao J, Gutman DA, Cooper LA, Appin C,
Park Y, Scarpace L, Mikkelsen T, Cohen ML, et al. Tumor-
infiltrating lymphocytes in glioblastoma are associated with specific
genomic alterations and related to transcriptional class. Clin Cancer
Res. 2013;19:4951–4960. doi:10.1158/1078-0432.CCR-13-0551.

28. Meisen WH, Wohleb ES, Jaime-Ramirez AC, Bolyard C, Yoo JY,
Russell L, Hardcastle J, Dubin S, Muili K, Yu J, et al. the impact of
macrophage- and microglia-secreted TNFalpha on oncolytic
HSV-1 therapy in the glioblastoma tumor microenvironment.
Clin Cancer Res. 2015;21:3274–3285. doi:10.1158/1078-0432.
CCR-14-3118.

29. Vo DN, Alexia C, Allende-Vega N, Morschhauser F, Houot R,
Menard C, Hoadley KA, Print C, Knowlton N, Black MA, et al.
NK cell activation and recovery of NK cell subsets in lymphoma
patients after obinutuzumab and lenalidomide treatment.
Oncoimmunology. 2018;7:e1409322. doi:10.1080/2162402X.
2018.1490854.

30. Doucette T, Rao G, Rao A, Shen L, Aldape K, Wei J,
Dziurzynski K, Gilbert M, Heimberger AB. Immune heterogeneity
of glioblastoma subtypes: extrapolation from the cancer genome
atlas. Cancer Immunol Res. 2013;1:112–122. doi:10.1158/2326-
6066.CIR-13-0028.

31. Chawla-Sarkar M, Lindner D, Fau - Liu YF, Liu Y, Fau -
Williams BR, Williams B, Fau - Sen GC, Sen G, Fau -
Silverman RH, Silverman R, et al. Apoptosis and interferons:
role of interferon-stimulated genes as mediators of apoptosis.
Apoptosis. 2003;8:237–249.

32. De Beuckelaer A, Grooten J, De Koker S. Type I interferons
modulate CD8(+) T cell immunity to mRNA vaccines. Trends
Mol Med. 2017;23:216–226. doi:10.1016/j.molmed.2017.01.006.

ONCOIMMUNOLOGY e1621677-11

https://doi.org/10.1093/neuonc/nou358
https://doi.org/10.1093/neuonc/nou358
https://doi.org/10.1016/j.ccell.2017.02.009
https://doi.org/10.1016/j.ccell.2017.02.009
https://doi.org/10.1186/s13046-017-0552-y
https://doi.org/10.1038/bjc.2014.162
https://doi.org/10.1158/1078-0432.CCR-16-2598
https://doi.org/10.1158/1078-0432.CCR-16-2598
https://doi.org/10.1212/WNL.0000000000002770
https://doi.org/10.1212/WNL.0000000000002770
https://doi.org/10.1038/nri3845
https://doi.org/10.1038/nrc.2016.14
https://doi.org/10.1200/JCO.2013.49.8717
https://doi.org/10.1016/j.ccr.2008.09.004
https://doi.org/10.1158/1078-0432.CCR-10-1114
https://doi.org/10.1158/0008-5472.CAN-05-0036
https://doi.org/10.1158/0008-5472.CAN-05-0036
https://doi.org/10.1186/s12974-018-1330-2
https://doi.org/10.1186/s12974-018-1330-2
https://doi.org/10.1093/neuonc/nox051
https://doi.org/10.1186/1471-2407-10-663
https://doi.org/10.1038/ncomms10554
https://doi.org/10.1200/JCO.2005.03.4074
https://doi.org/10.1158/0008-5472.CAN-06-2575
https://doi.org/10.1002/hep.29156
https://doi.org/10.1053/j.seminoncol.2014.02.002
https://doi.org/10.1016/j.imbio.2007.10.008
https://doi.org/10.1111/imr.12089
https://doi.org/10.1111/imr.12089
https://doi.org/10.1074/jbc.R700003200
https://doi.org/10.1186/1479-5876-10-233
https://doi.org/10.1186/1479-5876-10-233
https://doi.org/10.1101/gr.165985.113
https://doi.org/10.1158/1078-0432.CCR-13-0551
https://doi.org/10.1158/1078-0432.CCR-14-3118
https://doi.org/10.1158/1078-0432.CCR-14-3118
https://doi.org/10.1080/2162402X.2018.1490854
https://doi.org/10.1080/2162402X.2018.1490854
https://doi.org/10.1158/2326-6066.CIR-13-0028
https://doi.org/10.1158/2326-6066.CIR-13-0028
https://doi.org/10.1016/j.molmed.2017.01.006


33. Happold C, Roth P, Silginer M, Florea AM, Lamszus K, Frei K,
Deenen R, Reifenberger G, Weller M. Interferon-beta induces loss
of spherogenicity and overcomes therapy resistance of glioblas-
toma stem cells. Mol Cancer Ther. 2014;13:948–961. doi:10.1158/
1535-7163.MCT-13-0772.

34. Kito T, Kuroda E, Fau - Yokota A, Yamashita U. Enhancement of
macrophage cytotoxicity against murine gliomas by interferon
beta: increase in nitric oxide production in response to
glioma-derived soluble factors. J Neurosurg. 2002;97:619–626.
doi:10.3171/jns.2002.97.3.0619.

35. Takano S, Ishikawa E, Matsuda M, Yamamoto T, Matsumura A.
Interferon-beta inhibits glioma angiogenesis through downregula-
tion of vascular endothelial growth factor and upregulation of
interferon inducible protein 10. Int J Oncol. 2014;45:1837–1846.
doi:10.3892/ijo.2014.2620.

36. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L,
deCarvalho AC, Lyu S, Li P, Li Y, et al. tumor evolution of
glioma-intrinsic gene expression subtypes associates with immu-
nological changes in the microenvironment. Cancer Cell.
2018;33:152. doi:10.1016/j.ccell.2017.12.012.

37. Yang K, Guan S, Zhang H, Chen Z. Induction of interleukin 6
impairs the anti-HBV efficiency of IFN-α in human hepatocytes
through upregulation of SOCS3. J Med Virol. 2019;91:803–812.
doi:10.1002/jmv.25382.

38. Yu C-F, Peng W-M, Schlee M, Barchet W, Eis-Hübinger AM,
Kolanus W, Geyer M, Schmitt S, Steinhagen F, Oldenburg J, et al.
SOCS1 and SOCS3 Target IRF7 degradation to suppress
TLR7-mediated type I IFN Production of Human plasmacytoid
dendritic cells. J Immunol. 2018;200:4024–4035. doi:10.4049/
jimmunol.1700510.

39. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, Ji J, Shen P,
Zheng S, Chen ZJ, et al. NLRC5 negatively regulates the
NF-kappaB and type I interferon signaling pathways. Cell.
2010;141:483–496. doi:10.1016/j.cell.2010.03.040.

40. Fekete T, Bencze D, Szabo A, Csoma E, Biro T, Bacsi A, Pazmandi K.
Regulatory NLRs Control the RLR-Mediated Type I Interferon and
Inflammatory Responses inHumanDendritic Cells. Front Immunol.
2018;9:2314. doi:10.3389/fimmu.2018.02314.

41. Weiss CM, Trobaugh DW, Sun C, Lucas TM, Diamond MS,
Ryman KD, Klimstra WB.The interferon-induced exonuclease
ISG20 exerts antiviral activity through upregulation of type
i interferon response proteins. mSphere. 2018;3.

42. Zheng C, Zheng Z, Zhang Z, Meng J, Liu Y, Ke X, Hu Q, Wang H.
IFIT5 positively regulates NF-κB signaling through synergizing the
recruitment of IκB kinase (IKK) to TGF-β-activated kinase 1 (TAK1)..
Cell Signal. 2015;27:2343–2354. doi:10.1016/j.cellsig.2015.08.018.

43. Paul A, Tang TH, Ng SK. Interferon regulatory factor 9 structure
and regulation. Front Immunol. 2018;9:1831. doi:10.3389/
fimmu.2018.01831.

44. Wu Z, Wang L, Xu X, Lin G, Mao H, Ran X, Zhang T, Huang K,
Wang H, Huang Q, et al. Interaction of IRF9 and STAT2 syner-
gistically up-regulates IFN and PKR transcription in
Ctenopharyngodon idella. Mol Immunol. 2017;85:273–282.
doi:10.1016/j.molimm.2017.03.013.

45. Martini M, Pallini R, Luongo G, Cenci T, Lucantoni C,
Larocca LM. Prognostic relevance of SOCS3 hypermethylation
in patients with glioblastoma multiforme. Int J Cancer.
2008;123:2955–2960. doi:10.1002/ijc.23805.

46. Lin S-L, Wu S-M, Chung I-H, Lin Y-H, Chen C-Y, Chi H-C,
Lin T-K, Yeh C-T, Lin K-H. Stimulation of interferon-stimulated
gene 20 by thyroid hormone enhances angiogenesis in liver
cancer. Neoplasia. 2018;20:57–68. doi:10.1016/j.neo.2017.10.007.

47. Lou Y-J, Pan X-R, Jia P-M, Li D, Xiao S, Zhang Z-L, Chen S-J, Chen Z,
Tong J-H. IRF-9/STAT2 [corrected] functional interaction drives reti-
noic acid-induced geneG expression independently of STAT1. Cancer
Res. 2009;69:3673–3680. doi:10.1158/0008-5472.CAN-08-4922.

48. Yoshihama S, Vijayan S, Sidiq T, Kobayashi KS. NLRC5/CITA:
a key player in cancer immune surveillance. Trends in Cancer.
2017;3:28–38. doi:10.1016/j.trecan.2016.12.003.

49. Lo U-G, Bao J, Cen J, Yeh H-C, Luo J, TanW, Hsieh J-T. Interferon-
induced IFIT5 promotes epithelial-to-mesenchymal transition lead-
ing to renal cancer invasion. Am J Clin Exp Urol. 2019;7:31–45.

50. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-
Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al.
STRING v11: protein-protein association networks with increased
coverage, supporting functional discovery in genome-wide experi-
mental datasets. Nucleic Acids Res. 2019;47:D607–D613.
doi:10.1093/nar/gky1131.

51. Shukla S, Evans JR, Malik R, Feng FY, Dhanasekaran SM, Cao X,
Chen G, Beer DG, Jiang H, Chinnaiyan AM. Development of a
RNA-Seq based prognostic signature in lung Adenocarcinoma.
J Natl Cancer Inst. 2017;109(1).

52. Amankulor NM, Kim Y, Arora S, Kargl J, Szulzewsky F, Hanke M,
Margineantu DH, Rao A, Bolouri H, Delrow J, et al. Mutant IDH1
regulates the tumor-associated immune system in gliomas. Genes
Dev. 2017;31:774–786. doi:10.1101/gad.294991.116.

53. Cheng W, Ren X, Zhang C, Cai J, Han S, Wu A. Gene expression
profiling stratifies IDH1-mutant glioma with distinct prognoses.
Mol Neurobiol. 2017;54:5996–6005. doi:10.1007/s12035-016-
0150-6.

54. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and
genetic properties of tumors associated with local immune cytolytic
activity. Cell. 2015;160:48–61. doi:10.1016/j.cell.2014.12.033.

55. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L,
Sloan AE, McLendon RE, Li X, et al. Periostin secreted by glio-
blastoma stem cells recruits M2 tumour-associated macrophages
and promotes malignant growth. Nat Cell Biol. 2015;17:170–182.
doi:10.1038/ncb3090.

56. Young JS, Dayani F, Morshed RA, Okada H, Aghi MK
Immunotherapy for high grade gliomas: A clinical update and
practical considerations for neurosurgeons. World neurosurgery
2019124 397–409 doi:10.1016/j.wneu.2018.12.222

57. Zhu X, McDowell MM, Newman WC, Mason GE, Greene S,
Tamber MS. Severe cerebral edema following nivolumab treat-
ment for pediatric glioblastoma: case report. J Neurosurg Pediatr.
2017;19:249–253. doi:10.3171/2016.8.PEDS16326.

58. Sippel TR, White J, Fau - Nag K, Tsvankin V, Klaassen M,
Kleinschmidt-DeMasters BK, Waziri A. Neutrophil degranulation
and immunosuppression in patients with GBM: restoration of
cellular immune function by targeting arginase I. Clin Cancer
Res. 2011;17:6992–7002. doi:10.1158/1078-0432.CCR-11-1107.

59. Murray PJ, Wynn TA. Protective and pathogenic functions of
macrophage subsets. Nat Rev Immunol. 2011;11:723–737.
doi:10.1038/nri3073.

60. Sica A,Mantovani A.Macrophage plasticity and polarization: in vivo
veritas. J Clin Invest. 2012;122:787–795. doi:10.1172/JCI59643.

61. Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C,
Cucolo L, Lee DSM, Pauken KE, Huang AC, et al. Tumor inter-
feron signaling regulates a multigenic resistance program to
immune checkpoint blockade. Cell. 2016;167:1540–1554.
doi:10.1016/j.cell.2016.11.022.

62. Minn AJ, Wherry EJ. Combination cancer therapies with immune
checkpoint blockade: convergence on interferon signaling. Cell.
2016;165:272–275. doi:10.1016/j.cell.2016.03.031.

63. Bowman RL, Wang Q, Carro A, Verhaak RGW, Squatrito M.
GlioVis data portal for visualization and analysis of brain tumor
expression datasets. Neuro-Oncology. 2017;19:139–141.
doi:10.1093/neuonc/now247.

64. Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G,
Stein DA, Moulton H, DeJesus P, Che J, Mulder LF, et al. Meta-
and orthogonal integration of influenza “OMICs” data defines
a role for ubr4 in virus budding. Cell Host Microbe.
2015;18:723–735. doi:10.1016/j.chom.2015.11.002.

65. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M,
Kirilovsky A, Fridman W-H, Pagès F, Trajanoski Z, Galon J.
ClueGO: a Cytoscape plug-in to decipher functionally grouped
gene ontology and pathway annotation networks. Bioinformatics.
2009;25:1091–1093. doi:10.1093/bioinformatics/btp101.

e1621677-12 C. ZHU ET AL.

https://doi.org/10.1158/1535-7163.MCT-13-0772
https://doi.org/10.1158/1535-7163.MCT-13-0772
https://doi.org/10.3171/jns.2002.97.3.0619
https://doi.org/10.3892/ijo.2014.2620
https://doi.org/10.1016/j.ccell.2017.12.012
https://doi.org/10.1002/jmv.25382
https://doi.org/10.4049/jimmunol.1700510
https://doi.org/10.4049/jimmunol.1700510
https://doi.org/10.1016/j.cell.2010.03.040
https://doi.org/10.3389/fimmu.2018.02314
https://doi.org/10.1016/j.cellsig.2015.08.018
https://doi.org/10.3389/fimmu.2018.01831
https://doi.org/10.3389/fimmu.2018.01831
https://doi.org/10.1016/j.molimm.2017.03.013
https://doi.org/10.1002/ijc.23805
https://doi.org/10.1016/j.neo.2017.10.007
https://doi.org/10.1158/0008-5472.CAN-08-4922
https://doi.org/10.1016/j.trecan.2016.12.003
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1101/gad.294991.116
https://doi.org/10.1007/s12035-016-0150-6
https://doi.org/10.1007/s12035-016-0150-6
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1038/ncb3090
https://doi.org/10.1016/j.wneu.2018.12.222
https://doi.org/10.3171/2016.8.PEDS16326
https://doi.org/10.1158/1078-0432.CCR-11-1107
https://doi.org/10.1038/nri3073
https://doi.org/10.1172/JCI59643
https://doi.org/10.1016/j.cell.2016.11.022
https://doi.org/10.1016/j.cell.2016.03.031
https://doi.org/10.1093/neuonc/now247
https://doi.org/10.1016/j.chom.2015.11.002
https://doi.org/10.1093/bioinformatics/btp101


66. Hänzelmann S, Castelo R, Fau - Guinney J. GSVA: gene set
variation analysis for microarray and RNA-seq data. BMC
Bioinformatics. 2013;14:7. doi:10.1186/1471-2105-14-7.

67. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL,
Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES,
et al. Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc Natl Acad
Sci U S A. 2005;102:15545–15550. doi:10.1073/pnas.0506580102.

68. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M,
Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A,
et al. Spatiotemporal dynamics of intratumoral immune cells
reveal the immune landscape in human cancer. Immunity.
2013;39:782–795. doi:10.1016/j.immuni.2013.10.003.

69. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F,
Selves J, Laurent-Puig P, Sautès-Fridman C, Fridman WH, et al.
Estimating the population abundance of tissue-infiltrating immune
and stromal cell populations using gene expression. Genome Biol.
2016;17:218. doi:10.1186/s13059-016-1070-5.

70. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y,
Hoang CD, Diehn M, Alizadeh AA. Robust enumeration of cell
subsets from tissue expression profiles. Nat Methods.
2015;12:453–457. doi:10.1038/nmeth.3337.

71. Remmele W, Schicketanz KH. Immunohistochemical determina-
tion of estrogen and progesterone receptor content in human
breast cancer. Computer-assisted image analysis (QIC score) vs.
subjective grading (IRS). Pathol Res Pract. 1993;189:862–866.
doi:10.1016/S0344-0338(11)81095-2.

72. Lossos IS, Czerwinski D, Fau - Alizadeh AA, Alizadeh A, Fau -
Wechser MA, Wechser M, Fau - Tibshirani R, Tibshirani R, Fau -
Botstein D, Botstein D, et al. Prediction of survival in diffuse
large-B-cell lymphoma based on the expression of six genes.
N Engl J Med. 2004;350:1828–1837. doi:10.1056/NEJMoa032520.

73. Wang Y, Li J, Xia Y, Gong R, Wang K, Yan Z, Wan X, Liu G,
Wu D, Shi L, et al. Prognostic nomogram for intrahepatic cho-
langiocarcinoma after partial hepatectomy. J Clin Oncol.
2013;31:1188–1195. doi:10.1200/JCO.2012.41.5984.

ONCOIMMUNOLOGY e1621677-13

https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1016/S0344-0338(11)81095-2
https://doi.org/10.1056/NEJMoa032520
https://doi.org/10.1200/JCO.2012.41.5984

	Abstract
	Introduction
	Results
	Profiling of interferon signaling identified an interferon signature for GBM
	The interferon signature is arobust prognostic indicator
	The interferon signature precisely predicts survival time
	High risk indicates chemotherapy resistance
	The high-risk group exhibits enhanced immune response and aggressive phenotypes
	The high-risk group conferred adisorganized immune microenvironment
	IFNB1 has distinct therapeutic implications between high and low-risk group

	Discussion
	Materials and methods
	Patients of databases
	Bioinformatic analysis
	Immunohistochemical (IHC) staining
	Statistical analysis

	Acknowledgments
	Funding
	Conflicts of interest
	Disclosure
	References

