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Real-Time Selective Sequencing 
with RUBRIC: Read Until with 
Basecall and Reference-Informed 
Criteria
Harrison S. Edwards1,2, Raga Krishnakumar3, Anupama Sinha3, Sara W. Bird4,5, 
Kamlesh D. Patel1,6 & Michael S. Bartsch   1

The Oxford MinION, the first commercial nanopore sequencer, is also the first to implement molecule-
by-molecule real-time selective sequencing or “Read Until”. As DNA transits a MinION nanopore, 
real-time pore current data can be accessed and analyzed to provide active feedback to that pore. 
Fragments of interest are sequenced by default, while DNA deemed non-informative is rejected by 
reversing the pore bias to eject the strand, providing a novel means of background depletion and/or 
target enrichment. In contrast to the previously published pattern-matching Read Until approach, 
our RUBRIC method is the first example of real-time selective sequencing where on-line basecalling 
enables alignment against conventional nucleic acid references to provide the basis for sequence/reject 
decisions. We evaluate RUBRIC performance across a range of optimizable parameters, apply it to 
mixed human/bacteria and CRISPR/Cas9-cut samples, and present a generalized model for estimating 
real-time selection performance as a function of sample composition and computing configuration.

The Oxford Nanopore Technologies (ONT) MinION sequencer represents a significant paradigm shift in the 
reach, applicability, and capability of nucleic acid sequencing technology1. Combining a portable form factor, 
simple library prep, long-read capability (kb to Mb)2, direct RNA sequencing3, and real-time data output, the 
MinION has been variously applied to forensic genotyping4, bacterial typing5, plant biology6, food safety7, envi-
ronmental metagenomics8,9, cancer research10,11, antibiotic resistance studies12,13 and de novo genome assem-
bly14–16. The small operational and logistical footprint of the MinION, combined with its real-time capabilities17, 
make it uniquely suited to diagnostics and surveillance in clinical and field-forward settings, where the MinION 
has already been applied to assay Ebola18,19, Zika20, tuberculosis21, and other pathogens22–25.

Despite these successes, nanopore sequencing-based diagnostics still face the “needle in a haystack” problem 
of obtaining sufficient coverage of low-abundance target from a high-abundance background (e.g., pathogen/
host, cancer/nontumor) sample26. While bacterial culture provides enriched quantities of genetic material in 
some applications27, culture-independent molecular biology-based target enrichment and background depletion 
methods28 including amplification29 and hybridization capture approaches30 are increasingly being adapted for 
use in library preparation to yield “targeted” or “selective” sequencing31,32. Nearly all such methods require a pri-
ori knowledge to guide the design of the target-sequence-specific primers, baits, or probes required for selection.

Unique to the Oxford MinION, real-time selective sequencing was first introduced by Loose and colleagues 
in 201633, offering a promising alternative to these molecular biology-based enrichment approaches. Dubbed 
“Read Until”, the method capitalizes on the real-time data output and discretely addressable nanopore architec-
ture of the MinION to enable selection of individual DNA molecules. Read Until makes it possible to preview 
the real-time data associated with DNA traversing a given nanopore, and if it fails to meet some user-defined 
selection criteria, reject that read by reversing the pore bias and physically ejecting the DNA (i.e., “unblocking” 
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the pore). DNA meeting the criteria sequences to completion as usual, with selection producing a net enrichment 
of target versus non-target reads in the final sequence pool. Read Until sequence-based selection has no clear 
precedent in the literature, the closest analogs being size-based34 and methylation-based35 DNA sorting in nan-
ochannels, while most “single-molecule sorting” methods principally consist of surface immobilization coupled 
with molecular-resolution fluorescence imaging36.

In the original Read Until implementation, Loose applied a dynamic time warping (DTW) algorithm to 
pattern-match the live current trace “squiggle” output by the MinKNOW sequencing software against a reference 
squiggle synthesized from the (ACGT) target sequence of interest33. The method was successfully executed at a 
time when the MinION sequencing rate was 70 bases/s (it is now 450 bases/s) using a 22-core server to select for 
5 kb portions of lambda DNA and to normalize coverage among 2 kb amplicons. Subsequent work developed a 
statistical model for optimizing DTW selection37. Here we introduce a new implementation of real-time selec-
tive sequencing based on Loose’s original framework: Read-Until with Basecall and Reference-Informed Criteria 
(RUBRIC). Rather than pattern-matching event traces, RUBRIC relies on real-time basecalling and alignment to 
conventional ACGT-type reference sequences, providing significant benefits to speed, scalability, and operational 
flexibility. Moreover, RUBRIC is specifically designed to function with the more modest computing resources typ-
ical of portable or point-of-need MinION-based activities rather than high-end multiprocessor workstations or 
cluster computing platforms. In addition to characterizing the operation of the RUBRIC architecture for a series 
of proof-of-concept experiments, we also propose a predictive model evaluating the likely limits of real-time 
selection performance generally across a range of potential sample types and use cases.

Methods
RUBRIC implementation and operation.  Figure 1 shows the RUBRIC real-time selection architecture, 
implemented with off-the-shelf, ethernet-linked laptop and desktop PCs, while Table 1 summarizes all RUBRIC 
experiments discussed here. Built upon the original Read Until sample code provided by Loose33, RUBRIC inte-
grates ONT’s Nanonet basecaller (v2.0.0, included with the RUBRIC code as noted below) and replaces DTW-
based target pattern-matching with sequence-based alignment using LAST (rev 759)38. For each sequencing 
experiment, initial MinKNOW calibration and multiplex scans were performed, MinKNOW sequencing was 
initiated, and RUBRIC scripts were then started on the desktop PC. Depicted in Fig. 1, the general RUBRIC 
control flow consisted of receiving batches of read events from the Read Until Event Sampler, formatting those 
events for basecalling by Nanonet, aligning the results against a desired target reference sequence with LAST, 
and parsing its output to make skip/sequence determinations which were then communicated to MinKNOW via 
the Read Until API. LAST arguments used in the RUBRIC selection process are shown in Table 1. For all exper-
iments, the Event Sampler was set to ignore the first 100 (typically lower fidelity39) events of each processed read 
and then transmit an “evaluation window” comprising the next 300 events (600 for run G, see Table 1) as the input 
to the RUBRIC selection process. During all experiments, the RUBRIC scripts logged relevant Event Sampler read 
information for method improvement and downstream reconciliation with offline Albacore basecall and BWA 
alignment results.

Despite processing only a short initial portion of each read (~150 bases from 300 events), successfully imple-
menting RUBRIC with garden-variety PCs necessitated careful conservation of limited computing resources. In 
addition to running RUBRIC on a dedicated desktop machine, Fig. 1 illustrates the additional steps that were 
taken to control the volume and optimize the relevance of reads admitted to the RUBRIC decision process. First, 
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Figure 1.  Schematic of the RUBRIC workflow illustrating the division of computational effort between 
two garden-variety PCs: a laptop that runs the MinION sequencer and its MinKNOW software interfaced 
through the Read Until API (via ethernet) to a desktop system that performs the key RUBRIC operations of 
pre-screening reads for admission to the decision process, basecalling and aligning reads to nucleic acid target 
reference(s) in real-time, and communicating any resulting skip/reject decisions back to MinKNOW.
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in all experiments detailed here, RUBRIC selection was applied only to even-numbered pores, while odd pores 
were allowed to sequence normally, providing an internal control. Second, a threshold filter was implemented by 
quickly computing the mean or standard deviation (Supplementary Section S2) of pore current for the evaluation 
window, and on that basis, excluding from selection reads that were empirically determined to be unlikely to 
yield mappable fast5 sequence files. Lastly, a queue was implemented to: 1) constrain the number of event traces 
passed to RUBRIC at a given time to avoid overwhelming available computing resources and 2) screen reads 
that spent too long in the queue from entering the decision process. Queue size varied between 12 and 24 reads 
(Table 1), but in all experiments, reads spending more than 2 seconds in the queue were deemed too old for a 
timely decision to be rendered, and therefore bypassed selection. As Fig. 1 indicates, during the RUBRIC devel-
opment and characterization process, the default for any reads not admitted to the selection process (i.e., odd, 
out-of-threshold, timeout, and otherwise “undecided” reads) and for reads receiving an affirmative “sequence” 
decision was to sequence as usual. Only reads receiving a “skip” decision resulting in ejection by pore polarity 
reversal (unblocking) were not sequenced by default.

Software and computing architecture.  After a preliminary experimental iteration using two laptop PCs 
(Table 1, runs A1-A2), the final and preferred RUBRIC sequencing setup (Fig. 1) consisted of an off-the-shelf 
HP Elitebook 820 G3 laptop with 4 cores (Intel® Core™ i7-6500U CPU @ 2.5 GHz, 16 GB RAM, Samsung 
MZNLN512HCJH-000H1 477GB SCSI SSD) connected by USB to a MinION Mk1B sequencer and by 2-foot 
Cat-5e Ethernet cable to a Dell Optiplex 9020 desktop with 8 cores (Intel® Core™ i7-4790 CPU @ 3.6 GHz, 16 
GB RAM, Samsung 850 2TB SCSI SSD). Oxford MinKNOW version 1.6.11 sequencing software was run on the 
laptop for all experiments other than run G (v1.11.5), while the desktop system provided the additional comput-
ing power needed to implement RUBRIC real-time basecalling, alignment, and selection functions concurrently 
with sequencing. No other computing resources were used within the RUBRIC control loop. RUBRIC software 
communicated with MinKNOW’s Event Sampler via the Read Until API (v1) to acquire event data and provide 
rejection instructions in real time. Both computers operated in Windows 10, and the desktop was placed into 
Safe Mode during runs to prevent CPU usage by background processes and services. After sequencing, all data 
were basecalled offline using Albacore v1.2.6 (v2.2.4 for run G) and post-run alignment was performed using 
BWA v0.7.12-r1039 (with ‘mem -x pacbio’ arguments) on Sandia’s Biota computing cluster. While BWA was used 
for offline alignment and classification of output MinION reads, LAST was selected for use inside the RUBRIC 
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A1 335 246/243 168 167 48,525 12 40–130 (M) Fresh EagI Fresh 1D 2 Laptops, LAST args: -fTAB -C2 -q 1 -r 1 -a 1 -b 
1 -D 100 -e 15

A2 335 206/204 175 174 43,947 12 40–130 (M) Same as A1 Same sample as A1 LAST args: -fTAB -C2 -q 1 -r 1 -a 1 -b 1

B1 308 221/222 194 194 82,334 24 40–130 (M) Same as A1 (7d) Fresh 1D Laptop + desktop, increased queue size

B1* 308 221/221 11 11 5,401 24 40–130 (M) Same as A1 (7d) Fresh 1D (*Time-filtered to remove periods of failed 
skipping)

B2 308 189/199 175 174 87,818 24 40–130 (M) Same as A1 (7d) Same sample as B1 RUBRIC desktop operated in Safe Mode

C 322 208/219 515 270 60,003 12 40–130 (M) Same as A1 (8d) Frozen (1d), same 
prep as B1 Reduced queue size, frozen library

D 386 227/228 215 215 100,513 16 70–110 (M) Fresh EagI Fresh 1D Adjusted mean threshold, increased queue

E1 380 207/221 132 132 31,871 16 8.48–14.10 (S) Same as D (2d) Frozen (2d), same 
prep as D Standard deviation (SD) threshold, frozen library

E2 380 199/205 431 209 54,048 16 5.46–14.56 (S) Same as D (2d) Same sample as E1 Adjusted SD threshold

E2* 380 199/205 424 202 52,509 16 5.46–14.56 (S) Same as D (2d) Same sample as E1 (*Time-filtered to remove periods of failed 
skipping)

F 125 241/246 882 833 18,704 16 5–15.2 (S) Cas9 rDNA Fresh 1Db Adjusted SD threshold

F* 125 241/246 830 781 17,911 16 5–15.2 (S) Cas9 rDNA Fresh 1Db (*Time-filtered to remove periods of failed 
skipping)

G 4000 127/126 77 74 36,651 16 10–16 (S) None Fresh rapid kit
MinKNOW 1.11.5, adjusted SD threshold, 600 
event evaluation window, LAST args: -fTAB -C2 
-q 1 -r 1 -a 1 -b 1 -e 30

G* 4000 127/126 65 62 29,880 16 10–16 (S) None Fresh rapid kit (*Time-filtered to remove periods of failed 
skipping)

Table 1.  Summary of RUBRIC experiments and parametric variations for preliminary lambda DNA 
experiments A1-B1, mainline EagI-digested Lambda DNA experiments B2-E2, and example use case 
experiments F and G in which Cas9-cut rDNA was selected from E. coli gDNA and E. coli gDNA was selected 
from human gDNA, respectively. aLower and upper threshold filter bounds based on mean (M) and standard 
deviation (S) of the pore current trace. bFresh digests and library preparations were performed on the day 
of the sequencing run, while storage time (days) for previously prepared digests and frozen libraries (see 
Supplementary Section S5) are indicated. cUnless otherwise noted, adjustments in the Change Summary 
column apply to all subsequent runs. *Dataset time-filtered to eliminate reads from periods of failed skipping, 
see Supplemental Section S3.
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control loop due to its speed and the comparative ease of integrating it into the real-time workflow. Downstream 
data analysis and visualization were performed using custom Python scripts (pandas, numpy, matplotlib, sea-
born), custom R scripts, and Microsoft Excel.

Sample preparation and experimental variations.  Lambda DNA Experiments.  To provide a test 
case for RUBRIC selection, lambda-phage DNA (cat # N3011S, New England Biolabs (NEB), Ipswich, MA) was 
digested using the EagI enzyme (NEB, cat # R3505S) to produce three large DNA fragments of roughly similar 
size (20 kb, 17 kb, and 12 kb). Digestion was performed per NEB protocol in a 50 μL reaction, and the product 
was purified using phenol:chlororform. The 17 kb fragment was chosen as the target for RUBRIC selection, while 
reads not matching its sequence were skipped. For all lambda DNA experiments (A1-E2 in Table 1), digested sam-
ples were prepared using ONT’s 1D ligation kit (SQK-LSK108) and loaded into SpotON flow cells (FLO-MIN107, 
used for all experiments in this article) using methods described in the kit’s accompanying protocol. DNA con-
centrations were measured using a Qubit Fluorimeter (Thermo Fisher, Waltham, MA).

Table 1 summarizes the progression of experimental parameter variations through sequential RUBRIC exper-
iments, with letters differentiating experiments performed on different days and numbers indicating successive 
RUBRIC runs with the same loaded sample (but different RUBRIC settings) on a given day. Datasets indicated 
with an asterisk (*) have been time-filtered as explained in Supplementary Section S3 to eliminate data from 
periods during which skip decisions failed to properly reject DNA. Experiments A1, A2, and B1 are included pri-
marily for comparison, reflecting the earliest parametric iterations and system configurations, and are therefore 
not representative of typical RUBRIC performance. Accordingly, aggregate results distinguish between “mainline” 
results associated with the preferred RUBRIC system configuration (N = 5, runs B2-E2), and the set of all lambda 
experiments (N = 8, A1-E2). Non-lambda DNA runs F and G, described below, are preliminary proof-of-concept 
examples applying RUBRIC in use cases potentially relevant to pathogen diagnostics.

To summarize the variations tested for lambda DNA, runs A1 and A2, performed using two equivalent, 
Ethernet-coupled laptops, tested the effect of changing the settings of the LAST aligner used in the RUBRIC con-
trol loop. Experiment B1 used the same settings but implemented RUBRIC on ethernet-linked laptop and desktop 
machines, while B2 revealed the benefit of operating the RUBRIC-running desktop in Safe Mode. Experiment C 
used a previously prepared frozen library and reduced the queue size from 24 to 12. Experiment D increased the 
queue to 16 and adjusted the mean current-based threshold with a fresh digest and library prep. Experiment E1 
implemented a standard deviation-based threshold for a frozen library, and experiment E2 further adjusted that 
threshold.

E. coli Ribosomal DNA Experiment.  While long-fragment lambda DNA proof of concept experiments facil-
itated early RUBRIC optimization and troubleshooting efforts, we also performed preliminary experiments 
to assess the potential of RUBRIC selection in more realistic applications, specifically with an eye toward bac-
terial pathogen diagnostics. In experiment F, inspired by conventional bacterial ribotyping, guide RNAs for 
CRISPR/Cas9 cutting were designed to target the 5′ end of the 16S and the 3′ end of the 23S ribosomal DNA 
(rDNA) loci of E. coli (Accession number: NC_000913) to excise the ~5 kb 16S-23S region of the rDNA locus. 
Single-molecule guide RNA (sgRNA) templates were generated by polymerase chain reaction (PCR) (16S primer 
5′-M-TGGCTCAGATTGAACGCTGG-N-3′ and 23S primer 5′-M-CGCCCAAGAGTTCATATCGA-N-3′, 
where M = 5′-GGATCCTAATACGACTCACTATAG-3′ and N = 5′-GTTTTAGAGCTAGAA-3′) to yield a sin-
gle chimeric template containing the crRNA, tracrRNA, and a T7 promoter sequence as described by Anders40. 
sgRNAs were transcribed in vitro using the TranscriptAid T7 High Yield Transcription Kit (Thermo Fisher, cat 
# K0441) according to manufacturer’s protocol. Guide RNAs were purified using MEGAclear Transcription 
Clean-Up Kit (Thermo Fisher/Ambion, cat # AM1908) according to manufacturer’s protocol and diluted to 
300 nM.

For the CRISPR/Cas9 digest, a 90 μL reaction was prepared by mixing 9 μL of 10X Cas9 Nuclease Reaction 
Buffer (NEB), 30 nM gRNA1 (targeting 16S region), 30 nM gRNA2 (targeting 23S region) and 30 nM SpyCas9 
Nuclease (NEB, cat#M0386S). After a 15 min incubation to form the ribonucleoprotein complex, 10 μg of bacte-
rial genomic DNA was added and the reaction incubated at 37 °C for 4 hours. 1 μL of proteinase K (Thermo Fisher, 
AM2548) was added and the reaction incubated at 65 °C for 15 minutes. DNA was purified using Agencourt 
AMPure XP beads (cat #A63881, Beckman-Coulter, Brea, CA) according to manufacturer’s protocol. Library 
preparation was performed per ONT protocol using the 1D2 ligation kit (SQK-LSK308), and RUBRIC targets 
were set to select for the 16S-23S rDNA sequences (NCBI).

Mixed Human/E. coli Experiment.  The second example use case, experiment G, sought to select for 1% E. coli 
genomic DNA against a background of 99% human DNA (HeLa, NEB, cat# N4006S) in a sample mixed prior 
to library preparation. Escherichia coli K12 MG1655 (ATCC, Manassas, VA) culture was grown overnight in LB 
media at 37 °C with shaking at 250 rpm. 1 mL aliquots were spun down to make the bacterial pellet, and cells were 
lysed using Qiagen lysis buffer (Qiagen, Redwood City, CA) with added Proteinase K and RNase A (Thermo 
Fisher). The lysate mixture was incubated for 15–30 min at 50 °C. Pure genomic DNA was extracted using the 
phenol:chloroform extraction method. Briefly, one volume of phenol:chloroform:isoamyl alcohol (25:24:1) 
(Sigma-Aldrich, St. Louis, MO) was added to the lysate mixture and the samples were centrifuged at room tem-
perature for 10 minutes at 16,000 × g. The upper aqueous phase was transferred to a fresh tube and the DNA was 
precipitated by the addition of 0.1 volumes 3 M sodium acetate (pH 5.0) and 2.5 volumes of 100% ethanol. The 
samples were stored at −20 °C overnight to precipitate the DNA. The DNA was pelleted at 4 °C for 15–30 min-
utes at 16,000 × g and the DNA pellets were washed twice with 500 μL of 70% ethanol. The DNA pellets were 
dried at room temperature for 5–10 minutes and resuspended in nuclease free water, and library preparation was 
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accomplished using a RAD004 rapid kit per ONT protocol. During RUBRIC operation, reads were LAST-aligned 
in real-time against the entire 4.6 Mb E. coli K12 genome (NCBI) as the selection target. As noted in Table 1, for 
experiment G the evaluation window was increased from 300 to 600 events to enable greater discrimination 
between bacterial and human sequence, and LAST stringency was reduced to capture as many rare target reads 
as possible.

Results
Data flow analysis and lambda DNA results.  Figure 2 illustrates the detailed data flow analysis approach 
used to evaluate even pore RUBRIC selective sequencing performance in comparison to the internal control pro-
vided by non-selecting odd channels for representative lambda DNA experiment B2. Equivalent Sankey diagrams 
for all other experiments (and filtered datasets) are provided in Supplementary Fig. S9 with results summarized 
in Supplementary Fig. S1. Table 2 compares performance metrics for the runs.

Figure 2 underscores the importance of such detailed analysis, as simply comparing target- and background- 
mapping fast5 ratios for odd (10,881:20,761) and even pores (14,312:23,865) can be misleading. Despite an apparent  
32% increase in RUBRIC target reads, only 68% of those reads—less than the count of odd target reads—resulted 
from sequence decisions, while 17% were actively skipped or diverted from the decision process by the threshold 
filter. The remaining 15% never received a decision, most because they were not reported to RUBRIC by the Event 
Sampler. We now discuss the read fractions represented in Fig. 2, referencing individual results of experiment B2 
(Figs 2–4(a)) and aggregate results of the other lambda DNA experiments (Table 2, Supplementary Figs S1–S3, 
S7 and S9–S10).

Sampled Reads.  The character of reads communicated to RUBRIC by the Read Until Event Sampler is best 
represented by odd pore (control) reads, which exhibited average fragment lengths of 8007 ± 5882 nucleotides 
(nt) and Albacore quality scores (sequencing_summary.txt-derived “mean_qscore_template”) of 9.52 ± 2.00 for 
n = 214,445 fast5s from N = 8 lambda experiments (Supplementary Fig. S2).

Unsampled Reads.  A small percentage (0.62% ± 0.42%, N = 8 runs) of reads had fast5 files but lacked Event 
Sampler entries in the RUBRIC log and were therefore unavailable for selection. These “unsampled” reads typ-
ically had quality scores (9.13 ± 2.26, n = 34,455 fast5s, N = 8 runs) and proportions of target, non-target, and 

Figure 2.  Sankey chart depicting read and fast5 sequence file data flow analysis for Experiment B2. Because 
the target lambda DNA fragment was a subset of the overall lambda (background) sequence, no reads mapped 
exclusively to the target, and therefore all correctly mapped target reads appear in the “both” category at the 
3-pronged terminal ends of each chart branch. Undecided read counts shown here include both reads that 
timed-out of the decision process (>2 seconds in the queue) and those that did not otherwise receive a decision.
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unmappable reads comparable to the sampled control population (Fig. 2, Supplementary Figs S2 and S9). The 
short length (583 ± 206 nt, n = 34,455 fast5s, N = 8 runs) of most unsampled reads (Supplementary Fig. S10), 
suggests that they may result from DNA transiting the pore within the sampling period of the Event Sampler.

Non-Sequence Reads.  As in Fig. 2, a consistently large proportion of control (odd) sampled reads (89.5% ± 1.89%, N = 8  
lambda runs) never yielded fast5 sequence files. Pore activity timelines (data not shown) reveal that these 
“non-sequence” reads typically appear as serial, discretely reported events occurring between identifiable 
sequence-producing reads. The hypothesis that these non-sequence reads primarily indicate sub-sampling of 
open pore time (versus degraded DNA, pore fouling, etc.) is reinforced by our observation (data not shown) 
that setting RUBRIC to unblock all out-of-threshold (predominantly non-sequence) reads produced no apparent 
change in even pore throughput. A related internal sampling artifact may cause the observed subdivision of long 
DNA reads2.

Uncalled Reads.  The total number of fast5s that could not be basecalled offline by Albacore was essentially neg-
ligible, ranging from 0.0384% (A2) to 0.621% (D) with an average of 0.280% ± 0.246% (N = 8 lambda runs) and 
zero (0) sequence decision fast5s failing to basecall.

Mapped and Unmapped Reads.  Supplementary Fig. S2 shows that odd unmapped reads exhibited significantly 
lower average quality scores (6.07 ± 1.26, n = 35,083 fast5s, N = 8 lambda runs) than reads mapping to target 
or background references (10.21 ± 1.23, n = 179,057 fast5s, N = 8 lambda runs) and were shorter on average 
(4082 ± 5556 nt vs. 8789 ± 5625 nt) than corresponding mappable reads.

Out-of-Threshold (OOT) Reads.  Threshold filter settings (Table 1) were determined empirically from prior run 
data, requiring updates after any significant sample composition, flowcell batch, library prep, or ONT software 
changes. Generally, out-of-threshold fast5 quality score averages were about 15% lower than corresponding 
odd scores (Supplementary Fig. S2) and OOT reads about 30% shorter on average. While retrospectively-set 
thresholds for most mainline experiments successfully excluded 90–97% of ultimately unmappable (especially 
non-sequence) reads from the decision process, typically diverting >80% of even sampled reads, experiment C 

A1 A2 B1 B1* B2 C D E1 E2 E2* F F* G G*
Odd Reads/min 1644 1464 1873 2426 2185 1040 2700 1163 1465 1465 2095 2117 1560 1480

In-Threshold Reads/pore/min 826.3 899.3 296.6 371.0 390.5 558.3 243.7 155.3 203.7 205.0 99.95 104.0 297.4 292.5

Odd Reads/pore/min 8.959 8.596 10.39 11.40 11.95 6.868 13.02 6.032 7.846 7.834 9.999 9.975 12.82 13.17

In-Thresh Reads/pore/min 4.485 5.366 1.668 1.768 2.062 4.045 1.198 0.779 1.061 1.065 0.474 0.490 2.469 2.619

Average Pore Vacancy 70.2% 64.6% 65.2% 71.0% 72.0% 65.2% 77.2% 81.9% 84.0% 83.9% 98.3% 98.3% 78.2% 77.2%

Absolute Sequence Enrichmenta,b 0.578 0.759 0.135 0.972 0.987 0.949 0.888 0.756 0.940 0.939 0.413 0.422 1.128 1.149

Absolute Read Enrichmenta,c 0.580 0.782 0.134 0.949 1.021 0.926 0.797 0.761 0.902 0.901 0.449 0.456 1.010 1.055

Relative Read Enrichmenta,d 1.674 216.5 362.2 209.3 198.4 329.5 182.2 160.9 131.3 136.5 281.8 289.1 298.3 288.0

Throughput Ratioa,e 1.102 1.293 1.025 1.181 1.212 1.271 1.185 1.067 0.920 0.924 1.081 1.092 1.082 1.093

Decision Efficiencyf 63.6% 72.1% 14.7% 94.0% 99.3% 86.1% 98.8% 99.4% 99.5% 99.5% 97.6% 97.7% 99.3% 99.9%

Timeout Fractiong 44.7% 4.5% 100.0% 98.4% 96.0% 44.7% 99.8% 0.0% 0.0% 0.0% 0.0% 0.0% 97.5% 82.6%

Threshold Filterh

Sensitivity 0.988 0.985 0.973 0.979 0.929 0.987 0.892 0.799 0.952 0.951 0.282 0.263 0.972 0.972

Specificity 0.581 0.540 0.919 0.931 0.918 0.566 0.965 0.920 0.902 0.902 0.956 0.955 0.917 0.917

Precision 0.135 0.089 0.525 0.508 0.462 0.114 0.566 0.372 0.373 0.372 0.010 0.009 0.583 0.593

Accuracy (MCC) 0.276 0.215 0.682 0.678 0.621 0.249 0.693 0.508 0.562 0.561 0.046 0.041 0.718 0.724

Skip/Sequence Decisionh

Sensitivity 0.996 0.992 0.915 0.915 0.859 0.991 0.884 0.930 0.902 0.904 0.961 0.965 0.804 0.795

Specificity 0.584 0.982 0.995 0.995 0.993 0.985 0.991 0.951 0.963 0.963 0.998 0.998 0.996 0.996

Precision 0.122 0.765 0.976 0.976 0.962 0.853 0.962 0.793 0.801 0.802 0.715 0.714 0.457 0.475

Accuracy (MCC) 0.266 0.863 0.934 0.934 0.892 0.913 0.904 0.828 0.824 0.825 0.828 0.829 0.604 0.612

RUBRIC Overallh

Sensitivity 0.633 0.717 0.133 0.832 0.795 0.847 0.790 0.799 0.865 0.866 0.602 0.599 0.771 0.776

Specificity 0.884 0.994 1.000 1.000 0.999 0.994 0.999 0.995 0.995 0.995 1.000 1.000 0.999 0.999

Precision 0.122 0.765 0.976 0.976 0.962 0.853 0.962 0.793 0.801 0.802 0.715 0.714 0.457 0.475

Accuracy (MCC) 0.240 0.734 0.355 0.899 0.871 0.844 0.870 0.791 0.829 0.830 0.656 0.654 0.593 0.607

Table 2.  Performance metrics for RUBRIC selective sequencing experiments including preliminary lambda 
DNA runs A1 through B1, mainline lambda experiments B2 through E2, and application examples F and 
G. aNormalized with respect to even and odd total active pore times indicated in Supplementary Table S1. 
bCumulative sequence decision target read length/cumulative odd target read length. cSequence decision target 
read count/odd target read count. dSequence decision target/non-target read count divided by odd target/
non-target read count. eEven sampled read count/odd sampled read count. f% of in-threshold reads receiving 
a skip or sequence decision. g% of undecided reads not receiving a decision due to the RUBRIC 2-second 
queue timeout period. hBinary classifier-based performance metrics are detailed in Supplementary Section S1. 
*Dataset time-filtered to eliminate reads from periods of failed skipping, see Supplemental Section S3.
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showed a lower out-of-threshold proportion (53.7%), rejecting only 56.6% of unmappable reads (Supplementary 
Fig. S9(f)). This poor threshold selectivity likely accounted for the unusually high in-threshold read/min rate 
of experiment C (43% higher than B2, Table 2), which in combination with its small queue, may explain its 
high proportion of undecided reads. Based on C, threshold adjustments in experiment D (Supplementary 
Fig. S9(g)) produced much improved threshold specificity, precision, and accuracy at the expense of reduced 
sensitivity (Table 2). Though not optimized when introduced in experiments E1 and E2 (Table 2, Supplementary 
Fig. S9(h–j)), thresholds based on pore current standard deviation proved superior to those based on mean cur-
rent because the former helped to mitigate errors associated with current drift and other offsets (Supplementary 
Section S2).

Undecided and Timeout Reads.  The presence of in-threshold reads not receiving skip/sequence decisions typ-
ically reflected a computational resource limitation affecting the MinKNOW or RUBRIC PCs. Table 2 indicates 
the fraction of undecided reads exceeding the 2 second RUBRIC queue timeout period. Excepting outlier experi-
ment C, about 99% of in-threshold reads for mainline lambda experiments received decisions (Table 2). The high 
in-threshold read rate and poor decision efficiency of experiment C may indicate that as configured the RUBRIC 
system could effectively process 400–500 decisions/min, beyond which computing resource limitations became 
significant. Threshold filtering caused undecided reads to differ from control reads mainly in their lower, but vari-
able proportion of non-sequence reads. Because undecided and timeout reads often appeared in localized clusters 
on the read timeline (see especially Supplementary Fig. S5(d)), this variability may reflect periods of unusually 
high read throughput that also affected whether fast5s were created by the MinKNOW PC.

Sequence Decision Reads.  Table 2 details the performance of the RUBRIC decision process in rendering 
sequence decisions for target mapping reads and skip decisions for non-target reads. For experiment B2, Fig. 3 
indicates the coverage of lambda (target and non-target) sequence with and without selection, while Fig. 4(a) 
illustrates selection as a function of DNA fragment length. On average for mainline lambda experiments, the 
decision process correctly excluded 97.7% ± 1.9% (N = 5) of non-target reads while capturing 91.4% ± 5.1% 
(N = 5 runs) of available targets, proportions that reflect both basecalling accuracy and the stringency of LAST 
aligner settings used within the RUBRIC control loop. On average, 98.5% ± 0.6% (N = 5) of sequence decision 
fast5s mapped to target, and even including the typically small proportion of unmapped fast5s (1.5% ± 0.6%), 
sequence decision quality scores (Supplementary Figs S2–S3) were better on average (10.46 ± 1.36, n = 42,191 
fast5s) than the control sampled read population (9.51 ± 2.17, n = 1,690,891 fast5s). These results suggest that for 
diagnostic applications, data analysis should focus on sequence decision fast5s and consider other categories (i.e., 
undecided, unsampled, out-of-threshold, and skipped reads, in that order) only if coverage is lacking.

Skip Decision Reads.  While skipping ostensibly ejects DNA from the nanopore, on average 46.7% ± 6.1% of 
mainline experiment skip decisions nevertheless produced fast5s (N = 4, excluding outlier C, where the ill-set 
threshold admitted many non-sequence reads). Skipped-read fast5s occur for two primary reasons. First, when 
a skip instruction is received, MinKNOW assesses whatever read data has already been acquired and writes it 
to fast5 if it represents viable sequence (personal communication with ONT staff, 1-9-2018). When skipping is 
operating correctly with decision times substantially shorter than DNA pore-transit times, this data handling 
convention produces characteristic truncation of skipped reads visible in the even pore results of Fig. 4 and 
Supplementary Fig. S10 as a prominent mound of skipped reads typically centered in the 1500–2500 nt size 
range. Figure 3 also shows these skip-truncated reads as the higher-coverage “rabbit ear” features (also observed 
by Loose33) at the ends of the non-target lambda fragments. The absence of skip-truncation is an important 
indication that Read Until DNA rejection is not operating correctly, as discussed in Supplementary Section S3. 
Skip decision fast5s may also result when reads transit the pore before a RUBRIC decision can be rendered, 

Figure 3.  Lambda DNA sequence coverage plot for experiment B2 showing the effect of RUBRIC selection 
applied to even pore reads in contrast to unselected odd pore reads. Even and odd coverage numbers are 
normalized by total even and odd active pore times, respectively.
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whether due to relatively short DNA fragments or long decision times (see Supplementary Section S6). Unlike 
skip-truncated reads, which appear only in the even pore results of Fig. 4 and the like, reads short enough to 
escape the decision process in this manner are visible in both odd and even distributions, typically below 1000 nt. 
In combination, fugitive reads and skip-truncation yielded short average skipped-read lengths of 1373 nt ± 606 
nt (n = 424,857 fast5s, N = 8 lambda runs), while average quality scores were 8.76 ± 2.50 (Supplementary Fig. S2).

Overall RUBRIC Performance.  Table 2 reports absolute target enrichment on both a sequence- and read-basis. 
Overall, absolute enrichment results were not particularly encouraging, as only mixed sample run G realized 
both read and sequence enrichment (+15% sequence based on 66 reads for filtered dataset G*, Supplementary 
Fig. S9(n)), while lambda run B2 showed a nominal gain in read count (2.1%) but slight depletion (1.3%) of target 
sequence. Other runs saw net reductions in target sequence as great as 24.4% for lambda run E1 and 57.8% for 
filtered rDNA dataset F* (Supplementary Fig. S9(h,l), respectively).

To help understand these results, Supplementary Section S7 derives a model predicting the likely best-case 
performance of RUBRIC-style real-time selection for different libraries and computing configurations. In short, 
because selection only rejects non-target reads, absolute target enrichment is only realized by increasing the total 
throughput of (even) RUBRIC reads vs. (odd) control reads. Equation 6 in the supplement expresses the maxi-
mum absolute enrichment (and throughput enhancement) ratio

=
+ +

+ +
N
N

f t f t f t

f t f t f t
_ _

_
sel t t seq bg bg seq ns ns

t t seq bg skip ns ns0

as a function of read fractions (f) for target (t), background/non-target (bg), and non-sequence (ns) reads and 
the characteristic times required to sequence target reads (tt_seq) and background reads without selection (tbg_seq), 
skip background reads with selection (tskip), and pass non-sequence reads independent of selection (tns). As the 
formula indicates, absolute enrichment is purely a consequence of the time saved by skipping versus sequenc-
ing background reads, scaled by their relative prevalence. Furthermore, low pore occupancy (large fnstns), as in 
the experiments described here (Table 2 and Supplementary Table S1), significantly diminishes the benefits of 
selection. Discrepancies between the empirically observed throughput and absolute enrichment ratios in Table 2 
mainly reflect inefficiencies and imperfections in the RUBRIC selection process.

Figure 4.  Read length histograms for RUBRIC selection experiments illustrating the distribution of different 
read types (target, non-target, unmapped) and their fate as a function of RUBRIC selection applied to even 
numbered pores. Here, reads excluded by the selection process (i.e. not receiving an affirmative sequence 
decision) include skipped, out-of-threshold, and undecided reads, while reads not mapped to target include 
those mapped to background/non-target sequence as well as unmappable reads. (a) Lambda DNA experiment 
B2 showing selection for the middle (nominally ~17 kb) fragment. (b) Example use case dataset F* showing 
selection for Cas9-excised rDNA from E. coli gDNA. (c,d) Example use case dataset G* showing selection of 
1% E. coli gDNA from a background of 99% human gDNA. Supplementary Fig. S10 provides more detailed 
distributions of all read types and categories.
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Beyond absolute enrichment, relative enrichment (Table 2) also provides a practical indication of how deplet-
ing non-target reads improves the final sequence pool. Computed as the ratio of sequence decision target reads 
per non-target read divided by the ratio of odd target reads per non-target read, relative enrichment ranges from 
~130x to ~330x for mainline lambda experiments. This metric underscores the idea that sequence decisions yield 
such highly purified target-mapping sequence that in most use cases, significant time savings can be realized by 
analyzing only these reads.

Example use cases.  Figure 4(b) and Supplementary Figs S9(l) and S10(l) show the result of RUBRIC selec-
tion applied to Cas9-cut E. coli gDNA (dataset F*). The target-mapping peak associated with cut rDNA fragments 
is particularly prominent because 1) E. coli has seven copies of the rDNA locus and 2) the AMPure XP beads 
used in the 1D2 library prep provide some positive size selection in the relevant 4–5 kb range. While RUBRIC 
rDNA-mapping reads were reduced 54% versus control, only 3.2% of mappable sequence decision reads mapped 
to background gDNA versus 89.3% in the control case, yielding relative enrichment of ~290x. Table 2 reveals 
suboptimal threshold settings for this run, which realized high specificity but low sensitivity with 38% of the rela-
tively rare target reads falling out-of-threshold. Despite overly aggressive threshold filtering, skip/sequence deci-
sions performed well and had the lowest average decision time (0.23 sec) of any experiment here (Supplementary 
Fig. S7 and Table S1), likely due to the shorter rDNA target reference and low read rates (Table 2) attributable to 
the relatively dilute library (Table 1).

Figure 4(c,d) and Supplementary Figs S9(n) and S10(o–p) show the result of E. coli selection in the mixed 
human/E. coli experiment (dataset G*). Despite LAST-aligning the RUBRIC evaluation window to the entire 
4.6 Mb E. coli genome for selection, decision times still averaged only 0.91 sec (Supplementary Fig. S7 and 
Table S1). Significantly for this application, aligner stringency was reduced to maximize the number of rare bacte-
rial reads that would be captured, while the evaluation window was doubled to provide additional discrimination 
between human and bacterial sequence. Consequently, while more sequence decision reads mapped to target 
(66 vs. 63 control), 42.1% of sequence decision fast5s did not map to target. Moreover, of 84 total even target 
reads, two were lost to the threshold filter and 17 to skip decisions, as indicated by the comparatively low deci-
sion sensitivity, precision, and accuracy for this run. Specificity, however, was comparable to the best seen here, 
reflecting the comparatively large number of correctly skipped non-target reads. Threshold settings for run G also 
performed better overall than for any other experiment. Beyond providing nominal absolute target enrichment, 
the run achieved ~290x improvement in sequence decision target:non-target ratio due to background depletion 
of the original 1:99 library.

Discussion
In this article, we have introduced RUBRIC, a new adaptation of real-time selective sequencing for the Oxford 
MinION. Unlike the earlier pattern-matching approach33, RUBRIC operates in sequence-space, making it pos-
sible to leverage the speed, flexibility, and scalability of bioinformatic tools like LAST for selection. Significantly, 
RUBRIC pre-screening features seek to admit only informative and timely reads to the decision process, reducing 
computational requirements and enabling real-time basecalling, alignment, and selection of MinION reads with-
out specialized, high-performance computing platforms. While real-time selective sequencing generally provides 
a means to enrich rare target sequence vs. background without target-specific reagents, primers, or baits, working 
in sequence-space simplifies the process of choosing, optimizing, and modifying RUBRIC selection targets, all of 
which can be done on-the-fly based on conventional nucleic acid reference sequences.

We have characterized RUBRIC operation through a series of lambda DNA digest experiments, obtaining 
limited absolute enrichment of target reads (<2%) but achieving very effective background depletion yielding as 
much as 330x relative enrichment versus control. The high degree of customization offered by RUBRIC (choice 
of basecaller/aligner, ratio of RUBRIC to control pores, threshold filter settings, queue size, queue timeout, evalu-
ation window size/offset, aligner settings, etc.) makes it readily adaptable to different sample types, libraries, and 
computing configurations. Preliminary demonstration experiments have applied RUBRIC to select for CRISPR/
Cas9-excised rDNA against a background of E. coli gDNA and to select for 1% E. coli gDNA against a back-
ground of 99% human DNA, achieving absolute target sequence enrichment of 15% in the latter case. To better 
understand these seemingly modest outcomes, we have proposed a model estimating the likely upper bounds 
on real-time selection performance and have found our results to be largely consistent with its predictions. This 
analysis suggests that the limited target enrichment we have seen to date is less a consequence of the speed or 
fidelity of our method than the relatively high rate of MinION pore vacancy, which critically limits the gains that 
can be realized by real-time selection.

Future work will focus on optimizing RUBRIC performance and applying the method to clinically and diag-
nostically relevant sample types (e.g., host/pathogen mixtures), where selection can provide the greatest benefits. 
In such applications, accumulating RUBRIC sequence decision reads could itself provide a rapid, presumptive 
diagnostic result, given sufficient specificity. These reads could also be used to prioritize which fast5s should 
receive concurrent full strand basecalling and analysis during sequencing, potentially shortening time to identifi-
cation. With these goals in mind, we will seek to improve our library preparations to increase pore occupancy and 
DNA fragment length, both of which should substantially improve RUBRIC performance based on our model 
predictions. To avoid the pitfalls of retrospectively setting the RUBRIC threshold filter, we plan to automate this 
process, perhaps using real-time RUBRIC decision and mapping results to iteratively adjust the filter throughout 
each run. We also expect to migrate RUBRIC to the latest release of the Read Until developer API (v2), adapt the 
method for raw data or GPU basecalling (e.g., with ONT’s Scrappie or Guppy callers, respectively), and explore 
its application to MinION direct RNA sequencing.
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Data Availability
RUBRIC logfiles and associated metadata are publicly available at https://doi.org/10.25739/71ne-xy91, while all 
MinION-produced fast5 sequence files are available at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA491460.

Code Availability
The RUBRIC code and Nanonet basecaller are publicly available at https://github.com/harrisonedwards/RUBRIC. 
Please check the associated Github Issues page and post any problems or questions there before contacting the 
authors directly. The Read Until v1 API needed to run RUBRIC can be obtained directly from ONT through their 
Developer License Agreement.
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