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To quantitatively measure the beta diversities between microbiomes, Microbiome
Search Engine (MSE) (1) calculates phylogeny similarity using operational taxonomy

unit (OTU) profiles; for both query and database samples, all 16S rRNA gene sequences
are mapped to the Greengenes database (version 13-8) (2) for reference-based OTU
picking with a 97% cutoff. Thus, in MSE, the comparison between query and database
samples is approximately at the species level (3), although the actual taxonomic
resolution varies according to taxon, due to differences in the evolutionary rates of the
16S rRNAs. Moreover, in MSE, both the relative abundance (with 16S rRNA gene copy
number normalization [4]) and the phylogenetic structures of OTUs are utilized for
similarity calculation (as in UniFrac [5, 6]), yet the speed is optimized by nonrecursive
computing to enable real-time responses (7).

By comparing the query sample (i.e., dust from university dormitories) provided by
Sun et al. (8) and the MSE top-hit samples, which are from mosquito tissues, we found
that although abundant sequences of the two (query and the top-hit) samples are
distributed among different OTUs (species) within the Pseudomonas genus, they are still
very close in the common OTU-based phylogenetic tree (extracted from the Green-
genes tree) (Fig. 1a), resulting in a high similarity of 0.916. To test whether this match
is significant, we ranked this value in pairwise similarity calculation among all micro-
biomes (n � 177,022) in MSE [in total, (n · n – 1)/2 � 15,668,305,731 times). The
resulting P value of the permutation test is 0.0009, suggesting a highly significant
match. This might have revealed potential interaction or transmission between mos-
quitos and dust, as these mosquitos were collected from residential properties and
buildings (samples for generating 16S rRNA amplicon libraries were prepared by
grinding one insect or a pool of individual insects [9]) (Table 1), or it might have
highlighted communities that are distinct yet still dominated by microbes that are
similar to one another when the overall picture of the bacterial tree is considered.

To test whether microbiomes from similar environments are more similar to each
other than those from distinct environments, we next searched the query sample
(which is dust collected inside a building) against all “building” samples in the reference
database of MSE (a subset that includes 11,248 samples that were labeled as “building”
from 35 studies). The similarities between the query and each of the top 10 hits (10–13)
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(Table 1) against the building reference samples are significantly lower than those
between the query and each of the top 10 hits against the entire database (Fig. 1b) (t
test P value � 2.75E– 08). Findings from principal-component analysis (PCoA) support
this conclusion, because the query sample is closer to the mosquito samples (i.e., to hits
from the entire database) than to the building sample hits (i.e., hits from the building
database) (Fig. 1c). These results suggest that microbiomes from similar environments
can indeed be more different from each other than from certain samples from other
environments that would intuitively be considered distinct.

In our current MSE implementation (1), the microbiome novelty score (MNS) is
calculated based on the top hits against the whole reference database in MSE, rather
than against only a subset of the reference microbiomes or those from a specific
environment. We are grateful to Sun et al.’s suggestion of allowing the choice of
reference databases when using MSE. In the upcoming release of MSE (http://mse.ac
.cn), we plan to allow the selection of a specific environment or ecosystem as the
reference database to search against, although we caution strongly that such restricted
searches may lead to incorrect interpretation of results when the databases are not
comprehensive.

Recently, amplicon sequence variant (ASV)-based approaches have been developed
to improve the resolution of classifying 16S rRNA genes (14–16), but they require a

FIG 1 Comparison between the query microbiome (dorm dust) and the top hits reported by MSE-based searches. (a) Distribution of OTUs in the common
phylogeny tree between the query and the top hit from the full MSE reference database. Those abundant OTUs from the Pseudomonas genus are marked in
the red box, and the shared subbranches of the query and the hits are indicated in blue. (b) The similarities between the query sample and each of the top
10 hits against the building reference samples are significantly lower than those between the query and each of the 10 hits against the entire database, as
suggested by both t test (b) and PCoA (c). PC1 and PC2, principal components 1 and 2, respectively.
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unified sequencing platform and identical gene amplicon regions among the data sets.
At present, the majority of historical microbiome samples were produced via a variety
of platforms and amplicon regions; e.g., the V1-V3 and V3-V5 regions of 16S rRNA gene
were sequenced via Roche 454 in the Human Microbiome Project (17), while the V4
region was sequenced via Illumina HiSeq and MiSeq in the Earth Microbiome Project
(18). This reality limits the prospect of adopting the ASV scheme in MSE for searching
against the current 16S rRNA-based microbiome data space. On the other hand, with
the rapid accumulation of shotgun metagenomic data sets, we expect MSE to accom-
modate such data sets and eventually allow microbiome searches at the strain level, as
Sun et al. have suggested.
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TABLE 1 Details for the top 10 hits for the query microbiome, dorm dust

MSE database ID of top 10 hit Habitat Similarity Sampling location

Sampling
date
(yr/mo/day) Reference

IDs from entire MSE database
S_10815.C1OtvW34TOR2012 Mosquito tissue 0.91586 Toronto, Canada 2012/8/21 9
S_10815.NOjW34MSL2012 Mosquito tissue 0.91350 Toronto, Canada 2012/7/24 9
S_10815.3A081OjW32LAM2012 Mosquito tissue 0.91291 Toronto, Canada 2012/8/7 9
S_10815.Can2CxW32MSL2012 Mosquito tissue 0.91283 Toronto, Canada 2012/8/22 9
S_10815.O3AvW34TOR2012 Mosquito tissue 0.91260 Toronto, Canada 2012/6/12 9
S_10815.Y12A2AnpW31PEE2012 Mosquito tissue 0.91183 Toronto, Canada 2012/8/1 9
S_10815.C1AvW30TOR2012 Mosquito tissue 0.91134 Toronto, Canada 2012/7/24 9
S_10815.Can10AvW32MSL2012 Mosquito tissue 0.91097 Toronto, Canada 2012/8/15 9
S_10815.M1AvW32WEC2012 Mosquito tissue 0.91095 Toronto, Canada 2012/7/31 9
S_10815.B4AvW25TOR2013 Mosquito tissue 0.91088 Toronto, Canada 2013/6/18 9

IDs from “Building” subset of reference
microbiomes in MSE database

S_10172.815 Room surface dust 0.90388 Chicago, IL, USA 2017/5/24 10
S_10172.828 Nurse station surface

dust
0.90063 Chicago, IL, USA 2017/5/24 10

S_1772.H23Cb Kitchen cutting board 0.89745 Raleigh-Durham, NC, USA 2013/5/22 11
S_10172.286 Cold tap water 0.89666 Chicago, IL, USA 2017/5/24 10
S_10172.830 Nurse station surface

dust
0.89300 Chicago, IL, USA 2017/5/24 10

S_SRR5574403 Kitchen dust 0.89109 Oakland, CA, USA 2017/5/17 12
S_10423.34E7LN0ZRJUQB Carpet dust 0.88931 Toronto, Canada 2004/7/14 13
S_10172.10456 Cold tap water 0.88743 Chicago, IL, USA 2017/5/24 10
S_10172.8331 Glove 0.88592 Chicago, IL, USA 2017/5/24 10
S_10172.291 Room surface dust 0.88534 Chicago, IL, USA 2017/5/24 10
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