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Transposon Mutagenesis in Chlamydia trachomatis Identifies
CT339 as a ComEC Homolog Important for DNA Uptake and
Lateral Gene Transfer

Scott D. LaBrie,® Zoé E. Dimond,? Kelly S. Harrison,? Srishti Baid,® Jason Wickstrum,® Robert J. Suchland,® P. Scott Hefty2

2Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
bDepartment of Medicine, University of Washington—Seattle, Seattle, Washington, USA

ABSTRACT Transposon mutagenesis is a widely applied and powerful genetic tool for
the discovery of genes associated with selected phenotypes. Chlamydia trachomatis is a
clinically significant, obligate intracellular bacterium for which many conventional ge-
netic tools and capabilities have been developed only recently. This report describes the
successful development and application of a Himar transposon mutagenesis system for
generating single-insertion mutant clones of C. trachomatis. This system was used to
generate a pool of 105 transposon mutant clones that included insertions in genes en-
coding flavin adenine dinucleotide (FAD)-dependent monooxygenase (C. trachomatis 148
[ct148]), deubiquitinase (ct868), and competence-associated (ct339) proteins. A subset of
Tn mutant clones was evaluated for growth differences under cell culture condi-
tions, revealing that most phenocopied the parental strain; however, some
strains displayed subtle and yet significant differences in infectious progeny pro-
duction and inclusion sizes. Bacterial burden studies in mice also supported the
idea that a FAD-dependent monooxygenase (ct748) and a deubiquitinase (ct868)
were important for these infections. The ct339 gene encodes a hypothetical pro-
tein with limited sequence similarity to the DNA-uptake protein ComEC. A trans-
poson insertion in ct339 rendered the mutant incapable of DNA acquisition dur-
ing recombination experiments. This observation, along with in situ structural
analysis, supports the idea that this protein is playing a role in the fundamental
process of lateral gene transfer similar to that of ComEC. In all, the development
of the Himar transposon system for Chlamydia provides an effective genetic tool
for further discovery of genes that are important for basic biology and patho-
genesis aspects.

IMPORTANCE Chlamydia trachomatis infections have an immense impact on public

health; however, understanding the basic biology and pathogenesis of this organism Citation LaBrie SD, Dimond ZE, Harrison KS,
has been stalled by the limited repertoire of genetic tools. This report describes the Baid S, Wickstrum J, Suchland RJ, Hefty PS.

ful ad . f . t | that has b lacki in Chl dia stud 2019. Transposon mutagenesis in Chlamydia
successful adaptation of an important tool that has been lacking in Chlamydia stud- rrachomatis identifies CT339 s a ComEC
ies: transposon mutagenesis. This advance enabled the generation of 105 insertional homolog important for DNA uptake and lateral
mutants, demonstrating that numerous gene products are not essential for in vitro gene transfer. mBio 10:01343-19. httpsy//doi

. . . . .0rg/10.1128/mBio.01343-19.
growth. Mammalian infections using these mutants revealed that several gene prod- - o o
. . . i . X . . Editor Joanne Engel, University of California,

ucts are important for infections in vivo. Moreover, this tool enabled the investiga- -,
tion and discovery of a gene critical for lateral gene transfer; a process fundamental Copyright © 2019 LaBrie et al. This is an open-
to the evolution of bacteria and likely for Chlamydia as well. The development of access article distributed under the terms of

the Creative Commons Attribution 4.0

transposon mutagenesis for Chlamydia has broad impact for the field and for the | o
nternational license.

discovery of genes associated with selected phenotypes, providing an additional av- aliess oS sereEnas e Saet iy
enue for the discovery of molecular mechanisms used for pathogenesis and for a pshefty@ku.edu.

more thorough understanding of this important pathogen. Received 24 May 2019
Accepted 28 June 2019
Published 6 August 2019

KEYWORDS Chlamydia trachomatis, genetic competence, mutagenesis, transposons

July/August 2019 Volume 10 Issue 4 e01343-19 mBio® mbio.asm.org 1


https://doi.org/10.1128/mBio.01343-19
https://doi.org/10.1128/mBio.01343-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:pshefty@ku.edu
https://mbio.asm.org

LaBrie et al.

ransposon (Tn) mutagenesis is among the more effective strategies for discovering

specific genetic components associated with a given phenotype. This genetic tool
has been successfully applied for a better understanding of many basic biological
processes as well as for the discovery of gene products associated with host infection
and pathogenesis in diverse bacterial species (1, 2). Over a decade of optimization of
naturally occurring transposon systems such as Sleeping Beauty and Tc1/mariner has
resulted in a repertoire of successful genetic insertion systems.

One of the more widely applied transposons is the hyperactive form of the Himar1
mariner system (3). This variant has resulted in robust transposition efficiencies and has
revolutionized the study of genotype-phenotype correlation (4). The Himar system has
many benefits that have allowed applications in phylogenetically diverse bacteria
(5-11), most importantly, the simplified “cut-and-paste” mechanism that requires a
single transposase for recognition of inverted repeat sequences on flanking ends of
DNA. This allows direct transposition of DNA to DNA, without the requirement of
additional cofactors. Additionally, the Himar hyperactive transposase has minimal
target DNA specificity, inserting between T/A nucleobases (7, 12) and allowing relatively
nonspecific insertion across an entire genome (13-15). These advantages have proven
beneficial for the study of pathogenesis in a diverse set of bacteria, including obligate
intracellular organisms such as Coxiella and Ehrlichia. Research in Coxiella has demon-
strated the use of Himar1 Tn mutagenesis to identify genes critical for cellular growth
and division in vitro (9, 10), whereas Tn studies in Ehrlichia revealed genes important for
mammalian infection (8). Thus far, a transposon mutagenesis system has not been
comprehensively described for the globally prevalent and obligate Chlamydia intracel-
lular pathogens.

Chlamydia trachomatis is the most commonly reported cause of sexually transmitted
bacterial infection in the United States and worldwide. C. trachomatis infections result
in a range of health issues that include pelvic inflammatory disease, sterility, blindness,
and pneumonia (16, 17). C. trachomatis contains a single, circular chromosome of
~1.04 Mb and a plasmid of ~7,500 bp (18, 19). Lateral gene transfer has likely played
a critical factor in shaping chlamydial genomes. Moreover, lateral gene transfer occurs
readily between strains, and genetic exchange between C. trachomatis genomes allows
the interchange of polymorphic loci, such as the immunodominant major outer mem-
brane porin gene (ompA), often resulting in enhanced tissue tropism and fitness against
host defenses (20-26). Despite this key role, the components that participate in and the
process involved in lateral gene transfer and DNA uptake are virtually unknown in
Chlamydia. Similarly, many aspects of basic C. trachomatis biology and pathogenesis are
poorly understood. This has been largely due to the limitations of the genetic tools that
have been available for Chlamydia.

There has been a recent surge of introductions of molecular tools and methods
developed for genetic manipulation in Chlamydia that has been enabled by the
discovery of a transformation method and effective selectable antibiotic markers
(27-32). TargetTron (29) and allele-specific recombination (33, 34) are two reverse
genetic tools that have been developed for targeted gene disruption and have enor-
mous potential for functional and phenotypic studies for candidate genes. However,
only chemical mutagenesis has been developed for random and unbiased strategies
(35-37). This method has been effectively employed to introduce multiple-base muta-
tions, including nonsense mutations, allowing an association of gene products with
noteworthy alterations to physiological pathways (36). While chemical mutagenesis is
effective, it has certain limitations, including those represented by the acquisition of
multiple mutations and the challenge of correlating a phenotype to a specific genetic
disruption. Furthermore, identifying the mutations requires whole-genome sequencing
(WGS) and revertant or compensatory mutations may be acquired during continued
passaging. Thus, the development of a random single-insertion system, such as a
Himar1 transposon containing a selectable marker, allows straightforward generation
of stable, single-site mutations and simplified identification of insertion sites.

Here, the development and application of a single-plasmid Himar1 Tn system for C.
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trachomatis are described. An initial subset of Tn insertion mutant strains was evaluated
for potentially contrasting in vitro (tissue culture) and in vivo (mouse genital tract
infection model) growth features. One of the transposon insertions occurred in a gene
(ct339) that exhibits sequence similarity to that encoding an inner membrane DNA
uptake protein termed ComEC. This mutant was investigated for the ability to perform
lateral gene transfer and transformation-based DNA uptake.

RESULTS

Generation and genomic characterization of Tn insertion mutant clones using
PCMA. A plasmid termed pCMA (plasmid Chlamydia Mariner) (see Fig. S1 in the
supplemental material) was designed to encode the widely utilized C9 Himarl trans-
posase (3). To reduce acquisition of deleterious mutations associated with plasmid
propagation in Eschericha coli, the chlamydial ct559 promoter and ribosomal binding
site were cloned upstream of the C9 transposase. The ct559 promoter has been
characterized previously (38) and exhibited transcriptional activity in Chlamydia but
limited activity in E. coli. The bla gene was cloned with flanking inverted repeats for
recognition and transposition by the Himar1 transposase. Finally, the plasmid contains
only the colET origin of replication for plasmid propagation in E. coli, which is non-
functional in Chlamydia, resulting in a nonreplicative (suicide) vector upon transforma-
tion into Chlamydia.

The pCMA plasmid was used in a C. trachomatis transformation procedure with
B-lactams for selection (39). This procedure typically requires three passages (i.e.,
infection-growth-lysis-reinfection) under conditions of antibiotic selection to ensure
that the resulting organisms encoding B-lactamase (bla) are indeed able to form
infectious progeny in the presence of B-lactams. In order to decrease the potential for
normally growing mutants to outcompete fitness-compromised mutant clones in a
mixed infection, as well as to evaluate transformation and transposon efficiency,
transformation reactions (DNA and elementary bodies [EBs]) were mixed and incubated
before being split into individual wells of a 12-well plate. Each well was passaged twice
with selection, and after the second passage, cultures were allowed to continue
growing, with daily monitoring of C. trachomatis growth. Within 2 days of cultivation,
C. trachomatis growth was observed in approximately 4 of the 12 wells, although
certain samples took longer than 2 days. A total of 23 transformations were performed
with 105 resistant growth cultures and a range of 0 to 9 wells with resistant growth for
each transformation. These observations suggest that the transformation efficiency in
C. trachomatis is very low and/or that the genome may be less tolerant of transposon
insertions. This efficiency was mirrored in five independent transformations performed
with pGFP::SW2 which resulted in an average of 4.8 wells (range, 4 to 8) with resistant
growth (data not shown), supporting the idea that transformation efficiency likely
represents the limitation rather than transposon expression or function.

To identify the site(s) of transposon insertion and other potential mutations, whole-
genome sequencing was applied to the 105 mutant strains as well as to the parental
L2 strain (LGV 434/Bu Hefty; CP019386.1). All mutant strains contained a single trans-
poson insertion in an expected insertion site (T/A). The absence of mixed Tn insertion
strains supports the idea that clonal isolates were obtained following the distribution
of transformation sample into individual 12 wells and multiple passaging with selec-
tion.

In total, 81 unique Tn insertion mutants were generated within coding regions
(Fig. 1) (Table 1), with seven genes (ct054, ct153, ct170, ct333, ct392, ct414, and ct550)
incurring transposon insertions in multiple sites of the coding region. While all of the
studies were performed using C. trachomatis LGV 434/Bu, C. trachomatis serovar D gene
nomenclature is utilized due to recognition and field familiarity. The gene ct333 (uvrA)
had 5 Tn insertions throughout the relatively large coding region (5,361 bp). Predom-
inantly, Tn insertions resulted in the truncation of a protein-coding region with the
addition of a short protein extension provided by the Tn insertion, depending on the
insertion site and reading frame. Most of these insertions were found to have occurred
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FIG 1 Map of transposon insertions in C. trachomatis chromosome and plasmid. (A) Sites of transposon
insertions within coding regions (red) and noncoding regions (blue) throughout the C. trachomatis L2
434/Bu chromosome. (B) Sites of transposon insertions within the coding regions (red) and noncoding
regions (blue) throughout the C. trachomatis L2 434/Bu plasmid. ori, origin of replication.
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within the first 60% of the coding region, providing higher confidence that the Tn
insertion is disruptive to the normal protein function. Four of the insertions (ct075:Tn,
ct054::Tn, ct088:Tn, and ct107:Tn; Table 1) extended the normal protein sequence,
which may have little effect on protein function. Sixteen of the Tn insertions occurred
in hypothetical proteins, while the rest occurred in a variety of genes with contributions
to diverse biological functions. For example, five Tn insertions (ct298, ct333, ct470, ct586,
and ct575) were involved in DNA repair mechanisms, four (ct054, ct248, ct489, and
ct592) were were involved in central metabolism, and four (ct404, ct540, ct829, and
ct830) encoded methyl modification enzymes. Two polymorphic membrane protein-
coding regions (ct871 [pmpG] and ct414 [pmpC]) incurred insertions, as did both
deubiquitinases (ct867 [cdu2] and ct868 [cduTl). Of note, 16 of the Tn insertions
occurred in genes that also incurred nonsense mutations following chemical mutagen-
esis (36), for a total of 54 new gene disruptions generated.

Twenty-three mutant strains had Tn insertions within an intergenic region (Table 2).
Many of these insertions occurred between genes with divergent coding directions as
well as between those with shared coding directions, both of which could result in
disruptions to gene expression. Insertions upstream of eight (ct690, ct792, ct793, ct182,
ct328, ct343, ct387, and ct472) of the diverging genes occurred within 80 nucleotides
(nt) of start codons. On the basis of the determinations of transcriptional start sites
located on average 50 nt upstream of start codons (40) and promoters covering at least
an additional 50 nt, these Tn insertions likely disrupt transcription initiation and gene
expression. For insertions between genes with shared coding directions, three (ct343,
ct373, and ct423) have transcriptional start sites reported upstream of or near (within
40 nt) the insertion potentially disrupting gene expression. Three Tn insertions also
occurred between genes with convergent coding directions. While the possibility of
disruption of gene expression (effecting termination or noncoding RNAs [ncRNAs])
cannot be ruled out, it is less likely that these flanking genes are affected by these Tn
insertions.

Tn insertions also occurred within the chlamydial plasmid. Four (pgp1, pgp2, pgp4,
and pgp5) of the coding regions incurred an insertion, although the Tn insertion in pgp1
was at the second to last codon and may have little effect on the protein generated.
Two Tn insertions were also found in the intergenic region of the convergent pgp7 and
pbgp8 genes. Two prior studies have investigated the requirement of individual genes
for plasmid maintenance (41, 42). Both studies supported the idea that products of the
pgp1, pgp4, and pgp5 genes are not required; however, the presence of almost all of the
pgp2 coding region was found to be required for plasmid maintenance. As such, it was
unexpected for a Tn insertion in pgp2 which results in a severely truncated coding
region to be identified. This may indicate that there is a product (e.g., ncRNA) within the
coding region, instead of the expected Pgp2 protein product, that is key for plasmid
replication. In support of this, the pgp2:Tn mutant strain was grown without antibiotics
for two passages and the plasmid was found to still be present by PCR analysis (data
not shown).

In vitro growth characteristics of transposon mutants. While most of the trans-
poson mutant clones did not exhibit noticeably slow growth or poor production of
infectious progeny during initial selection and tissue culture propagation, more-subtle
growth rates or morphologic differences may be associated with certain mutants. To
discover potential defects in infection, growth, or developmental cycle processes
associated with transposon mutant clones, temporal analyses of infectious progeny
production and bacterial morphologies and quantitative assessment of inclusion sizes
were performed for a subset of 16 Tn mutants (Fig. 2; see also Fig. 3 and Fig. S2 and S3).
In addition to the parental strain, a clone with a Tn insertion between converging genes
(ct383/4:Tn) was also evaluated.

Analyses of the production levels of infectious progeny (EB) of parental (wild-type
[WTI]) and individual Tn mutant clones were performed on lysates in 6-h increments
between 18 and 42 h postinfection (hpi) (Fig. 2). Progeny production levels reflect
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FIG 2 Progeny production of Tn mutants from 18 to 42 hpi. L929 cells were infected with the WT
(parental) strain or a Tn insertion mutant clone (gene with Tn insertion is indicated) in triplicate.
Quantities of inclusion-forming units (IFU) were determined from lysates at 18, 24, 30, 36, and 42 hpi.
Mutants showed progeny production patterns similar to those of the WT parental L2 clone (A), those with
significantly decreased progeny production at multiple time points (B), or those with significantly
enhanced progeny production at one or more time points (C). Data are shown as means and SD of results
from triplicate wells. Statistical significance was calculated using Student’s two-tailed unpaired t test with
a P value of <0.05. Progeny production was significantly reduced at 24, 30, and 42 hpi (indicated with
a superscript “a”) or at 24, 30, 36, and 42 hpi (indicated with a superscript “b”). Progeny production was
significantly increased at 30 and 42 hpi (indicated with a superscript “c”) or 24 and 30 hpi (indicated with
a superscript “d”) or 24, 30, and 42 hpi (indicated with a superscript “e”).
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FIG 3 Inclusion sizes of Tn mutant strains. Inclusion size was measured at 24, 36, and 42 h postinfection for each Tn mutant
and parental strain (WT). Mutant strains are displayed as stacked bars showing inclusions larger than the WT inclusions
(checked), equal to the WT inclusions in size (solid), or smaller than the WT inclusions (striped). Triplicate samples were
evaluated, with 250 to 1,000 inclusion areas measured per sample. **, P < 0.005; *, P < 0.05 (unpaired Student’s t test).

bacterial replication as well as ability to convert into the infectious EB form. Defects in
either of these can be detected with this approach, enabling a more focused analysis
of candidate mutant strains. Three distinct growth phenotypes were observed among
Tn mutants; normal, decreased, and increased progeny production relative to the
parent strain. Almost half (7 of 16) of the Tn mutants displayed EB production levels and
timing similar to those seen with the WT, as did the clone with a Tn insertion between
two converging genes (ct383/4:Tn) (Fig. 2A). However, four mutants (ct036:Tn, ct350:
Tn, ct590:Tn, and ct732:Tn) displayed significant deficiencies in progeny production at
two or more time points (Fig. 2B). At 24 hpi, strain ct590:Tn (hypothetical) displayed
progeny production levels that were almost 2 log-fold lower whereas ct036:Tn and
ct732:Tn (ribH) mutants displayed progeny production levels that were about 1 log-fold
lower. An interesting observation was the enhanced progeny production of four
mutant clones (ct7153:Tn, ct148:Tn, ct339:Tn, and ct550:Tn), which was most notable at
24 hpi. Clones ct153:Tn and ct148::Tn maintained this enhanced level at 30 hpi, with all
of the mutant clones matching the parental clone at 36 and 42 hpi (Fig. 2C). Of the Tn
mutants evaluated, ct696:Tn displayed the most contrasting and slowest growth
phenotype, with propagation requiring up to 5 days before passage was successful and
with undiluted cell lysate and levels of inclusion-forming units (IFU) below 10/ml (data
not shown). Overall, progeny production analysis revealed that defects were observed
for many of the Tn insertion clones, albeit most of the data were within a log-fold
difference range.

Defects in the temporal expansion of an inclusion could suggest that a gene product
plays a role in many aspects of chlamydial growth, and so, the area of inclusions was
calculated at 24, 36, and 42 hpi. The data shown in Fig. 3 highlight that the inclusions
for 5 Tn mutants (ct0715:Tn, ct383/4:Tn, ct392:Tn, ct404:Tn, and ct868:Tn) were signif-
icantly smaller than that for the parental strain at 24 hpi. Only mutant ct075:Tn
maintained smaller inclusion sizes at 36 and 42 hpi, with ct392:Tn, ct404:Tn, and
ct590:Tn displaying smaller inclusions at 42 hpi. Two Tn mutants (ct339:Tn and
ct550:Tn) had inclusions larger than the parental inclusions at 24 hpi, with the ct550:Tn
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inclusions maintaining a larger size than the parental inclusions at 36 hpi. Interestingly,
ct550:Tn was the only mutant to display a correlation between progeny production and
inclusion size (Fig. 2C; see also Fig. 3), both of which showed increases relative to the
parental data.

To discover if any abnormal morphologic phenotypes (bacterial or inclusion) are
associated with this subset of transposon mutant clones, confocal microscopy was
applied to immunostained parental and transposon mutants at 24, 36, and 42 hpi
(Fig. S2). Almost all of the Tn mutants displayed inclusions that were localized near the
nucleus as well as general shapes of the inclusion and reticulate bodies (RBs) that were
similar to those seen with the parental strain. Notable exceptions included mutant
ct048:Tn, which contained larger but fewer RBs within the inclusion at 42 hpi. Similarly
to the growth assessments, the ct696:Tn inclusions and bacterial morphologies were
among those that were the most highly contrasting. The inclusions were ill defined, and
the few reticulate bodies present were dispersed in the cytoplasm (Fig. S3).

In all, cell culture growth and phenotype assessments revealed that many Tn mutant
strains displayed defects that represented significant differences from the parental
strain. However, these defects were relatively subtle, with peak EB titers fluctuating by
approximately with 1 log fold, and inclusion sizes were often within 10% to 15% of sizes
seen with the parental strain, although the inclusions seen with the ct075:Tn mutant
were over 30% smaller than the parental inclusions. The extreme exception to these
trends was mutant ct696:Tn, with gross defects in EB production and in bacterial and
inclusion morphologies. Moreover, there was little correlation between EB production
titers and inclusion sizes, with the exception of the hypothetical ct550 encoding gene,
which displayed more and larger inclusions.

In vivo assessment of infectivity. While the majority of the Tn mutants analyzed
showed minimal morphologic or growth differences under in vitro cell culture condi-
tions, some gene products may be of greater significance under the more physiolog-
ically relevant, diverse, and challenging conditions associated with mammalian infec-
tion. In order to assess this, a mouse model of C. trachomatis infection was
implemented. Unfortunately, C. trachomatis L2 administered vaginally in mouse infec-
tions is readily cleared, rarely and unreliably ascends to the upper genital tract, and is
not associated with the development of pathology (43, 44). As such, the transcervical
model was used to deliver infectious doses directly into uterine horns of the upper
genital tract (45). Previous experiments have shown that transcervical C. trachomatis
infection of uterine horns typically peaked between 3 and 6 days postinfection and that
the bacteria cleared (nearly 3 log-fold) after ~9 days postinfection (45). Therefore, to
discover potential deficiencies in infection and replication in the upper genital tract,
mice were infected with individual Tn mutants and harvested on day 5, within the
period of the peak of C. trachomatis L2 infection.

Twelve Tn mutants that were evaluated for growth and morphology, including
the parental strain and ct383/4:Tn clones, were used to infect mice and assess
bacterial burden (Fig. 4). Most of the Tn mutants displayed infection levels similar
to those seen with the parental C. trachomatis strain; however, two Tn mutant
clones showed statistically significant decreases in levels of detectable organisms in
the uterine horns compared to parental L2 (P < 0.05; Fig. 4). Disruptions in a
FAD-dependent monooxygenase (FDM) (ct748) and the cdul deubiquitinase (ct868)
were followed by a nearly 0.5 log-fold to 1 log-fold decrease in the levels of
detectable organisms compared to the WT. Mutant ct748:Tn showed a striking
deficiency with respect to detectable organisms, with 4 of 10 infected animals
showing infection levels falling 2-log below the median of infection for WT-infected
animals. Interestingly, mutant ct748:Tn displayed a slightly enhanced level of
production of infectious progeny in vitro (Fig. 2C) relative to the parental strain.
Conversely, mutant ct868:Tn showed no decreased growth rates in vitro, suggesting
that cdul is dispensable for optimal growth in cell culture but that the absence of
the corresponding gene product is important for growth in vivo. Importantly, the
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FIG 4 In vivo infections using Tn mutants with a transcervical mouse infection model. Groups of 10
female C57BL/6 mice were infected transcervically with 5 X 10° IFU of either parental (WT) C. trachomatis
or Tn mutants as indicated. Five days postinfection, genital tracts were harvested and DNA was purified
from uterine horns. Bacterial burdens were calculated as levels of Chlamydia genomes relative to host

genomes, and ratios are shown as box-and-whisker scatter plots representing data from 10 mice. *,

P < 0.05 (unpaired Student’s t test).

bacterial burdens seen with ct868:Tn infections were very similar to the levels
previously reported from a study performed with this mutant strain (46), providing
additional confidence in the reproducibility of these observations. While the results
were not statistically significant, two additional mutants exhibited a noticeable
decrease in bacterial burden, namely, mutants ct036:Tn (hypothetical) and ct753:Tn
(membrane attack complex/perforin [MACPF]). Mutant ct036:Tn was among the
clones that displayed lower levels of progeny production whereas mutant ct753:Tn
produced more infectious progeny than the parental clones.

Clearly, further temporal and spatial analyses in mice, detailed molecular and cellular
studies, and genetic complementation are required for a more complete understanding
of the role and function of gene products with demonstrated deficiencies in mice.
However, these comparative in vitro and in vivo observations highlight that certain
gene products may exhibit a more pronounced fitness defect in mice, prompting a
focus on these gene products.

In silico analyses of CT339 support functional identification of CT339 as DNA
uptake protein ComEC. Chlamydia bacteria have been demonstrated to acquire and
integrate DNA within or between certain Chlamydia species (24, 25, 47-49). Given the
expected importance of lateral gene transfer in the evolution and adaptation of
Chlamydia, as well as the paucity of identifiable gene candidates that may play a role
in this fundamental process, the Tn insertion in ct339 was of particular interest for a
more in-depth analysis among the members of the subset of Tn mutants. CT339 shares
similarity with multiple competence-associated protein families and conserved do-
mains, including ComEC (E values ranging from 2.33e—03 to 4.40e—24). In both
Gram-negative and Gram-positive bacteria, ComEC plays a key role as an inner mem-
brane protein, transporting single-stranded DNA (ssDNA) into the cytosol of the
bacterial cell during natural DNA acquisition (50, 51). To further investigate the hy-
pothesis that ct339 encodes a ComEC homolog, in silico analyses were performed.
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ComEC is an integral membrane protein that typically has 9 to 12 transmembrane
helices and a conserved metal-binding motif, HOxx®SGPH (“®” indicates hydrophobic
residues; Fig. S5A) (50). Topology modeling of CT339 using five hydropathy programs
resulted in a range of 8 (SPLIT) to 11 (MEMSAT) predicted transmembrane segments,
which is similar to the proposed 9 to 12 transmembrane regions of ComEC (50). As
previously described for ComEC (50), HMMTOP prediction identified a large N-terminal
loop within CT339 spanning residues 94 to 256 with a potentially stabilizing disulfide
bond formed by C148-C167, as well as the competence domain containing the con-
served metal-binding motif HOxx®SG®PH. For all five hydropathy programs, an extra-
cellular N-terminal domain and intracellular C-terminal domain were predicted, similar
to those of ComEC (50). In contrast to the predicted topology of ComEC, none of the
predictive transmembrane helices for CT339 display an amphipathic character and no
segments are predicted to be buried parallel to the membrane surface (Fig. S5B) (50).
On the basis of these in silico data, a transmembrane topology model was designed
(Fig. S5C) supporting the structural homology between CT339 and ComEC, specifically
within conserved competence domains and the N-terminal loop. Using this model, the
Tn insertion site was identified within the last transmembrane segment, eliminating
G490 through the carboxyl end of the protein, L509. It has been proposed that ComEC
from Bacillus exists as a homodimer within the bacterial membrane and forms a pore
for DNA uptake (50). Consequently, disruption of either the N-terminal loop or the
C-terminal loop, as is observed with ct339:Tn insertion, may prevent proper folding and
formation of this pore, therefore abolishing the ability to acquire DNA.

Requirement of CT339 for DNA uptake via lateral gene transfer. As previously
mentioned, the transposon insertion in ct339 provided an opportunity to experimen-
tally evaluate the importance of this gene product in lateral gene transfer and to
support the in silico prediction of CT339 as a functional homolog to ComEC. Lateral
gene transfer, including the transfer of specific antibiotic resistance genes, has been
demonstrated to occur readily during coinfections with C. trachomatis strains (intras-
pecies) that encode different OmpA serotypes (25, 47). To evaluate the importance of
CT339 in lateral gene transfer, intraspecies coinfections with different parental OmpA
serovar strains (L1 or L2) encoding different antibiotic markers (L1 tet” or L2 bla) under
conditions of dual antibiotic selection were performed (Fig. 5A). Each L2 strain used had
either an intact (ct383/4:Tn bla) or a disrupted (ct339:Tn bla) ct339 gene. The relative
levels of genetic transfer, particularly of the antibiotic marker, of the OmpA serovar
strains were assessed by determining the quantity of progeny generated that exhibited
each parental OmpA serotype (e.g., L1 versus L2).

Intraspecies coinfections and dual antibiotic selection with tetracycline-resistant C.
trachomatis L1 (L1::tetR) and either the transposon control mutant L2 ct383/4:Tn bla or
the proposed ComEC homolog disrupted clone L2 ¢t339::Tn bla were performed (Fig. 5)
(Table 3). When C. trachomatis L1::tet” and L2 ct383/4:Tn bla were used for coinfections,
high levels (>6 X 10> IFUs) and nearly equal amounts of recombinant progeny dis-
playing either parental OmpA (58% L1 and 42% L2) were observed. The relatively equal
frequencies support the idea that DNA uptake and lateral transfer of the tetR gene from
the L1 strain into to L2 genome occurred as efficiently as that of the bla gene from the
L2 strains into the L1 strain. In contrast, when the same L1:tet” parent was used in a
coinfection with L2 ct339:Tn bla, similar levels of L1 OmpA-expressing progeny with
dual resistance were detected (5.17 X 10° IFUs) but nearly 100-fold-lower levels of
progeny displaying L2 OmpA were observed (7 X 103 IFUs) (Table 3). This supports the
idea that DNA uptake and transfer of the bla gene into L1, which has an intact ct339
gene, were as efficient as the previous cross. In contrast, tetR was found to be
incorporated into the L2 genome with the ¢t339:Tn bla mutation at a 2 log-lower level.
While this supports the idea of the importance of CT339 (comEC) in DNA acquisition,
the low level of tetR resistance suggests that the comEC gene product may not be
essential for the process.
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FIG 5 Graphic depiction of intraspecies recombination to evaluate functional role of CT339 in lateral
gene transfer. (A) Parental C. trachomatis with L1 ompA (blue circle, blue tick) encoding tet" (red tick)
crossed with C. trachomatis with L2 ompA (gray circle, gray tick) containing either ct383/4:Tn bla (green
tick) or ct339:Tn bla (green tick) to enable lateral gene transfer of resistance markers and selection of dual
resistance chimeric clones (blue and gray circles). (B) Similar experiment using parental C. trachomatis
with F ompA (yellow circle, yellow tick) encoding tet" (red tick) crossed with C. trachomatis with L2 ompA
(gray circle, gray tick) containing either ct383/4:Tn bla (green tick) or ct339:Tn bla (green tick). Serovar-
specific antibodies revealed the relative distributions of resulting dually resistant chimera organisms
(yellow and gray circles). Quantitative evaluations of resulting chimeras are provided in Table 3. The
resulting mix of L1 (blue) and L2 (gray) or of F (yellow) and L2 (gray) reflects the almost equal amounts
of resulting OmpA serovar seen when the control ct383/4:Tn was used. In contrast, virtually all of the
resulting organisms contained a L1 (blue) or F (yellow) ompA when ct339:Tn was used, indicating that
the tet” gene, near ompA, was unable to be transferred into the L2 ¢t339:Tn mutant (gray). (C)
Recombinants resulting from the experiment represented in panel A containing L1 ompA (blue circle,
blue tick) encoding tet" (red tick) and the ct339:Tn bla (green tick) were crossed with the L2 ct339:Tn bla
mutants. All resulting progeny contained the L1 ompA (blue tick).

An alternative hypothesis to explain the low level of L2 OmpA-positive samples seen
following the L1:tetR and L2 ct339:Tn bla crosses is that, instead of poor uptake of the
tetR gene into L2 ¢t339:Tn bla organisms, a region of DNA that included the L2 ompA
gene and the ct339:Tn bla marker was transferred and integrated into L1 parent
organisms. This would “convert” the L1 to an L2 OmpA serotype. To investigate this
hypothesis, whole-genome sequencing was performed on several individual recombi-
nants from each coinfection (L1:tet™ versus L2 ct339:Tn bla or L2 ct383/4:Tn bla). As

TABLE 3 Frequency of C. trachomatis serotype (OmpA) following coinfection and dual antibiotic selection

mBio’

C. trachomatis genotype C. tractomatis serotype and frequency (%)

L1:tetr X L2 ct383/4:Tn bla LT OmpA; 8.67 (+=0.58) X 10° L2 OmpA; 6.33 (+0.58) X 10° L2 OmpA progeny; 42.2 (=1.99)
L1uztet” X L2 ct339:Tn bla L1 OmpA; 5.17 (+0.43) X 10° L2 OmpA; 7.00 (+=1.00) X 103 L2 OmpA progeny; 1.12 (£0.40)
Futet” X L2 ct383/4:Tn bla F OmpA; 433 (£1.15) X 10° L2 OmpA; 3.33 (+0.58) X 10° L2 OmpA progeny; 44.0 (=6.26)
Futet” X L2 ¢t339:Tn bla F OmpA; 1.33 (£0.61) X 10* L2 OmpA; 533 X 10° (£1.53) L2 OmpA progeny; 0.05 (=0.01)
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FIG 6 Schematic representation of regions and genome compositions of C. trachomatis recombinant clones following lateral gene
transfer with selected Tn mutants. Blue bars represent the regions of the genome from the L1/tet" parent. Gray bars represent regions

from either L2 ct383/4:Tn bla or L2 ct339:Tn bla parent. Percentages of the C. trachomatis L2 genome present are indicated

right).

(A) Progeny genomes from crosses between tetracycline-resistant C. trachomatis L1 and ct383/4:Tn bla. (B) Progeny genomes from
crosses between tetracycline-resistant C. trachomatis L1 and ct339:Tn bla.

indicated in Fig. 6A, Li1:tetr and L2 ct383/4:Tn bla crosses yielded genomes that
predominantly reflected the OmpA serotype (mostly blue for L1 OmpA and mostly gray
for L2 OmpA). Specifically, L1 or L2 OmpA-positive samples had an average of 78% L1
or 84% L2 genomic composition, respectively. In contrast, L2 OmpA-positive samples
generated after a L1:tet” X L2 ¢t339:Tn bla coinfection had minimal L2 genome in the
resulting clones (L2 [gray]; Fig. 6B), with an average genomic L2 composition of 36%,
representing less than half the level observed in L1:tet” X L2 ct383/4:Tn bla crosses.
Matching the levels of antibiotic resistance transfer in ct339 intact samples (L2 ct383/
4:Tn bla), L1 positive OmpA samples showed an average of 80% L1 genomic compo-
sition (blue; Fig. 6B). These data support the hypothesis that DNA regions containing an
L2 ompA gene and the ct339:Tn bla marker were most likely acquired by L1 parent
clones through lateral gene transfer instead of tetR acquisition of a L2 ompA ct339:Tn
bla organism.

The generation of L1:tet"/ct339:Tn bla recombinant clones provided an additional
opportunity to further investigate the essentiality of ct339 for DNA acquisition and
genome incorporation. These clones were used in coinfections with the parent L2
ct339:Tn bla clone with dual antibiotic selection (Fig. 5C). If ct339 were essential for
DNA acquisition and incorporation, then all resulting clones should be only L1 OmpA
positive, as the L2 ompA gene would not have the ability to be transferred and
incorporated into the L1 genome to enable a serotype conversion. However, if ct339 is
only partially required, then a mix of L1 and L2 OmpA populations would be expected
to be observed following coinfection and antibiotic selection (i.e., with the tetR marker
taken up and incorporated into the L2 genome or L2 OmpA transferred and incorpo-
rated into the L1 genome). Three independent coinfections revealed that only L1
OmpA-positive inclusions were observed with extensive (~5 X 107) levels of IFUs
utilized per evaluated cross (data not shown). Additionally, transformation of the L2
ct339:Tn bla mutant was also attempted using an inducible green fluorescent protein
(GFP) plasmid (pTLR2-GFP) and chloramphenicol for selection. Every attempt to trans-
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form parental L2 samples that had an intact chromosomal ct339 gene was successful
using the inducible plasmid. In contrast, none of the attempts to transform L2 ct339:Tn
bla with the plasmid were successful (data not shown).

To further address the functionality of CT339 in lateral gene transfer, similar coin-
fections and dual-selection experiments were performed with tetracycline-resistant C.
trachomatis serovar F (Futetr). Using strains that are more phylogenetically distant (52)
reduces the challenge of delineating highly similar genomic crossover regions. Three
independent crosses and selections were performed with C. trachomatis F:tetR and
either C. trachomatis L2 ct383/4:Tn bla or C. trachomatis L2 ct339:Tn bla (Fig. 6B). As
observed in the L1 X L2 ct383/4:Tn bla experiments (Fig. 6A) (Table 3), approximately
half of the inclusions with an intact ct339 exhibited either OmpA F (56%) or L2 (44%)
seroreactivity (Table 3). Similarly to the L1:tet” versus L2 ct339:Tn crosses, more than
99.94% of the F:tet” X L2 ct339:Tn inclusions were positive for only OmpA F (Table 3).
Taken together, these data support the hypothesis that ct339 is critical for DNA uptake
and is likely serving as a ComEC functional homolog in C. trachomatis.

DISCUSSION

There have been many recent firsts in the area of genetically modifying Chlamydia
trachomatis, including chemical mutagenesis (35-37), group Il intron gene disruption
systems (29), allele replacement (33, 34, 53), inducible gene expression (28, 54), and
targeted gene repression (32). The development and validation of a transposon mu-
tagenesis system using the Himar1 transposase, as presented here, provide another first
and a key advance for the Chlamydia field. The data presented demonstrate that the
transposase is functional within Chlamydia and that the use of the nonreplicative
plasmid results in mutant C. trachomatis clones containing a single genomic insertion.
The insertion sites are readily discovered and can be characterized by common
PCR-sequencing-based techniques. These insertion mutations are stable, even without
antibiotic selection, limiting the chances of genetic reversion. Support for this stability
was provided by the multiple passages and large-scale growth conditions (3 to 5
passages for expansion and spinner flask cultivation), without antibiotics, employed
prior to animal studies as well as by the confirmation of Tn insertions in samples prior
to and after animal infections. A primary benefit of this single-insertion, random
mutagenesis approach is the ability to associate a specific genetic disruption with a
resulting phenotype. While polar effects can occur as the result of a Tn insertion, such
effects can be viewed as a benefit, as an insertion can enable researchers to focus on
a selected but known pool of candidates associated with a particular phenotype. As
demonstrated by the insertion disruption of ComEC homolog CT339 and by the
subsequent biological studies related to lateral gene transfer in Chlamydia presented
here, the scientific contributions of this molecular tool and approach are expected to
be very useful for Chlamydia studies.

Notwithstanding these benefits, the present report also highlights the relatively low
efficiency associated with Chlamydia transposon mutagenesis and its current limita-
tions for large-scale studies. While most of this restriction is thought to be due to the
extremely poor transformation efficiency associated with C. trachomatis, the low inser-
tional efficiency may also suggest that high numbers of genes are essential for growth
and completion of the chlamydial developmental cycle under cell culture conditions. A
total of 70 genes incurred a Tn insertion in this study, while the results of a random
chemical mutagenesis study performed by Nguyen and Valdivia (37) indicated that 84
protein-coding genes incurred a nonsense mutation with limited in vitro growth effects.
Fifteen of the 84 genes were also disrupted in that Tn insertion analysis, providing a
total of 139 genes that have disruptions in the coding region following ethyl meth-
anesulfonate (EMS) mutagenesis or Tn insertion. This represents around 15% of the
encoding gene products. While the number of genes that are essential for growth
under tissue culture conditions is currently unknown, the relative low level of overlap
of disruptive Tn and EMS mutations suggests that many more C. trachomatis genes may
tolerate disruption.
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Among the more striking observations were the enhanced in vitro growth of a
ct148:Tn mutant clone and the almost log-fold decreased infectivity in mice (Fig. 2G;
see also Fig. 4). The Tn insertion occurs in the first third of the coding region, providing
higher expectations that the function of this gene product is indeed disrupted. The
gene downstream from ct748 is oriented in the opposite direction, although there is a
gene 200 bp upstream. This distance and the reported location of the transcriptional
start site 85 bp upstream of ct748 (40) support the idea that there is a single gene
operon and that polar effects from this Tn insertion are limited. The ct748 gene encodes
a FAD-dependent monooxygenase (FDM). Monooxygenases are known to play roles in
multiple metabolic pathways, and, as lliffe-Lee and McClarty showed previously (55), C.
trachomatis contains an almost complete and functional Embden-Meyerhof glycolysis
and pentose phosphate pathway. For a number of other bacteria, it has been shown
that metabolic proteins are nonessential for growth in vitro and yet play vital roles in
vivo (8, 56-58). Many of the key nutrients required for survival are provided in media
used to grow these pathogens. Thus, any detrimental effect that a mutation may have
may not be as easily identified in vitro. In contrast, in vivo infections provide physio-
logical conditions for growth which are not provided via media, enabling the effects of
these mutations to be detected. While the specific role of ct748 in infectivity remains
unknown, the in vivo data provide support for the idea that components that are
seemingly nonessential for Chlamydia growth in tissue culture may, in fact, play
significant roles in mammalian models of infection. A similar discrepancy between in
vitro and in vivo growth outcomes was also observed with the ct868:Tn clone which
disrupts cdul. Cdu1 is a deubiquitinase, and it has been shown that disruption of this
protein results in an increase of ubiquitination of Mcl-1 (46). Cdul has also been
demonstrated to be capable of inhibiting host NF-kB, which represents a central
regulator of numerous immune responses, including cytokine secretion and T-cell
proliferation, and a vital host defense against intracellular pathogens (59-61). Overall,
these observations highlight the challenges and potential discrepancies of functional
studies performed in tissue culture, strengthening the necessity for analysis using in
vivo models of infection.

The most striking phenotype was that of the observable growth and morphological
deficiencies of strain ct696:Tn (see Fig. S2 in the supplemental material). First classified
as a slow grower, approximately 8 days of growth of ct696:Tn were required for for
detection of visible inclusions by phase microscopy, and subsequent analysis by
confocal microscopy identified decreased numbers of RBs/EBs as well as the absence of
the nuclear localization typically observed with Chlamydia inclusions. Due to its genetic
location near the genes encoding the known type Il secretion (T3S) effector proteins
CT694 and CT695, it has been hypothesized that ct696 may also play a role in T3S;
however, studies have suggested that this may not be the case. Secretion of CT696 was
not observed in previous studies employing a heterologous T3S system with Yersinia
enterocolitica (62, 63), and ct696 transcription was found to occur independently of
ct694 (64, 65). The ct696 gene (ctl0065) was also disrupted using allelic exchange (33);
however, growth phenotypes were not provided. CT696 is a conserved Chlamydiaceae
hypothetical protein with no sequence or conserved domains shared outside the
members of this family. Using the bacterial localization tool PSORTb (66), CT696 was
predicted to be a cytosolic protein. While additional in-depth analysis is required to
evaluate the role and function of CT696 in growth and inclusion formation, this
observation provides support for these efforts as well as a good example of the utility
of this transposon approach for discovery of genes important to the biology of
Chlamydia.

Along with gaps in understanding the mechanisms of development and in vivo
infectivity of Chlamydia, there is also limited information regarding the components
and mechanisms for lateral gene transfer. The absence of lateral gene transfer in
organisms that contain the ct339:Tn insertion provides compelling support for the
essential contribution of this gene product to this fundamental evolutionary process.
CT339 is predicted to be a multipass transmembrane protein with domain similarity to
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ComEC, the competence uptake protein seen in many bacteria. According to the
protein family database (pfam) architecture, genes encoding proteins with this com-
petence motif often exist near genes encoding proteins that include lactamase-
superfamily domains, which are predicted to regulate the competence operon (67).
Baker et al. recently showed the ComEC from Bacillus contains a B-lactamase-like
domain within its C-terminal loop (approximately residues 494 to 763), potentially
functioning as a nuclease (68). While it is widely accepted that double-stranded DNA
(dsDNA) must first be converted into ssDNA for uptake and incorporation into recipient
genomes, the nuclease responsible for this activity in Bacillus remains unknown; thus,
it has been hypothesized that this lactamase-like domain within ComEC may be
fulfilling this role. As a potential homolog of ComEC, a Tn disruption in the C terminus
of CT339 may prevent the degradation of dsDNA into ssDNA and would decrease the
ability of Chlamydia to undergo lateral gene transfer. However, Pfam and SMART (69)
analyses of CT339 did not identify a similar lactamase-like domain near the C terminus.
Rather, genome analysis of C. trachomatis identified RNase Z (CT346), a lactamase-
superfamily protein neighboring CT339—suggesting that this protein may instead be
fulfilling that role in the chlamydial competence system. Future studies assessing the
dimerization and pore formation of CT339 and potential nuclease activity of CT346 will
assist in identifying how CT339 enables DNA uptake.

Other potential components involved in DNA uptake in Chlamydia are less evident.
Pili or pseudopili predominantly facilitate binding and transport of DNA to the bacterial
surface, although no proteins sharing any sequence similarity to pilus homologs were
identified in Chlamydia. Interestingly, Helicobacter pylori is unique among naturally
transformable bacteria in that it does not use pili but instead relies on a dedicated type
IV secretion system for DNA uptake (70). Gram-negative bacteria typically transport
dsDNA through an outer membrane secretin channel (e.g., PilQ) and then process the
dsDNA into ssDNA with a periplasmic protein, ComEA. Single-stranded DNA is then
transported through inner membrane protein ComEC and into the bacterial cytoplasm,
where it is bound by RecA or DprA (71). Direct pairwise BLAST analysis of C. trachomatis
with numerous Gram-negative secretin homologs (PilQ) revealed sequence similarity (E
values <107°) to only type Il and type lll secretion outer membrane proteins, GspD
(CT572) and YscC (CT674), respectively. Similarly, no protein with similarity to various
ComEA or DprA homologs was identified through sequence-based pairwise analysis.
Clearly, there is much to be learned about the Chlamydia DNA uptake system, although
it is safe to state that, similarly to H. pylori, Chlamydia is likely an exception to the
general DNA uptake model.

In summary, the development and characterization of a transposon system that
is functional in Chlamydia represent a substantial advance and a valued addition to
the growing repertoire of genetic manipulations in this field. Such a transposon
system is expected to have an enabling effect on the discovery of biological and
pathogenesis-related genes, allowing the association of single-gene insertions with
evaluated phenotypes. Only a subset of the initial Tn insertion mutant clones was
evaluated for in vitro and in vivo growth and infectivity. An expanded analysis of the
remainder of the Tn insertional clones by the use of these and other phenotypic
screens will elucidate the contribution and role of various gene products. This
report has also highlighted the current inefficiency in transformation in Chlamydia,
which will need to be overcome for large-scale mutagenesis studies. Despite this
shortcoming, there is much promise for this technique and its associated applica-
tions, as evident from the support for CT339 in the fundamental evolutionary
process of lateral gene transfer in Chlamydia. There are also high expectations that
this system will be applicable and functional for studies in other Chlamydia species
and serovars (e.g., C. muridarum and C. trachomatis serovar D), thus enabling animal
studies and analysis of more clinically relevant strains for the discovery of virulence
factors and potential therapeutic targets.
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MATERIALS AND METHODS

Chlamydial strains and propagation. C. trachomatis serovar L2 434/Bu was propagated in L929
mouse fibroblast cells (ATCC CCL-1) using RPMI 1640 medium (Invitrogen, Grand Island, NY) supple-
mented with 5% heat-inactivated fetal bovine serum (FBS) plus 10 wg/ml gentamicin (Fisher Scientific,
Pittsburgh, PA). Briefly, L929 monolayers were grown to confluence in spinner flasks (~8 X 10° cells/ml)
and infected with purified EBs at a multiplicity of infection (MOI) of 1. Cultures were allowed to grow for
up to 48 h at 37°C and 5% CO,. Percent infectivity was assayed by IFA microscopy (described below). EBs
were harvested as previously described (72) using a series of centrifugation and sonication steps to
disrupt the host cells and release EBs. Once isolated, EBs were either frozen immediately or further
purified using Omnipaque (Barrington, IL) and ultracentrifugation. All EBs were stored in sucrose-
phosphate-glutamic acid (SPG) media at —80°C. Clonal isolates were obtained as previously described
(73).

Development of pCMA transformation plasmid. pUC19 (GenBank accession no. L09137) was used
as the initial backbone for pCMA generation and primers used are listed in Table S1 in the supplemental
material. The C9 hyperactive transposase was amplified from pBADC9 (kind gift from D. Lampe of
Duquesne University [3]) and cloned between the EcoRI and Aatll sites. An Eagl site was incorporated for
subsequent promoter cloning. Initially, a vector (pCMT) that contained a tetracycline-encoding trans-
poson was generated for application in C. muridarum by the use of pACYC184 (GenBank accession no.
X06403) as the template. Primers incorporated Himar inverted repeats and restriction sites for cloning
into the Xmal site. To remove the B-lactamase gene carried on pUC19, the transposase, tetracycline
transposon, and ori region were amplified with primers containing Ncol sites for self-ligation. Ligase-
independent cloning and Hindlll sites were used to replace the tetracycline transposon with one
encoding the B-lactamase and the associated promoter from pSW2 (27). To assist with selective
expression of the transposase within Chlamydia and with less expression during plasmid propagation in
E. coli, the chlamydial ct559 promoter and ribosomal binding sites were cloned upstream of the
transposase gene using the Eagl site (38). The complete DNA sequence for pCMA is provided in the
supplemental material. The graphical depiction of the plasmid (see Fig. S1 in the supplemental material)
was generated using Savvy Scalable vector graphics (74).

Transposon mutagenesis. The method used for transformation of C. trachomatis was modified from
previously described methods (27, 39). L929 cells were seeded to confluence in 6-, 12-, or 24-well plates
and allowed to adhere overnight. The Chlamydia-DNA transformation reaction mixture (200 ul total
volume) was prepared with 10 ul of C. trachomatis L2 434/Bu EB seed stock, 1X SPG (~1 X 107 IFU),
15 ng of pCMA plasmid DNA, and 100 ul of 2X CaCl, buffer (20 mM Tris-HCI [pH 7.5], 100 mM CaCl,),
with double-distilled water (ddH,0) added to reach the final volume. Following gentle pipette mixing,
the reaction mixtures were incubated for 30 min at room temperature (RT). The mixture was added to
12ml of 1X CaCl, buffer (10 mM Tris-HCl [pH 7.5], 50 mM CaCl,) before being overlaid onto a L929
monolayer that was washed once with 1X CaCl, buffer (10 mM Tris-HCI [pH 7.5], 50 mM CaCl,). Plates
were spun at 550 X g for 30 min at RT. Fresh RPMI medium supplemented with FBS, gentamicin, and
1 pg/ml cycloheximide was added, and the plates were incubated at 37°C and 5% CO, overnight.
Ampicillin (Fisher Scientific, Pittsburgh, PA) (1 ng/ml) was then added for antibiotic selection at 16 to 18 h
postinfection. Cultures were kept under conditions of selection using increasing concentrations of
antibiotics and serially passaged every 48 hpi. After the final passage, EBs were harvested for identifi-
cation of insertion site and subsequent analyses. Transformation efficiencies were estimated using
1 X 107 IFU input organism and 15 ug plasmid DNA, resulting in an average of 4 unique clonal isolates
from each transformation (4 IFU/15 ng DNA). Twenty-three transformations were performed, resulting in
105 ampicillin-resistant cultures. The levels of transformation efficiency were separately assessed with
five independent transformations using pGFP:SW2 plasmid under similar conditions and the same stocks
of C. trachomatis as were used in transposon mutagenesis.

Whole-genome sequencing. DNA was extracted from purified EBs using a Qiagen blood and tissue
kit (Qiagen, Valencia, CA). Manufacturer’s instructions were used with minor modifications. In brief,
purified EBs were aliquoted with buffer AL before proteinase K was added and the reaction mixtures
were incubated at 56°C for 1 h. After incubation, buffer AL and ethanol (96% to 100%) were added and
mixed thoroughly by the use of a vortexing mixer. The reaction mixtures were added onto a provided
DNeasy Mini spin column and collection tube and were centrifuged at 6,000 X g. Two wash steps were
then performed using buffer AW1 and AW2, each with centrifugation. Finally, the reaction mixtures were
incubated with buffer AE for 20 min at room temperature and centrifuged and the eluate was saved. For
quality control, each sample was verified using a spectrophotometer (Denovix Ds-11 FX+) to quantify
DNA. Extracted DNA was prepared for sequencing at the Genome Sequencing Core at the University of
Kansas, where library preparation and further quality control were completed. Samples were multiplexed
and run on an lllumina Miseq PE100 platform. Paired-end reads were generated with a Phred score
(>Q30) of 95.44%. Reads were then demultiplexed and analyzed using the Geneious software suite. Total
read coverage was calculated as a function of the proportion of reads that mapped to the WT reference
genome (the total of chlamydial reads) over the total number of reads generated for the sample,
including host DNA and other contaminant DNA. A threshold of 10 reads was created to check for the
depth of coverage at each base pair (75).

Assembly and analysis of the transposon mutant genomes. The C. trachomatis LGV 434/Bu
(“Hefty”) parental clone sequence (NCBI sequence accession no. CP019386.1) was generated through
assembly guided by reference to the previously published genome Chlamydia trachomatis 434/Bu (NCBI
sequence accession no. NC_010287.1). The Hefty parental genome sequence contained three mutations
relative to the reference strain, namely, two nonsynonymous mutations (G946945A [H1121N] and
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C942546A [R274H]) and one intergenic indel (indel in lowercase; 127353/4 [AGGCCCattctaaaggccCC
CTT]). After the parental draft was generated, each of the other samples were generated using the
parental sequence as the reference sequence. In each case, read depth and potential loss of read
continuity were considered for potential duplications or rearrangements. The reads were also mapped
to the transposon sequence for each sample to ensure that the transposon was inserted into the correct
site at the genome. Alignment files were generated for alignments between each mutant genome draft
and the parental draft. Any mutations corresponding to these that might have accumulated through the
study were annotated and verified using the reads. Host DNA contamination within each sample was
mitigated using the reference-guided assembly techniques. Transposon insertion sites were analyzed
both through the use of the reference-guided mapping of the genomes and separately through the use
of reference-guided assembly of the raw reads to the transposon sequence. In each case, these were
analyzed separately from the hypothesized insertion sites to prevent bias. The read quality of the
transposon assemblies was proportional to the size of each genome in every case. Plasmid sequences
were generated for each sample by using the C. trachomatis LGV plasmid (NCBI sequence accession no.
NC_021051.1). Plasmid gene assignments incorporated both pgp1-8 (42) and cds1-8 (76) nomenclature.
All alignments were performed in Geneious using global alignment with free end gaps and a cost matrix
corresponding to 65% similarity. Completed sequences were submitted to GenBank and assigned
accession numbers (see “Data accessibility” section below). The transposon mutant genomes were
evaluated for new single nucleotide polymorphisms (SNPs), and no mutations were discovered after the
transformation and cultivation processes. While all studies were performed using C. trachomatis LGV
434/Bu, C. trachomatis serovar D gene nomenclature is utilized due to recognition and field familiarity.

Assembly and analysis of the recombinant progeny genomes. Each recombinant genome was
generated using assembly guided by reference to the OmpA parental genome. Genomes were then
aligned to both parental genomes and scanned for regions of homology using the Geneious global
alignment tool with free end gaps and a cost matrix corresponding to 65% similarity. Initial sequence
assembly was verified through assembly guided by reference to the minority parent. Regions of
homology were annotated, and margins were estimated based on similarity to the individual parents.

In vitro growth analysis of Tn mutants. For temporal assessment of progeny production, L929
mouse fibroblast cells were infected in triplicate with C. trachomatis parental or Tn mutant clones with
a multiplicity of infection (MOI) of 0.5 in 24-well plates. At 18, 24, 30, 36, and 42 h postinfection (hpi), wells
were washed once with Hanks’ balanced salt solution (HBSS) and then immediately frozen in 1X SPG at
—80°C within the 24-well plate. The 24-well plates were then thawed on ice and transferred to 1.5-ml
Eppendorf tubes and sonicated in a Q500 Qsonica cuphorn sonicator (Qsonica) with the following
settings: 75% amplitude; 4 pulses; 30-s ON/30-s OFF cycle in chilled (~5°C) water. To determine titers of
inclusion-forming units, samples were then serially diluted and used to infect confluent monolayers of
L929 mouse fibroblast cells in 96-well uClear CellStar plates (catalog no. 655090; Greiner Bio-One,
Frickenhausen, Germany) or 8-well p-Slides (Ibidi, Martinsried, Germany). After 24 h postinfection, the
cells were washed with HBSS and then fixed with 100% methanol. Cells were washed with phenol-free
HBSS before staining was performed with a MicroTrak C. trachomatis culture confirmation kit (Trinity
Biotech, Wicklow, Ireland). After at least 1 h of room temperature incubation, 1 uM DAPI (4’,6-diamidino-
2-phenylindole) diluted in phosphate-buffered saline (PBS) was added and allowed to stain wells for 10
min. A final overlay of 0.1 M Tris-glycerol was added, and cells were imaged on an Olympus IX71 inverted
microscope (Olympus, Waltham, MA) with both 10X and 40X objectives. Inclusions were enumerated
manually for each sample by immunofluorescence microscopy. For calculation of progeny production,
titers were also determined for the inoculum that was initially used to infect the 24-well plates at the time
of infection to incorporate subtle differences in starting infectivity for each mutant relative to the
parental strain (see Fig. S4 in the supplemental material). To normalize variations in Tn mutant progeny
production that would result from differences in starting infectivity levels, the ratio of starting inoculum
of the parental strain to the starting inoculum of the Tn mutant was individually multiplied by each Tn
mutant’s titers at each time point (18, 24, 30, 36, or 42 hpi). Data are shown as means and standard
deviations (SD) for triplicate wells, generated in GraphPad Prism 7, and statistical differences were
calculated using the two-tailed Student’s t test. With a P value of <0.05, ct732:Tn had significantly
reduced progeny production at 24, 30, 36, and 42 hpi; ct590:TN and ct036:Tn had significantly reduced
progeny production at 24, 30, and 42 hpi; ct350:Tn had significantly reduced progeny production at 30
and 42 hpi; ct153:Tn and ct550::Tn had increased progeny production at 24 hpi; ct339:Tn had increased
progeny production at 24 and 42 hpi; and ct748:Tn had increased progeny production at 30 and 42 hpi.

Confocal immunofluorescence microscopy. L929 cells were grown to confluence in an 8-well
ibiTreat w-Slide (Ibidi, Martinsried, Germany) and were infected with the respective C. trachomatis/Tn
mutants. At ~24 hpi, infected cells were fixed with 100% methanol for 10 min at RT. Cells were washed
once with HBSS and again with PBS and then stained using the preparation supplied in the MicroTrak
C. trachomatis culture confirmation test (Syva Co., Palo Alto, CA) (180 wl) diluted 1:40 in PBS for 1 h 50
min at RT in the dark or overnight at 4°C. A 2-ul volume of 1 uM DAPI (4',6-diamidino-2-phenylindole)
diluted 1:100 in PBS was then added to wells and allowed to stain for 10 min at RT in the dark. The stain
was then removed, and the cells were washed with PBS. A final overlay of Vectashield antifade mounting
medium (Burlingame, CA) was added, and slides were stored at 4°C in the dark until the imaging step.
Cells were visualized on an Olympus 1X81/3] spinning disk confocal inverted microscope at X150
magnification and captured on an Andor Zyla 4.2 scientific complementary metal oxide semiconductor
(SCMOS) camera (Belfast, Northern Ireland). Microscope and camera were operated using SlideBook 6
software (Intelligent Imaging Innovations, Denver, USA). Exposure time remained consistent for all fields
captured, with the exposure time for DAPI set at 2 s, for OmpA at 4 s, and for cytoplasm at 6 s. Three to
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seven Z stack images were taken at 0.3-um intervals per cell imaged. Images were processed in
SlideBook 6, and No Neighbors deconvolution (with a subtraction constant of 0.4) was applied to all
images.

In vitro inclusion size analysis for Tn mutants. L929 mouse fibroblast cells were infected at low
MOI (~10% of cells infected) in triplicate on two separate 96-well plates with parental population or a
clonal population of Tn mutant Chlamydia trachomatis. At 24 hpi, cells were fixed with methanol for 10
min. Cells were then stained using a MicroTrak C. trachomatis culture confirmation kit for 1 h at room
temperature. DAPI (4',6-diamidino-2-phenylindole) (1 uM) was diluted in PBS and allowed to stain wells
for 10 min. A final overlay of 0.1 M Tris-glycerol was added, and cells were imaged on an EVOS FL Auto
2 microscope (Thermo Scientific, Waltham, MA) using a 20X objective. A total of 16 fields were imaged
for 6 wells for each sample, including more than 200 inclusions per sample (range, approximately 200 to
1,000). Each inclusion area was then measured using MIPAR (MIPAR, Worthington, OH). Within MIPAR,
segmentation of inclusions was performed by applying a threshold to images to identify inclusions based
on a range of pixel values that was standardized to parental images. After segmentation of inclusions,
the total area was measured and quantified as the total number of pixels. This output was then exported
to GraphPad, and statistical analysis was performed. Statistical analysis consisted of a one-way analysis
of variance (ANOVA) with Dunnett’'s multiple-comparison test (statistical significance P value, <0.05).

Mouse transcervical infections. Female C57BL/6 mice (6 to 8 weeks old) were purchased from
Jackson Laboratories and housed in accordance with the requirements specified by the University of
Kansas Institutional Care and Use Committee. Mice were treated subcutaneously with 2.5 mg medroxy-
progesterone acetate (Depo-Provera, Pfizer, NY) upon arrival (day —7). Fresh aliquots of parental or Tn
mutant C. trachomatis clones were diluted in sucrose-phosphate-glutamic acid (SPG) buffer and kept on
ice until use. Using a nonsurgical embryo transfer device (NSET; ParaTechs, Lexington, KY), mice were
inoculated transcervically with 10 ul diluted stock (final concentration, 5 X 10% IFU/mouse) by insertion
of the device into the genital tract beyond the opening of the cervix. For each infection, samples used
to infect mice were also evaluated for titer to ensure delivery of the expected infectious dose. The
infections and analyses performed with ct868:Tn were repeated from the initially reported experiments
(46).

ddPCR assessment of Chlamydia infection in vivo. Mice were humanely euthanized 5 days
postinfection, and the genital tracts were collected in SPG. Uterine horns were homogenized using a
rotor/stator homogenizer (Biospec, Bartlesville, OK). Aliquots (100 wl) were frozen at —20°C until use. The
remaining stocks of homogenized tissues were stored at —80°C. DNA isolation was performed using the
100-ul aliquots and a DNeasy blood and tissue kit (Qiagen). Isolated DNA was then used for droplet
digital PCR (ddPCR) analyses. Primers and probes for C. trachomatis secY and murine rpp30 (see Table S1
in the supplemental material) were used with ddPCR Supermix for Probes (Bio-Rad, Hercules, CA) to set
up the PCRs. Oil-for-Probes droplet emersions were generated using a droplet generator cassette
(Bio-Rad). The PCR conditions were as follows: 95°C for 10 min and 40 cycles of 94°C for 30 s and 98°C
for 10 min followed by cooling to 4°C. Fluorescent reads of individual droplets were calculated after PCR
was performed using a QX200 droplet reader (Bio-Rad). Data were analyzed using QuantaSoft Software
(Bio-Rad), and the results are reported as log,, ratios of Chlamydia DNA to host DNA (secY/rpp30
copies/ul). Box and whisker scatter plots were generated in GraphPad Prism 7, and recoverable
organisms were compared using unpaired multiple t tests with no correction for multiple comparisons.

Bioinformatic analysis of CT339 and chlamydial competence. BLAST analyses and subsequent
queries within the Conserved Domain Database resulted in hits within the competence superfamily and
multidomain hits for ComEC. Multiple-sequence alignments were generated using ClustalW and 10
variable species hits within the Clusters of Orthologous Groups of proteins (COG0658) (77). The following
proteins were used (NCBI accession numbers shown in parentheses): competence protein ComEC family
protein Shigella dysenteriae 1617 (YP008850592.1), competence locus E Helicobacter pylori Hp P-26
(EJC51989.1); competence protein ComEC Enterococcus faecium DO (YP006375852.1); ComE Synechocystis
sp. PCC 6803 (BAA17126.1); ComEC Listeria monocytogenes EGD-e (CAC99560.1); ComE operon protein 3
Bacillus subtilis subsp. subtilis strain 168 (NP 390435.1); hypothetical protein AGR C 2573 Agrobacterium
tumefaciens sp. strain C58 (NP354400.1); competence protein Neisseria meningitidis MC58 (NP273744.1);
hypothetical protein CT339 Chlamydia trachomatis D/UW-3/CX (NP 219846.1); ComEC/Rec2 family
protein Clostridium botulinum A strain ATCC 3502 (YP 001255462.1); ComEA Neisseria meningitidis
(CAB44958); ComEA protein Helicobacter bilis (WP_004084273); competence ComEA Shigella dysenteriae
1617 (EFP70107); competence protein ComGA Enterococcus faecium (WP_002304768); competence
protein ComGA Listeria monocytogenes (WP_009933475); ComGA Bacillus subtilis (BAA12533); (multispe-
cies) competence protein ComGB (WP_002286180); (multispecies) competence protein ComGB Bacilli
(WP_048681721); competence protein ComGB Listeria monocytogenes (WP_010990101). (multispecies)
type IV pilus secretin PilQ Neisseria (WP_016686778); type 4 pilus secretin PilQ (outer membrane porin)
Shigella dysenteriae 1617 (AHA67697); (multispecies) pilus assembly protein PilE Neisseria
(WP_002214937); and ComGC Bacillus subtilis (BAA12535). The following five hydropathy prediction
programs were used to predict topology for CT339: HMMTOP v2.0 (78); MEMSAT-SVM (79); TMHMM2.0
(80); TOPPRED (81); and SPLIT (82). Transmembrane illustrations were generated and modified using
Protter v1.0 (83).

Generation of recombinant clones for assessment of bacterial competence. All experiments
performed with tetracycline-resistant Chlamydia as described in this work were reviewed and approved
by the National Institutes of Health Recombinant DNA Advisory Committee (University of Washington).
Recombination experiments were performed as previously described (47). Briefly, sets of individual shell
vials were seeded with McCoy cells and subsequently coinfected with the following combinations of
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drug-resistant strains: C. trachomatis L1/tet” (NCBI accession number ACUIO1000000), C. trachomatis
serovar F/tet', and either C. trachomatis LGV2 (ct383/4:Tn bla) or C. trachomatis LGV2 ct339:Tn bla.
Cultures were incubated for 40 h postinfection in the absence of antibiotics and were then detached
using —80°C/37°C freeze-thaw. Recombinants were isolated by infection of 96 new shell vial monolayers
with 1 ml freeze-thaw lysates and treatment with both penicillin and tetracycline and were passaged
until dually resistant clones were detected. Recombinant clones were propagated and cloned by limiting
dilution and subsequently evaluated for identification of serovar-specific OmpA. DNA from clones was
harvested and subjected to WGS as described above.
Data accessibility. Completed sequences were submitted to GenBank and assigned the following
accession numbers (shown in parentheses): CT075:Tn (NHAT01000000); CT036:Tn (NHAUO1000000);

CT153:Tn

(NHAV01000000); (€T7333:Tn (NHAWO01000000); CT339:Tn

(NHAX01000000);

CT392:Tn

(NHAY01000000); CT550:Tn (NHAZ01000000); CT819:Tn (NHBA01000000). The pCMA vector was com-
pletely sequenced and deposited (GenBank accession no. MN177722).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio
.01343-19.

FIG S1, PDF file, 0.1 MB.
FIG S2, PDF file, 1.7 MB.
FIG S3, PDF file, 0.3 MB.
FIG S4, PDF file, 0.2 MB.
FIG S5, PDF file, 0.2 MB.
TABLE S1, PDF file, 0.2 MB.
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