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Abstract

Linkage isomers of reduced metal-nitrosyl complexes serve as key species in nitric oxide (NO) 

reduction at monometallic sites to produce nitrous oxide (N2O), a potent greenhouse gas. While 

factors leading to extremely rare side-on nitrosyls are unclear, we describe a pair of nickel-nitrosyl 

linkage isomers through controlled tuning of noncovalent interactions between the nitrosyl ligands 

and differently encapsulated potassium cations. Furthermore, these reduced metal-nitrosyl species 

with N-centered spin density undergo radical coupling with free NO and provide a N–N coupled 

cis-hyponitrite intermediate whose protonation triggers the release of N2O. This report outlines a 

stepwise molecular mechanism of NO reduction to form N2O at a mononuclear metal site that 

provides insight into the related biological reduction of NO to N2O.

Nitrous oxide (N2O) is a long-lived (ca. 114 years) greenhouse gas with a global warming 

potential 298 times that of CO2 on a molecular basis.1 Enhanced through feeding of crops 

with nitrogen-rich fertilizers,2 global emission of N2O is mainly attributed to the microbial 

and fungal denitrification processes mediated by metalloenzymes.3 The most critical step for 

N2O generation is N–N bond formation that occurs via the reductive coupling of two nitric 
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oxide (NO) molecules. This takes place at diiron sites of nitric oxide reductase (NOR) 

enzymes4 as well as at mononuclear sites in the iron-based cytochrome P450 nitric oxide 

reductase (NOR)5 or copper nitrite reductase (CuNiR)6 enzymes (Figure 1a). Based on 

numerous theoretical studies, it seems likely that an intermediate hyponitrite species 

(N2O2
2−) precedes N2O release.7 For instance, coupling of two metal-nitrosyl [M]-NO 

moieties takes place upon reduction of [(TpRuNO)2(μ-Cl)(μ-Pz)]2+ to afford the N–N 

reductively coupled product (TpRu)2(μ-Cl)(μ-Pz){μ-κ2-N(=O)N(=O)}.8 Reductive coupling 

of NO at copper(I) complexes has led to dinuclear trans-hyponitrite copper(II) complexes 

[CuII]2(μ-O2N2) that release N2O either upon acidification9 or thermal decay;10 the later also 

produces [CuII](NO2) via disproportionation.10 The nickel nitrosyl [(bipy)(Me2phen)NiNO]

[PF6] mediates NO disproportionation in the presence of NO and yields N2O via a 

mononuclear cis-hyponitrite [Ni](κ2-O2N2).11 The factors that lead to N–N bond formation at 

a monometallic site, however, have not been explicitly documented.12

We hypothesize that the presence of spin density at the N atom of a metal-nitrosyl [M]-NO, 

perhaps enhanced by the ability to achieve a side-on [M]-NO conformation, may facilitate 

N–N bond formation between a metal-nitrosyl and nitric oxide to give cis-hyponitrites [M]

(κ2-O2N2) (Figure 1e). Access to side-on [M](η2-NO) complexes may both expose the N 

atom for N–N coupling and initiate a M-O interaction prior to forming mononuclear [M](κ2-

O2N2) complexes. Such side-on conformations are known in the photoexcited states of 

{Ni(NO)}10 complexes13 where the superscript in the Enemark–Feltham formulation 

{Ni(NO)}10 represents the total number of metal d and NO π* electrons.14 The side-on 

binding of a nitrosyl ligand (Figure 1d) in a mononuclear synthetic complex, however, has 

not been observed in its ground state. {[(Me3Si)2N]2(THF)Y}2(μ-η2:η 2-NO) is a singular 

example that possesses a side-on NO achieved via bridging between two transition or rare 

earth metal centers that possesses a highly reduced NO2− ligand.15 Crystallographic studies 

revealed side-on η2-NO binding in fully reduced bovine cytochrome c oxidase (CcO)16 and 

copper nitrite reductase (CuNiR)17 that feature mononuclear {Cu-(NO)}11 sites, though 

solution spectroscopic studies suggest end-on binding.18,19 DFT calculations for both side-

on and end-on {Cu(NO)}11 species suggest that each possesses a CuI(·NO) electronic 

formulation20 with a considerable amount of spin density at the nitrosyl N atom, reinforced 

by EPR studies of the reduced {Cu(NO)}11 intermediate of CuNIR.18,21 Furthermore, 

differential H-bonding and/or steric interactions from second-sphere protein residues may 

play a vital role in the determining the conformation of {Cu(NO)}11 species.21,22

To synthetically outline factors that control metal-nitrosyl bonding modes and NO coupling 

reactivity, we targeted low coordinate {M(NO)}10/11 pairs that could accommodate both 

side-on NO and cis-hyponitrite ligands (Figure 1d,e). The salt metathesis reaction between 

equimolar amounts of the β-diketiminato potassium salt [iPr2NNF6]K(THF) and 

(THF)2Ni(NO)I in tetrahydrofuran (THF) affords the diamagnetic {Ni(NO)}10 complex 

[iPr2NNF6]NiNO (1) isolated as dark green crystals in 76% yield (Figure 2a). The X-ray 

structure of 1 reveals a trigonal-planar Ni center with an end-on nitrosyl ligand (Nil–N3–O1 

= 174.47(11)°) with a N3–O1 distance of 1.1602(15) Å (Figure S22). The infrared spectrum 

of 1 indicates a nitrosyl stretch ((νNO) at 1825 cm−1, similar to values reported for other 

three-coordinate neutral nickel-nitrosyl complexes (νNO = 1817–1779 cm−1).23 Notably, the 
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cyclic voltammogram of 1 in tetrahydrofuran at room temperature exhibits a reversible 

reduction wave centered at −1.89 V (vs ferrocenium/ferrocene), attributed to the 

{Ni(NO)}10/11 redox couple (Figure S6).

One-electron reduction of the {Ni(NO)}10 complex 1 with potassium-graphite (KC8) (1.2 

equiv) in tetrahydrofuran in the presence of 18-crown-6 (1 equiv) leads to a rapid color 

change from green to purple (Figure 2a). Single crystal X-ray diffraction analysis of the 

purple complex 2a reveals two independent [iPr2NNF6]Ni(μ-η2: η2-NO)K(18-crown-6)

(THF) moieties. Each nickel exhibits square planar coordination that features a side-on NO 

ligand between the Ni and K centers. Although disorder from interchange of N/O positions 

precludes a detailed assessment of metrical parameters, refinement of the NO ligand into a 

single orientation (Figure 2b) gives short Ni–N (1.853(5) Å; 1.866(5) Å) and Ni–O (1.839(5) 

Å; 1.868(5) Å) distances similar to those observed in a related [Ni](η2-ONPh) complex.24 

The nitrosyl ligand in the {Ni(NO)}11 species 2a (molecule 1: 1.270(6) Å; molecule 2: 

1.284(6) Å) is significantly more activated than in the {Ni(NO)}10 analogue 1 (1.1602(15) 

Å), despite N/O positional disorder that likely underestimates the N–O distance.15 Disorder 

models that allow pairs of N/O atoms to refine lead to slightly longer N–O distances of 

1.28–1.32 Å but with a wider spread of Ni–N/O distances (Figure S23c,d). Thus, 2a 
possesses a nitrosyl ligand with a N–O distance longer than in most metal-nitrosyls25 except 

{[(Me3Si)2N]2(THF)Y}2(,M-η2:η2-NO), which also features a side-on NO ligand (N–O: 

1.390(4)Å).15 Coordination of the potassium cation to both the nitrogen and oxygen atoms 

of the reduced nitrosyl ligand in the {[Ni](η2-NO)}− anion of 2a gives K–N/O distances in 

the range 2.826(5) Å - 2.869(5) Å that leads to Ni···K separations of 4.417 Å (molecule 1) 

and 4.467 Å (molecule 2). The infrared spectra of two isotopologues 2a and 2a-15N exhibit 
14N/15N isotope sensitive bands at 894 and 878 cm−1, respectively. This is the lowest νNO 

reported for a transition metal nitrosyl complex, lower than 951 cm−1 in 

{[(Me3Si)2N]2(THF)Y}2(μ-η2:η2-NO).15

More completely encapusulating the K+ cation changes the nitrosyl bonding mode of the 

{[Ni](NO)}− anion. Reduction of [iPr2NNF6]NiNO (1) with KC8 (1.2 equiv) in the presence 

of [2.2.2]-cryptand (1 equiv) in tetrahydrofuran gives [iPr2NNF6]Ni(μ-NO)K[2.2.2-cryptand] 

(2b) (Figures 2c, S24). By significantly lengthening the Ni···K separation (5.466 Å), the 

nitrosyl ligand exhibits both linear (77%) and side-on (23%) conformations in the solid state. 

The linear NO ligand (Ni1–N3A–O1A, 165.8(3)°) in 2b is more highly reduced than in 1 
with a N–O distance of 1.198(4) Å. The minor side-on conformer exhibits N/O positional 

disorder whose principle component possesses a N–O distance of 1.274(19) Å similar to 2a. 

The IR spectrum of a solid sample of 2b reveals an NO stretch at 1555 cm−1 (1525 cm−1 for 

2b-15NO) that is consistent with a highly reduced linear NO ligand (Figure S10).25

The room temperature EPR spectrum of [iPr2NNF6]Ni(μ-η2:η2-NO)K[18-crown-6](THF) 

(2a) in tetrahydrofuran indicates a S = 1/2 species with a giso value of 2.0008, very close to 

that of the free electron (ge = 2.0023). This three line spectrum of 2a is due to strong 

coupling with the 14N nucleus of the bound NO ligand (A14N = 28.9 MHz), which shifts to a 

two line pattern for 2a-15N (A15N = 40.1 MHz) (Figure 3a,b). These data are very similar to 

the highly reduced, radical NO2− dianion in {[(Me3Si)2N]2(THF)Y}2(μ-η2:η2-NO).15 In 

both THF solution and frozen glass (20 K), EPR spectra of 2a and 2b are nearly 
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indistinguishable (Figures S20 and S21). Modeling of the low T EPR spectra of 2a was 

guided by DFT calculations and required the use of two separate components, suggesting 

that THF solutions of 2a and 2b may contain a mixture of side-on and linear nitrosyls.

Ni K-edge X-ray absorption spectroscopy (XAS) probes the Ni oxidation state by exciting a 

Ni 1s electron to valence Ni 3d orbitals (pre-edge, ~8330–8335 eV) and Ni 4p orbitals 

(edge, >8345 eV) (Figure 3c). The pre-edge features of 1 (8332.1(0) eV), 2a (8332.3(1) eV), 

and 2b (8332.3(0) eV) are at a similar energy to the closely related NiII complex 

[iPr2NNF6]NiII(μ-Br)2Li(THF)2, (8331.6 eV),24 suggesting that complexes 1, 2a, and 2b are 

best described as NiII, with the slight shift to higher pre-edge energies attributed to NO 

backbonding. Calculated TDDFT XAS assign the rising edge feature in 2a and 2b at ~8335 

eV is a Ni to ligand π*transition that has much weaker intensity in 1 (Figure S38). These 

results suggest that reduction of {Ni(NO)}10 species 1 to anionic {Ni(NO)}11 species 2a and 

2b occurs primarily at the NO ligand. Complexes 2a (side-on) and 2b (principally end-on) 

have nearly identical XAS spectra and cannot be readily distinguished by this technique.

DFT calculations (Supporting Information) provide insight into electronic structure of the 

NO complexes and the secondary sphere interactions that control the NO bonding mode. 

DFT geometry optimizations of 1, 2a, and 2b without counterions using the ORCA 

program26 (B3LYP, TZVP/SV(P)) reveal spin density at the NO ligand in the 2a side-on 

(1.25 e−) and 2b end-on conformations (1.52 e−) that are almost identical in energy. Similar 

to TpNiNO with a linear NO ligand,27 complex 1 is best described as high spin Ni(II) 

antiferromagnetically coupled to NO1− while the anionic complexes 2a and 2b are low spin 

Ni(II) with an NO2− ligand (Figures S33 and S35). Full molecule calculations could 

energetically distinguish the end-on and side on conformations by fixing the Ni···K distance 

to 5.466 Å. This revealed the side-on conformation to be only 2.3 kcal/mol more stable, 

consistent with the linear/side-on disordered observed in the solid state structure of 2b.

The reduced NO ligands that bear significant unpaired electron density in 2a and 2b are 

primed for coupling with •NO to form cis-hyponitrite ligands in complexes {[Ni](κ 2-

O2N2)}− (3a and 3b). Addition of 1 equiv NO(g) to 2a in tetrahydrofuran at room 

temperature affords diamagnetic {[iPr2NNF6]Ni(κ 2-O2N2)}K(18-crown-6) (3a) in 72% 

yield (Figure 4a). X-ray diffraction analysis of 3a reveals a square planar Ni center with 

short Ni–Nβ-dik 1.8895(15), 1.8936(15) Å and Ni–O 1.8241(13), 1.8187(13) Å) distances 

clearly indicating coupling between the two NO ligands (N3–N4 = 1.235(2) Å) (Figures 4b 

and S25). The cis-hyponitrite ligand exhibits an otherwise symmetric structure (O1–N3 = 

1.370(2), O2–N4 = 1.367(2) Å) similar to those previously observed12 despite 

unsymmetrical coordination of {K[18-crown-6]}+ cation to both the N atoms of the 

hyponitrite ligand (K1–N4, 2.7519(17), K1–N3, 3.0584(18) Å). Addition of NO to 2b 
similarly provides {[iPr2NNF6]Ni(κ2-O2N2)}K[2.2.2-cryptand] (3b) in 89% yield with very 

similar metrical parameters for the {[Ni](κ2-O2N2)}− moiety that is coordinated to only one 

cis-hyponitrite N atom by the {K[2.2.2-cryptand]}+ cation (K–N = 3.274 Å) (Figure S26). 

Capture of NO by a reduced NO ligand in {[Ni](NO)}− to form cis-hyponitrites {[Ni](κ2-

O2N2)}− mirrors the reactivity of NO with [iPr2NNF6]Ni(η2-ONPh) to form [iPr2NNF6]Ni-

(η2-O2N2Ph). In both anionic {[Ni](NO)}− and neutral [Ni](η2-ONPh), there is significant 
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unpaired electron density at the reduced NO moiety.24 Notably, the {Ni(NO)}10 complex 1 
does not react with nitric oxide.

NMR spectra of {[iPr2NNF6]Ni(κ2-O2N2)}K[18-crown-6] (3a) in THF-d8 exhibits sharp 

resonances characteristic of diamagnetic β-diketiminato NiII complexes (Figures S12–S14).
24 Notably, the 15N NMR spectrum of a 15N enriched sample of 3a (3a-15N15N) in THF-d8 

shows a sharp singlet at 244.7 ppm (vs liquid NH3) indicating symmetric κ2-O,O binding of 

the hyponitrite ligand to the [iPr2NNF6]Ni core in solution at room temperature. The 

{[iPr2NNF6]Ni(κ2-O2N2)}− anion in 3b exhibits identical NMR features as found in 3a.

Hyponitrite complexes are known to release N2O upon heating or protonation.9,10,12 The 

{[iPr2NNF6]Ni(κ2-O2N2)}− anion (in 3a or 3b) is thermally stable up to 60 °C with no 

evidence of N2O loss. Protonation of 3a or 3b by 1 equiv trifluoroacetic acid, however, 

triggers the instantaneous release of N2O observed by 15N NMR (Figures 4c and S17) and 

IR spectroscopy (2227 cm−1) (Figure S16). Protonation with HBF4·OEt2 produces N2O in 

76% yield and allows for isolation of the nickel(II) hydroxide dimer {[iPr2NNF6]Ni}2(μ-

OH)2 (4) in 66% yield that exhibits a structure similar to other β-diketiminato [NiII]2(μ-

OH)2 complexes (Figure S27).28

Spectroscopic and computational insights reveal that one-electron reduction of the 

{Ni(NO)}10 complex 1 largely takes place at the NO ligand, leading to side-on and end-on 

{Ni(NO)}11 species 2a and 2b, respectively. Regardless of the nitrosyl binding mode, these 

{Ni(NO)}11 complexes possess a significant amount of unpaired electron density at the 

nitrosyl N atom and undergo facile coupling with NO to give the cis-hyponitrite {[Ni](κ2-

O2N2)}−, which releases N2O upon protonation. Controlled tuning of the second 

coordination sphere interactions between the nitrosyl ligand of the {Ni(NO)}11 anion and a 

potassium cation modifies the metal-nitrosyl bonding mode, favoring side-on [M](η2-NO) at 

shorter Ni···K distances. Especially because the corresponding {Ni(NO)}10 species does not 

react with NO, these findings underscore electronic and conformational factors that favor 

NO coupling via N–N bond formation at monometallic sites. Separation of NO-based 

reduction and NO coupling steps provides important context for the biologically important 

reduction of NO that results in N2O formation via protonation of cis-hyponitrite 

intermediates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Reactivity and binding of nitrosyl ligands at transition metal sites.
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Figure 2. 
Synthesis (a) and X-ray structures (b,c) of {NiNO}11 anions 2a (side-on) and 2b (77/23 end-

on/side-on).
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Figure 3. 
(a, b) X-band EPR spectra (black trace) of 2a and 2a-15N in tetrahydrofuran at 293 K. 

Simulations (red trace) provide giso = 2.0008, Aiso(14N) = 28.9 MHz (for 2a), and Aiso(15N) 

= 40.1 MHz (for 2a-15N). (c) Ni K-edge X-ray absorption spectra of 1, 2a, and 2b.
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Figure 4. 
(a) Formation of cis-hyponitrite intermediate 3a and its transformation to nitrous oxide. (b) 

X-ray crystal structure of 3a. (c) Comparison of 15N NMR spectra (41 MHz, 298 K, 

tetrahydrofuran-d8) of [Ni](κ2-O2
15N2)K[18-crown-6] (3a-15N15N) (blue trace) and the 

crude reaction mixture (red trace) obtained upon addition of 1 equiv trifluoroacetic acid to a 

solution of 3a-15N15N in tetrahydrofuran-d8.
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