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Abstract

A number of pulmonary diseases occur with upper lobe predominance, including cystic fibrosis 

and smoking-related chronic obstructive pulmonary disease. In the healthy lung, several 

physiologic and metabolic factors exhibit disparity when comparing the upper lobe of the lung to 

lower lobe, including differences in oxygenation, ventilation, lymphatic flow, pH, and blood flow. 

In this study, we asked whether these regional differences in the lung are associated with DNA 

methylation changes in lung macrophages that could potentially lead to altered cell responsiveness 

upon subsequent environmental challenge. All analyses were performed using primary lung 

macrophages collected via bronchoalveolar lavage from healthy human subjects with normal 

pulmonary function. Epigenome-wide DNA methylation was examined via Infinium 

MethylationEPIC (850K) array and validated by targeted next-generation bisulfite sequencing. We 

observed 95 CpG loci with significant differential methylation in lung macrophages, comparing 

upper lobe to lower lobe (all false discovery rate < 0.05). Several of these genes, including CLIP4, 

HSH2D, NR4A1, SNX10, and TYK2, have been implicated as participants in inflammatory/

immune-related biological processes. Functionally, we identified phenotypic differences in oxygen 

use, comparing upper versus lower lung macrophages. Our results support a hypothesis that 
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epigenetic changes, specifically DNA methylation, at a multitude of gene loci in lung 

macrophages are associated with metabolic differences regionally in lung.

INTRODUCTION

Numerous lung diseases display upper lobe predominance, including cystic fibrosis, 

sarcoidosis, tuberculosis, and smoking-related chronic obstructive pulmonary disease (1). 

There are well-described physiologic differences in oxygenation and ventilation between the 

upper and lower lobes of the lung in the upright position (2). The origin of these differences 

has been largely attributed to gravity’s effects on the ventilation/perfusion ratio (VA/Q) in 

the lung, which is defined as the amount of inspired air divided by the pulmonary blood flow 

in an alveolus (3). Metabolic factors, such as lymphatic flow, pH, and blood flow, differ 

because of these inequalities of the VA/Q in the lung. Additionally, an oxygen gradient 

occurs in the lung because of this VA/Q from the apex to the base of the lung, with the upper 

lobe of the lung being notably more oxygen rich than the lower lobe at end expiration in an 

upright position (1). Hypoxia is known to induce broad effects on various aspects of cell 

biology, including alteration of the transcription of hundreds of genes that allow cells to 

adapt to the changing oxygen availability in the local environment (4). However, how 

metabolic factors contribute to upper lobe predominant lung disease is unclear.

Macrophages are the sentinel innate immune cells of the lung and possess remarkable 

immune plasticity, with the ability to sense and adapt to the local milieu (5). Lung 

macrophages play key roles in bacterial recognition and elimination as well as in 

polarization of innate and adaptive immunity. Depending on the local environment, 

macrophages sometimes play a role in anti-inflammatory responses, tissue repair, and 

homeostasis, whereas at other times, they promote inflammatory and phagocytic processes 

through the complex production of cytokines and cellular interaction (6, 7).

Epigenetics is the study of heritable changes in gene function caused by mechanisms other 

than changes in the underlying DNA sequence (8). Epigenetic mechanisms have emerged as 

modulators of host defenses that can lead to a more-prominent immune response and shape 

the course of inflammation in the host, both driving the production of specific inflammatory 

mediators and controlling the magnitude of the host response (9). It is now clear that both 

the innate and adaptive immune responses use epigenetic mechanisms of gene regulation to 

maintain long-term phenotypes (10). One important mode of epigenetic regulation is DNA 

methylation (11, 12).

In this study, we investigate whether DNA methylation changes in lung macrophages are 

associated with the metabolic factors that contribute to the regional phenotypic differences 

in lung. To examine this question, we initiated an epigenome-wide DNA methylation 

profiling study of lung macrophages, comparing upper lobe cells to lower lobe–derived cells.
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MATERIALS AND METHODS

This study was approved by the Committee for the Protection of Human Subjects at the 

Geisel School of Medicine at Dartmouth (approval no. 22781). All subjects were healthy 

adults and nonsmokers without any known underlying lung disease.

Bronchoalveolar lavage and macrophage isolation

Following local anesthesia with nebulized lidocaine and i.v. conscious sedation, subjects 

underwent flexible bronchoscopy. Briefly, a flexible fiberoptic bronchoscope was inserted 

transorally and advanced through the vocal cords. Bronchoalveolar lavage (BAL) fluid was 

obtained from tertiary airways in the right upper lobes (RUL) and right lower lobes (RLL). 

BAL was performed sequentially in the RUL and RLL with 20 ml of sterile saline followed 

by 10 ml of air, and this was repeated for a total of five times per airway. Lung macrophages 

were isolated, as previously described (13, 14). BAL fluid was filtered through two-layer 

gauze, centrifuged, and washed twice in 0.9% NaCl. Cells were counted with a T10 

automated cell counter (Bio-Rad, Hercules, CA). Cytospins were performed using a 

Shandon Cytospin 3 centrifuge (Thermo Fisher Scientific, Waltham, MA). Briefly, 75,000 

cells resuspended in 200 μl of 0.9% NaCl were loaded into a cytology funnel (Fisher 

Scientific, Pittsburgh, PA) and centrifuged for 10 min. Cells were allowed to air dry and 

processed for viewing via Hema 3 Stat pack (Fisher). Imaging was done on an Olympus 

(Waltham, MA) BX41 microscope with DP2-BSW software (version 2007).

DNA methylation array

Epigenome-wide DNA methylation profiling was performed via the Infinium Methylation 

EPIC Bead Chips (Illumina, San Diego, CA) for the determination of methylation levels of 

more than 850,000 CpG sites, as previously described (15, 16). DNA was extracted from 

lung macrophages via Qiagen (Germantown, MD) DNeasy Blood and Tissue Kit. DNA was 

quantitated on a Qubit 3.0 Fluorometer (Life Technologies, Carlsbad, CA). Bisulfite 

conversion of DNA was carried out with the Zymo EZ DNA methylation kit (Zymo 

Research, Irvine, CA), and EPIC array hybridization and scanning were performed at the 

University of Southern California Molecular Genomics Core.

DNA methylation array data processing

Raw intensity data files from the MethylationEPIC BeadChips were processed by the minfi 

R/Bioconductor analysis pipeline (version 1.21) (17) with annotation file version 

ilm10b3.hg19. All samples showed consistent and high-quality profiles. CpGs annotated as 

single nucleotide polymorphisms, technical probes, and sex chromosome associated, as well 

as those failing to meet a detection p value < 0.05 in ≥20% samples, were excluded. This 

preprocessing procedure left 813,096 CpGs with high-quality methylation data in the final 

data set. DNA methylation microarray data has been deposited into Gene Expression 

Omnibus under accession no. GSE132547.

Targeted, next-generation bisulfite sequencing of candidate genes

Targeted next-generation bisulfite sequencing (tNGBS) was performed on nine of the 

original 13 BAL specimens measured in the DNA EPICmethylation array by EpigenDx 
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(Hopkinton, MA). DNA bisulfite modification was done using EZ-96 DNA methylation kit 

(Zymo), followed by multiplex PCR with Qiagen HotStar Taq and products purified with 

QIAquick PCR purification kit. Libraries were prepared using the KAPA Library 

Preparation Kit for Ion Torrent platforms and Ion Xpress Barcode Adapters (Thermo Fisher 

Scientific). Library products were purified using Agencourt AMPure XP beads (Beckman 

Coulter, Indianapolis, IN) and quantified using the Qiagen QIAxcel Advanced System. 

Barcoded samples were then pooled in an equimolar fashion before template preparation and 

enrichment were performed on the Ion Chef system (Thermo Fisher Scientific) using Ion 

520 and Ion 530 Chef reagents. Enriched, template-positive library products were sequenced 

on the Ion S5 sequencer using Ion 530 sequencing chips (Thermo Fisher Scientific). FASTQ 

files from the Ion Torrent S5 server were aligned to the local reference database using open-

source Bismark Bisulfite Read Mapper with the Bowtie2 alignment algorithm. Methylation 

levels were calculated in Bismark by dividing the number of methylated reads by the total 

number of reads.

Extracellular flux assay

Oxygen consumption rate (OCR) in lung macrophages was measured by Seahorse assay 

(Agilent, Santa Clara, CA), according to manufacturer’s instructions. Briefly, cells were 

plated at 50,000 per well and allowed to equilibrate overnight. The following morning, cells 

were washed twice and placed in XF base medium. The Seahorse instrument sensor 

cartridge was lowered to 200 μm above the cells, creating the transient microchamber. The 

sensor contains two fluorophores, one measuring oxygen (O2), the other measuring pH. 

Changes in oxygen concentration and pH were analyzed via XF Mito Stress Test Report 

Generator software (version 2.0) and reported as OCR in real time, enabling time-resolved, 

kinetic data of cell metabolism. Seahorse assays were carried out in DartLab, the Immune 

Monitoring and Flow Cytometry Shared Resource at the Norris Cotton Cancer Center at 

Dartmouth-Hitchcock Medical Center.

Statistical analysis

To determine the data structure of methylation profiles with respect to sample 

characteristics, we performed an unsupervised clustering analysis using the recursively 

partitioned mixture model (RPMM) method (18), assuming two terminal clusters on 10,341 

most variable CpGs (all intersample variance > 0.01). RPMM was implemented in the 

RPMM R package (version 1.25).

To investigate the putative cell-type proportions in all samples, the RefFreeEWAS algorithm 

(R package version 2.1) (19) was applied to 10,000 most variable CpGs across all samples. 

The proportion of putative cell types was calculated iteratively for the number of cell types 

K from 2 to 10. The optimal number of putative cell types K = 2 was selected, as it 

minimized the variance of the bootstrapped deviance matrix. Subsequently, the two putative 

cell types by sample were displayed as stratified boxplots for visualization purposes. 

Putative cell-type 1 proportion was included as a fixed-effect term in the differential 

methylation analysis linear model, as described below.
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The distribution of intersample variance in methylation β value was examined prior to 

differential methylation analysis: 27,107 CpGs with intersample variance in β values 

exceeding 0.005 were selected for further investigation. To account for the upper and lower 

lobe measurements collected from the same subject, the correlation coefficient (0.935) for 

the 27,107 CpG β values among the unique subjects (n = 13) was first calculated by the 

duplicateCorrelation function in the limma R/Bioconductor package (version 3.38.3). 

Differential methylation analysis was implemented by passing logit-transformed β values 

(i.e., M values), the consensus correlation coefficient for matched subject pairs, into the 

lmFit and eBayes functions in limma, with adjustment of subject age, sex, and RefFree cell-

type 1 as fixed effects and the subject as a random effect in the model, such that Y = β0 + 

XRUL βRUL + βage Xage + βsex Xsex + βcell type 1 Xcell type 1 + Random Effect (Subject Pair), 

where Y is the methylation β value, β0 is the intercept, X is a given covariate, β is the 

respective model coefficient, XRUL is an indicator variable of sample from the right upper 

lobe, and βRUL is the linear model coefficient associated with it. Data processing, statistical 

analysis and data visualization R code can be found at https://github.com/Christensen-Lab-

Dartmouth/CF_Epigenetics.

RESULTS

Healthy subjects (n = 13) underwent flexible bronchoscopy to obtain BAL fluid from tertiary 

airways in both the RUL and RLL, and lung macrophages were isolated as described above. 

Seven female subjects and six male subjects had a mean age of 27.4 y (SD = 5.3). Genome-

scale DNA methylation was measured in lung macrophages from both RUL and RLL, and 

the most variably methylated 10,341 CpGs from the EPIC methylation array were selected 

for unsupervised model-based clustering with RPMM (Fig. 1). In nearly all patients, 

matched RUL and RLL samples cluster immediately adjacent to each other, indicating that 

intersample variance in DNA methylation is larger than intra-sample variance. For all 

subjects, both the RUL and RLL sample share RPMM cluster membership. The genomic 

context for the most variable probes was evenly distributed across promoters/nonpromoters, 

enhancers/nonenhancers, and CpG islands/non-CpG islands.

To determine the putative cell-type composition, we applied the RefFreeEWAS algorithm (R 

package v.2.1, Linux R version 3.5) to 10,000 most variable CpGs, with 500 bootstraps, 10 

iterations, and nine presumptive cell types (i.e., K = 2–10), as previously described (16). We 

chose K = 2 as this value minimized the column variance of the deviance matrix. The 

distribution of the two putative cell types was very similar between matched RUL and RLL 

samples (Supplemental Fig. 1). We also explored phenotypic differences between lung 

macrophages of the upper and lower lobes. Visual evaluation of lung macrophage 

morphology via cytospin revealed cells similar in presentation from both lobes: typically, a 

monocytoid appearance with reniform nuclei and ample cytosol (Fig. 2A, 2B), comprising 

what appeared to be >85% of the total cell population.

Next, we investigated the relationship between DNA methylation in upper lobe versus lower 

lobe lung macrophages. Differential analysis comparing RUL and RLL revealeda total of 95 

CpGs at a false discovery rate (FDR) < 0.05 (Fig. 3) and 372 CpGs at an FDR < 0.10 

(Supplemental Table I). Of the 95 CpGs with an FDR < 0.05, the top 15 CpGs associated 

Armstrong et al. Page 5

Immunohorizons. Author manuscript; available in PMC 2019 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Christensen-Lab-Dartmouth/CF_Epigenetics
https://github.com/Christensen-Lab-Dartmouth/CF_Epigenetics


with genes of known function are shown in Table I. CpG location varied across multiple 

University of California, Santa Cruz reference gene groups, including 5′ untranslated region 

(UTR), TSS1500, TSS200, and body. The observed change in methylation values ranged 

from −8.2 to 10.7% for upper lobe cells. Upper lobe cells exhibited increased methylation at 

CpGs tracking to several genes previously implicated in host–pathogen interaction or in 

inflammatory/immune-related biological processes, including CAP-Gly domain-containing 

linker protein family member 4 (CLIP4), HSH2D, NR4A1, SNX10, and TYK2.

Subsequently, we used tNGBS for validation of the results from Infinium MethylationEPIC 

array. Assays were designed and run for NR4A1 (cg17323256), A2M (cg00889217), 

RUNX2 (cg13427753), and CLIP4 (cg26118047). A number of the original Infinium EPIC 

array CpGs were situated within repeat elements (LINE or SINE), and tNGBS assay design 

was unsuccessful (i.e., HSH2D, TYK2, SNX10, and SCNN1A). Methylation values from 

tNGBS were consistent with the EPIC array. Percent methylation difference (Δβ) values for 

select gene-associated CpGs are presented in Table II. Additionally, an example of tNGBS 

assay design for CLIP4 is illustrated in Supplemental Fig. 2.

At all targeted gene loci, the two methylation platforms, Illumina EPIC array versus tNGBS, 

showed significant correlations: NR4A1, CLIP4, RUNX2, A2M, PDE4D, and ZFHX3 (Fig. 

4). Correlation and p values ranged from 0.769 and p = 1.93e−04 (ZFHX3) to 0.96 and p = 

2.79e−10 (PDE4D).

Lung macrophages were also evaluated for differences in metabolic function by measuring 

basal respiration levels. OCR was assayed as a measure of basal mitochondrial function in 

cells comparing upper versus lower. The XF Cell Mito Stress Test performed on the 

Seahorse extracellular flux analyzer revealed a 21.4% difference (p < 0.001) in basal 

respiration between RUL versus RLL cells, with lower lobe cells exhibiting a higher OCR 

(Fig. 5).

DISCUSSION

It has been recognized for more than a half century that differences in physiologic and 

metabolic factors, such as lymphatic flow, ventilation, pH, and oxygenation levels, exist 

regionally within the lung (2, 3, 20–22). However, the impact of these physiologic 

differences on disease pathology or the immune response in upper lobe predominant lung 

diseases is unclear. We hypothesized that regional physiologic differences may contribute to 

epigenetic variability in lung macrophages isolated from the upper and lower lobes of the 

lung, as these cells are long lived and would be prone to epigenetic modifications in 

response to environmental differences. The goal of this study was to determine if epigenetic 

changes in lung macrophages, specifically DNA methylation changes, exist regionally in the 

lung (i.e., upper versus lower lobe) that may ultimately predispose upper lobe lung 

macrophages to respond differently than lower lobe macrophages.

Limited studies to date have examined lung-related DNA methylation profiling or 

differences in regional innate immune cells of the lung. Many such DNA methylation studies 

are lung cancer related (23–27). Additionally, several groups have looked at the effects of 
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cigarette smoking on lung-related DNA methylation (28, 29), and various studies have 

investigated changes in the DNA methylome in the single cell–type setting (30, 31). One of 

our recent studies has identified differential methylation in cystic fibrosis subjects at 109 

gene-associated CpGs in lung macrophages, using the Illumina Infinium MethylationEPIC 

(850 K) array (16). In addition, we have demonstrated variant regional lung microRNA and 

cytokine expression associated with hypoxia in lung macrophages and BAL fluid (upper 

versus lower lobe) (32).

In this study, we report DNA methylation differences from regional lung macrophages, 

providing a direct comparison of the epigenetic molecular signature of upper lobe versus 

lower lobe innate immune cells from healthy individuals. Our cell collection methodology 

(flexible bronchoscopy) is a rare approach used in research studies and affords us a unique 

opportunity to analyze innate immune cells isolated directly from the airway and alveolar 

space.

Our initial strategy was to collect lung macrophages of both the upper lobe and lower lobe in 

healthy subjects to analyze epigenome-wide DNA methylation patterns. DNA methylation 

profiling via unsupervised clustering analysis showed that matched upper lobe and lower 

lobe samples cluster immediately adjacent to each other in nearly all subjects. Additionally, 

we identified 95 differentially methylated CpGs (all FDR < 0.05), of which 80 were 

hypermethylated in upper lobe cells and 15 were hypomethylated in upper lobe cells as well 

as 372 differential CpGs (all FDR < 0.10). Differentially methylated CpGs included those 

associated with genes such as NR4A1, SNX10, SCNN1A, and A2M. The orphan nuclear 

receptor NR4A1, which has been shown to be rapidly induced in response to stimuli, such as 

LPS (33), has been linked to the regulation of glucose metabolism and inflammation as well 

as implicated in hypoxia-induced apoptosis (34, 35). SNX10, a member of the family of 

sorting nexins, is a protein involved in intracellular protein sorting, trafficking, and signal 

transduction (36). Moreover, SNX10 has been reported to regulate endosomal morphology, 

which might be crucial for macrophage function, including phagocytosis and digestion of 

pathogens, inflammatory response, and Ag presentation (37). The SCNN1A gene encodes 

for the α subunit of the epithelial sodium channel (ENaC), which plays a critical role in the 

ion and fluid regulation of the lung. Altered activity of ENaC, which regulates the airway 

surface liquid layer, might lead to airway dehydration, mucus stasis, and bacterial 

overgrowth, as can be seen in cystic fibrosis and chronic bronchitis (38); however, an exact 

role for ENaC in lung macrophages, specifically, has yet to be fully established.

In addition to epigenetic changes in lung macrophages, we have also identified altered 

oxygen use in upper versus lower lobe cells. Lower lobe macrophages consistently exhibit a 

higher OCR than upper lobe macrophages. This increased OCR may represent a 

compensation mechanism to counter the decreased oxygen present in the lower lobe. 

Mitochondrial and cellular metabolic processes are central to immune cell responses, 

hypoxia sensing, and apoptosis in addition to their well-known roles of substrate oxidation 

and ATP production (39–41). Additionally, glucose metabolism is pivotal during 

macrophage pathogen phagocytosis (42). Although we do not currently have a direct causal 

link, one gene we have identified as differentially methylated, NR4A1, has been shown to be 
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a transcriptional regulator of multiple glycolytic enzymes (35) and hence could ultimately be 

connected to changes in oxygen use levels in lung macrophages.

This study has several major strengths. To the best of our knowledge, this is the first study to 

demonstrate gene-associated DNA methylation differences in lung macrophages, comparing 

upper versus lower lobe. We have used the Infinium MethylationEPIC array, spanning 

850,000 sites across the human genome, and validated these observations via tNGBS. In 

addition, we provide evidence of phenotypic differences of upper versus lower lobe cells, 

namely, a divergence in basal metabolism. However, a limitation of this study is that 

although we have identified epigenetic and a metabolic phenotypic difference between upper 

lobe and lower lobe cells in healthy subjects, a causative relationship between the DNA 

methylation changes and cellular phenotype is yet to be ascertained. Future work with larger 

sample size and power should investigate such a relationship.

In conclusion, through epigenome-wide DNA methylation profiling, we have identified 95 

differential methylated CpGs in lung macrophages from the RUL relative to the RLL. 

Additionally, we have demonstrated energy metabolome-related phenotypical difference 

(i.e., oxygen consumption) in regional macrophages, upper versus lower. These observations 

support a hypothesis that epigenetic changes, specifically DNA methylation, at a multitude 

of gene loci in lung macrophages are associated with the well-established metabolic regional 

differences in lung and may, at least in part, be contributing to a differential innate immune 

response in alternate regions of the lung.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Unsupervised clustering analysis, upper lobe versus lower lobe macrophages.
RPMM of the 10,000 CpGs (rows) with greatest sample variance across subjects. Individual 

subjects 1–13 are shown in columns with sample status bar at top: black (upper) and gray 

(lower). Blue color represents increased sample methylation.
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FIGURE 2. BAL cell cytospins.
BAL cell samples were obtained from tertiary airways from both the RUL (A) and RLL (B) 

of healthy subjects (n = 13). BAL cells from healthy subjects are visually a mostly 

homogeneous population of cells, primarily lung macrophages with oval to reniform nuclei 

and abundant cytosol. Images shown are representative of multiple subjects. BAL cells were 

stained with H&E. Original magnification ×400.
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FIGURE 3. Epigenome-wide differential methylation in RUL macrophages.
Comparative analysis of DNA methylation in upper versus lower lobe macrophages in 

healthy subjects identified 95 differentially methylated CpGs (FDR p < 0.05). CpGs 

hypermethylated in RUL (green), and hypomethylated CpGs (blue) are plotted as log2-fold 

increase or decrease in methylation M value (x-axis) versus log10 FDR-adjusted p value (y-

axis). Statistically significant CpGs associated with specific genes are labeled, and unlabeled 

points represent CpGs associated with no known gene at that location.
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FIGURE 4. Correlation of DNA methylation analysis between Illumina EPIC methylation array 
and tNGBS platforms.
Correlation coefficients and linear regression p values were determined for CpGs associated 

with the genes NR4A1, CLIP4, RUNX2, A2M, PDE4D, and ZFHX3 as methodology 

validation, directly comparing the Illumina EPIC DNA methylation array and tNGBS 

assays.
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FIGURE 5. Oxygen consumption is higher in lower lobe macrophages.
Primary lung macrophages isolated from BAL fluid were plated and allowed to equilibrate 

in vitro for 16 h. OCR was measured via a two-fluorophore sensor cartridge via the Seahorse 

Mito Stress assay. Data are pooled from six to eight wells per experiment, with lung 

macrophages from three separate donors. Values were normalized to percent RUL OCR. 

***p < 0.001 by unpaired Student t test.
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TABLE II.

Comparison of percent methylation changes (Δβ) between EPIC array and tNGBS platforms at gene-specific 

CpGs

Gene Location EPIC
Δβ Value

tNGBS
Δβ Value

NR4A1 cgl7323256 0.051 0.011

CLIP4 cg26118047 0.059 0.073

RUNX2 cgl3427753 0.049 0.044

A2M cg00889217 −0.082 −0.086

PDE4D cgl6711835 0.075 0.052

ZFHX3 cg06086177 0.046 0.017
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